Tutorial Sheet 3, Topology 2013

- 1. Prove that $f: X \to Y$ is continuous if and only if $C \subset Y$ being closed implies $f^{-1}(C) \subset X$ is also closed.
- 2. Suppose that $f: X \to Y$ is continuous, $A \subset X$, and p is a limit point of A. Prove that $f(p) \in \overline{f(A)}$.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ (with the usual topologies) be continuous and define $g : \mathbb{R} \to \mathbb{R}^2$ (with the usual topologies) to be g(x) = (x, f(x)). Prove that g is continuous.
- 4. Let $X = \mathbb{R}$ with the finite complement topology and let $Y = \mathbb{R}$ with the usual topology. Let $f: X \to Y$, f(x) = x. Is f continuous? If f^{-1} continuous? Justify your answers.
- 5. Prove that any two open intervals in the real line (with the usual subspace topology) of the form (a, b) and (c, d) are homeomorphic.
- 6. Prove that a disc and an ellipse (both with the usual subspace topology) are homeomorphic. Recall that

$$D = \{(x,y) : x^2 + y^2 \le R^2\}, \qquad E = \left\{(x,y) : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\right\}$$

for some R, a, b > 0.