What is topology?

- Study of shapes, surfaces, and space.
- Goal is to do this abstractly, without explicit measure of distance or size.

Often described as "rubber sheet geometry": two objects that can be stretched/squeezed/ twisted/ etc. w/o breaking or tearing them are topologically "the same".

Ex: are all the same, but distinct from

Ex: via paper and scissors...

1. Make a cylinder. How many sides does it have? How many edges? What happens if you cut it in half?

(2, 2, get 2 cylinders)
(2) Make a Möbius strip: cylinder w/ a half-twist.
- Sides: 1 (!)
- Edges: 1 (!)
- Cut in half: get one “cylinder”
 (full twist: 2 sides, 2 edges)
- Cut in thirds (use a new Möbius strip)
 get one Möbius strip linked w/ a “cylinder” (2 full twists)

(3) Make a “cylinder” with a full twist.
- Sides: 2
- Edges: 2
- Cut in half: 2 linked “cylinders”

One goal of topology is to define precisely what we mean when we say the standard cylinder is the same as the cylinder w/ the full twist. Let’s start with some formal definitions…

- Definition: A topological space is a set X together with a collection \mathcal{T} of subsets, τ, called the topology on X. Members of τ are called open sets, and τ must satisfy:

- Lecture 2
1) $\emptyset, X \in T$

2) If $U, V \in T$, then $U \cap V \in T$

3) If $U_{\alpha} \in T$ for all $\alpha \in A$ (some index set), then $\bigcup_{\alpha \in A} U_{\alpha} \in T$

In words: a topology T must contain the empty set, the entire space X, finite intersections, and arbitrary (finite, countable, uncountable...) unions.

Example:

$X = \{1, 2, 3\}$
$T = \{\emptyset, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3\}$

Proof: T is a topology.

Solution: Just check the 3 axioms.

1) $\emptyset, \{1, 2, 3\} = X$ are both in T. ✓

2) $\emptyset \cup U = \emptyset \in T \forall U \in T$ ✓

 $\emptyset \cup \emptyset = \emptyset \in T$ ✓

 $\emptyset \cup \{1\} = \{1\} \in T$ ✓

 $\emptyset \cup \{2\} = \{2\} \in T$ ✓

 $\emptyset \cup \{3\} = \{3\} \in T$ ✓

3) Similarly check all unions. ✓

Example:

$X = \{1, 2, 3\}$
$T = \{\emptyset, \{1, 2, 3\}, \{1, 3\}, \{1, 2, 1\}\}$

Question: Is T a topology?

Solution: No. $\{1, 2\} \cup \{1, 3\} = \{1, 2, 3\} \notin T$.

... 2) is violated.
Example: For any set X, $\tau = \emptyset, X \cong$ is a topology called the trivial topology. (\emptyset is not very interesting.)

Example: For any set X, $\tau = P(X)$, where $P(X)$ is the collection of all subsets of X, is a topology called the discrete topology. (For reasons we'll discuss later.)

Example: Given any set X and any point $p \in X$, let τ consist of all subsets that contain p, plus \emptyset. This is a topology called the particular point topology.

\[\text{Prove this is a topology:} \]

\[\text{Sol'n (by Proof):} \]

1) For τ by definition, $p \in X$ so $X \in \tau$.
2) If $U, V \in \tau$, then $p \in U$, $p \in V$. So $p \in U \cap V$ and $\therefore U \cap V \in \tau$.
3) Consider $U \in \tau$ and $A \subseteq A$. Then $p \in U \cap A$ and so $p \in U \cap A = U \in \tau$.

Example: Given any set X, define τ to be the collection of subsets whose complements are finite (i.e., contain finitely many elements), plus \emptyset. Then τ is a topology called the finite complement topology.
Example: (Metric Spaces) Recall that a metric space is a set \(X \) together with a distance function \(d : X \times X \rightarrow [0, \infty) \)

1) \(d(x, y) = d(y, x) \)
2) \(d(x, y) = 0 \text{ iff } x = y \)
3) \(d(x, z) \leq d(x, y) + d(y, z) \) (\(\Delta \) inequality)

The metric topology on \(X \), or the topology induced by the metric \(d \), is defined as follows. Let

\[B_\varepsilon(x) = \{ y \in X : d(x, y) < \varepsilon \} \]

This is called the \(\varepsilon \)-ball, ball of radius \(\varepsilon \), or \(\varepsilon \)-neighborhood of \(x \). We visualize it typically as

\[\begin{array}{c}
\varepsilon \\
\hline
x \\
\varepsilon \\
y
\end{array} \]

But see Manual (sheet #1)

A set \(U \) is open, i.e. \(U \in T \) where \(T \) is the metric topology, iff it contains a neighborhood of every point. In other words, \(U \in T \) iff \(\forall y \in U, \exists \varepsilon = \varepsilon(y) > 0 \text{ s.t. } B_\varepsilon(y) \subseteq U \).
For example, if $X = \mathbb{R}^n$ and
\[
d(x,y) = \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}
\]
\[x = (x_1, \ldots, x_n)
\]
\[y = (y_1, \ldots, y_n)
\]

The topology induced by this metric is the usual topology on \mathbb{R}^n.

Visualize in 1D:

(→)

open interval → open set

falls @ 1 pt.

falls @ 2 pts.

\[a \rightarrow b\]

\[\not\text{open!} \quad B_e(a) \notin U \forall \varepsilon > 0\]

Visualize in 2D:

an open ball is not an open set

Borel w/o boundary is open

not open if it includes an boundary!

Warning: Drawing open sets as open balls/intervals only makes sense in the metric topology! It can be misleading otherwise!

Example: Let (X,d) be a metric space with finitely many elements. Prove that the metric topology is the discrete topology.
Proof: Recall that a topology τ is defined as the collection of all subsets of X. So, we must show that any subset of X is open in the usual topology.

Let U be any subset of X, and pick $y \in U$.
We must find an $\varepsilon = \varepsilon(y)$ s.t. $B_\varepsilon(y) \subseteq U$.

Define $\delta = \min_{i=1,\ldots,n} d(x_i, y)$ and $\varepsilon = \delta/2$.

Then $B_\varepsilon(y) = \{x \in X \mid d(x, y) < \varepsilon\} \subseteq U$.

Lecture 3
(Recall def. of topology...)

Example: Let (\mathcal{X}, τ) be any topological space and let $Y \subseteq \mathcal{X}$ be any subset of \mathcal{X}. Define $\tau_Y = \{U \subseteq Y \mid U \in \tau Y\}$. Then τ_Y is a topology on Y called the **subspace topology**.

Key Fact: For the subspace topology, a set that is open in Y is not necessarily open in \mathcal{X}.

Example: $\mathcal{X} = \mathbb{R}$ with the usual metric topology

$\tau = \{(-x, x) \mid x \in \mathbb{R}\}$

$\tau_Y = \{[0,1] \}$

$\{[0,1/2]\} = (-\frac{1}{2}, \frac{1}{2}) \cap Y$ so it is open in Y!

$\{[0,1/2]\}$ is not open in \mathcal{X}!
When discussing a topological space, we'd like to have a way to describe the simplest, or most basic, open sets. This is done via a basis.

Def: A basis, or base, for a topology τ on X is a collection of open sets β s.t. for any open $O \in \tau$, if a family of sets $B_\alpha \in \beta$, $\alpha \in \mathcal{A}$, such that

$$O = \bigcup \beta \alpha$$

Example: Let (X, d) be a metric space with the associated metric topology. Prove that

$$\beta = \{ B_\varepsilon(x) : x \in X \text{ and } \varepsilon > 0 \}$$

is a basis.

Proof:

1) We must first show that each $B_\varepsilon \beta$ is itself open. Given $B = B_\varepsilon(x)$ and $y \in B$, let $s = d(x, y)$.

Consider $B_{s - \varepsilon}(y)$. To show $B_{s - \varepsilon}(y) \subset B_\varepsilon(x)$, let $z \in B_{s - \varepsilon}(y)$. Then

$$d(x, z) \leq d(x, y) + d(y, z)$$

$$\leq s + s - s = \varepsilon$$

$$\therefore z \in B_\varepsilon(x)$$

$$\therefore B_{s - \varepsilon}(y) \subset B \checkmark$$
2) Now, given any \(O \subset T \), we must find a collection \(\{ B_x \subset O \} \) s.t. \(O = \bigcup B_x \).

Given any \(y \in O \), \(\exists x(y) \subset O \) s.t. \(B_{x(y)}(y) \subset O \).

Let my collection \(\{ B_x \} \) be given by \(B_{x(y)}(y) \) s.t. \(y \in O \).

One can check that
\[
\bigcup B_{x(y)}(y) = O
\]

[le set \(V = \bigcup B_{x(y)}(y) \) and show \(V \subset O \) and \(O \subset V \)]

\[
\begin{align*}
(x \in V & \iff x \subset B_{x(y)}(y)) \subset O \subset V \\
& \iff x \in O \\
& \iff x \in O
\end{align*}
\]

\[\therefore O \subset V. \]

Remark: The collection of all open balls in a metric space does not itself form a topology.

\[B_x(z) \cap B_y(z) \neq B_r(z) \]

Another way to think of open sets is in terms of neighborhoods.

* Definition: A neighborhood of \(x \in X \) is a subset \(N \subset X \)
 s.t. \(x \in N \) and \(\exists O \subset T \) s.t. \(x \in O \subset N \).

Ex: \(X = \mathbb{R} \) w/ usual metric topology.
\(N = (\frac{1}{2}, \frac{3}{2}) \) is a nbhd of \(1 \) w/ \(1 \in N \)
and \((\frac{1}{2}, \frac{3}{2}) \subset N \) and \((\frac{1}{2}, \frac{3}{2}) \) is open.
A neighborhood need not be open itself (but it could be).

Lemma: A set U in a topological space (X,τ) is open iff it contains a neighborhood of each of its points.

Proof:

\Rightarrow Let U be open. Then U is itself a nbhd of x, in any $x \in U$.

\Leftarrow Suppose $U \subseteq X$ contains a nbhd of each of its pts. So for each $x \in X$, $X \setminus U$ is closed and an open O_x s.t. $x \in O_x \subseteq X \setminus U$. Then we can check if we set

$$V = U \cup_{x \in U} O_x$$

Proof $V = U$. ($V \subseteq U$ and $U \subseteq V$)