- Recall equivalence relations:
 - \(x \equiv x \) (reflexive)
 - \(x \equiv y \rightarrow y \equiv x \) (symmetric)
 - \(x \equiv y \text{ and } y \equiv z \rightarrow x \equiv z \) (transitive)

- Use to define equivalence classes

\[
[x] = \{ y \mid y \equiv x \}
\]

- Def: Given a topological space \(X \), define an equivalence relation \(\equiv \) by setting \(x \equiv y \) if \(x \) and \(y \) are connected subspaces (in subspace topology) \(A \subseteq X \) s.t. \(x, y \in A \). The equivalence classes of \(X \) under \(\equiv \) are the components of \(X \).

Example:

\[
X = \{1, 2\} \cup \{3, 4\}
\]

There are two components:

\[
\{1, 2\} \quad \text{and} \quad \{3, 4\}
\]

There are 3 components.
The components of \overline{X} satisfy

1) The components are disjoint and their union is \overline{X}.
2) Each nonempty connected subspace in \overline{X} intersects exactly 1 component.
3) Each component is connected.
4) Each component is closed.

Proof: 1, 2 follow from the definition.

3) Let $x_0 \in C$ and C be a component. $\forall x \in C$, find a connected subspace $A_x \subseteq \overline{X}$ s.t. $x_0 \in A_x$. Then $A_x \subseteq C$ by 2) and $C = \bigcup A_x$. Now apply the theorem on a cover of connected sets (\overline{X}).

4) We even C connected implies \overline{C} is connected. By 2), \overline{C} intersects 1 component of C, so $C = \overline{C}$.

Ex:

- If X is discrete, each $\{x\}$ is a component.
- If X is connected it has 1 component itself.
- $\mathbb{R}^2 \setminus S^1$ has 2 components.

Def: A space whose components consist of single points is said to be totally disconnected.
Note: A discrete space is totally disconnected, had a totally space need not be discrete.
(See HW Sheet 7.)

A more useful notion of connectedness is path-connected.

Definition: Given \(x, y \in X \), a path in \(X \) from \(x \) to \(y \) is a continuous function \(f: [0, 1] \to X \) s.t.
\(f(0) = x \), \(f(1) = y \). A space \(X \) is path-connected if every pair of points can be joined by a path in \(X \).

\[
\begin{align*}
x &= f(0) \\
y &= f(1)
\end{align*}
\]

Notation: \(f(1-t) = f(1-t) \) is a path from \(y \) to \(x \).

Naive Question: How are connectedness and path-connectedness related?

True: A path-connected space is connected.

Proof: WLOG let \(\Delta X \) be path-connected but not connected and let \(A \subset X \), \(A \neq \emptyset \) or \(X \), be both open and closed. Pick any \(x \in A \), \(y \in X \setminus A \). Let \(\gamma \) be a path between them.
But then $f^{-1}(A)$, $f^{-1}(X \setminus A)$ are both open in $[0,1]$, nonempty, and disjoint + form a disconnection of $[0,1]$. $
abla$

Key Fact: The curve is not one!

Ex: Tupdepot's Sine Curve

\[S = \{(x, \sin(\pi x)) \in \mathbb{R}^2 : x \in [0,1] \} \]

\[\Rightarrow S \text{ is connected b/c its \text{ preimage} at } (0,0). \]

\[\Rightarrow \therefore S \text{ is connected, and} \]

\[\overline{S} = S \cup \{(0,y) : y \in [-1,1] \} \]

\[\therefore \text{One can check that } \overline{S} \text{ is not path connected.} \]

Lecture 19

*Del:** We can define an equivalence relation \sim_x if

\[\exists \text{ a path } x \text{ from } x \text{ to } y. \]

The resulting equivalence classes are called path components.
• **Def.** Path connected sets satisfy
 1) They’re disjoint and their union is X.
 2) Any path-connected, nonempty subspace intersects exactly one path-connected.
 3) They’re path connected.

Key Fact: They satisfy properties analogous to connected components, except they need not be closed.

Ex: \(S = \{ (x, y) : x \in (0, 1), y = \frac{1}{2}, y = \frac{1}{2x} \} \).

Path connected \(S \) are \(S \) and \(Y \), \(S \) is not closed.
(\(S \) has 1 component, connected, and not itself.)

> Later for the discussion of fundamental groups, we’ll need a notion of...

• **Def.** \(X \) is locally connected at \(y \in X \) if \(A \) contains \(N \) at \(y \).
 - A neighborhood \(N \) at \(y \).
 - \(U \in N \) s.t. \(U \subseteq N \) and \(U \) is connected. If \(U \) includes \(y \), then \(x \) is locally connected. \(X \) is locally
 - path connected at \(y \) in \(X \) if \(A \) contains \(N \) at \(y \).
 - \(U \) of \(y \), \(U \subseteq N \), s.t. \(U \) is path-connected.
 - If \(U \) includes \(y \), then \(X \) is locally path connected.
Ex: \(X = Q \cup [0,1] \)

\(\rightarrow X \) is locally connected at any \(y \in (0,1) \).

\(X = [1,2] \cup [3,4] \)

is locally connected but not connected (also p.p.m.)

Time for identification of quotient spaces ...

Recall: The Möbius Strip is

\[
\begin{align*}
R \xrightarrow{\text{half twist}} & \xrightarrow{\text{glue}} M \\
\end{align*}
\]

? How do we turn \(M \) into a topological space?
How do we "glue" the ends of \(R
\)
dogether after twisting?

Ex: \(R = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 3, 0 \leq y \leq 1\} \)

Divide up \(R \) using the following equivalence relation:
\[(x_1, y_1) \sim (x_2, y_2) \] if

\[(x_1, y_1) = (x_2, y_2) \]
2) \(x_1 = 0, \ x_2 = 3, \ y_2 = 1 - y_1 \) for any \(y_1 \in [0, 1] \).

The equivalence class 2) is the mathematically rigorous way to glue the ends together with a half twist.

Question: How do we define a topology on this space?

→ Define a map \(\pi : R \to M \), where \(M \) is the set of equivalence classes defined by \(\sim \), so that \(\pi(x, y) = [x, y] \). i.e. \(\pi \) sends a point to its equivalence class.

\[[\pi/0, y] = \pi(3, 1 - y) \]

→ Define a set \(\Theta \subset M \) to be open if

\(\pi^{-1}(\Theta) \) is open in \(R \).

Examples of open sets in \(M \):

\(\pi^{-1}(\Theta) \)
• **Definition:** Let \(\pi: X \rightarrow Y \) be a onto, continuous function between hyperreal spaces. It is called an **ideleically map** or **quochent map** if \(U \) is open in \(Y \) if and only if \(\pi^{-1}(U) \) is open in \(X \).

Key Point: This is stronger than continuity.

• **Definition:** Let \(X \) be a hyperreal space and let \(A \) be any set. If \(\pi: X \rightarrow A \) is onto, then \(A \) topology for \(A \) st. It is an **ideleically/quochent map**. This topology is called the **quochent topology** or **ideleically topology**.

Web: \(T_A = \{ U \subset A : \pi^{-1}(U) \text{ is open in } X \} \)

→ In our example, \(H \) is an ideleically space, and \(\pi \) is an ideleically map.
Lecture 20

Note: I must rectify the delusion of locally canceled!

Def: T is locally canceled at $y \in T$ if
A word N of y, T a canceled word not y
s.t. $U \subseteq N$. (Same for p_0 locally proper canceled.)

[Different is a bit subtle... don't worry about it too much.]

We studied destroy identity-like spaces

* $\Pi: T \to A$, auto, T typical-like space
 $\tau_A = \{U \cup A : \Pi^{-1}(U) \text{ is open in } T\}$
 is the identity-like topology on A, and Π
 makes Π an identity-like map.

Def: Let T be a typical-like space and let X^\ast be a collection of closed sets of T
where union is T; let $\Pi: X \to X^\ast$ send
each X to $\{U \subseteq \{x\} : \Pi^{-1}(U) \text{ is closed in } T\}$ the subset
containing x. Then X^\ast, together with the
identity-like topology induced by Π, is
an identity-like (or quotient) space.
Remark: The disjoint subsets partition \(\mathbb{I} \), and one can view \(\mathbb{I} \) as an equivalence relation: \(x \equiv y \) if they're in the same partition element. This is why people often write \(\mathbb{I}/\sim \) instead of \(\mathbb{I}^\ast \) for the associated quotient space.

Note: Sometimes, it will be convenient to define a \(\mathbb{R}^n \) Euclidean space directly via an equivalence relation, and other times via a partition.

Example: Klein Bottle

\[
\begin{array}{c}
\text{\includegraphics[width=\textwidth]{klein_bottle.png}} \\
\text{(Hard to draw - need 4 dimensions!)} \\
\text{(Note: it doesn't really exist itself!)}
\end{array}
\]

Consider \(\mathbb{R} = [0,1] \times [0,1] \) and define equivalence classes via

\[
(I) \ (x_1, y_1) = (x_2, y_2)
\]
(II) \((0, y) \sim (1, y)\)
(III) \((x, 0) \sim (1-x, 1)\)

Then \(\mathbb{R}/\sim\) w/ the associated identically
hyper is the Klein bottle.

Remarks

1) If \(\pi: X \to Y\) and \(\tilde{\pi}: Y \to Z\) are idemrlearly
maps, so is \(\tilde{\pi} \circ \pi: X \to Z\).

2) If \(A\) is a subspace of \(X\) and we set
\(\pi: \mathbb{R} \times A \to X\), \(\pi(x)=x\), Then \(\pi\) is
not necessarily an idemrlear map.

3) If \(X\) is Hausdorff, \(Y\) need not be.

\(\text{Identically maps don't always behave as nicely as you might hope.}\)

\[\text{Ex:}\] \(B^2 = \{ x \in \mathbb{R}^2 : |x| \leq 1 \}, \ S^1 = \{ x \in \mathbb{R}^2 : |x|=1 \}\)

Define an equivalence relatin on \(B^2\) via

(I) \(x_1 \sim x_2\) if \(x_1 = x_2\)
(II) \(x_1 \sim x_2\) if \(x_1, x_2 \in S^1\)

So the curve crossing \(B^2\) is been
identified to a point. \(B^2/\sim\) is a
familiar surface... what is it?
How can we show B^2/v is homeomorphic to S^2?

We'll do this via a sequence of theorems...

Theorem: Let $\pi : X \rightarrow Y$ be an idenditical map.
Let $g : X \rightarrow Z$ be a continuous function that is constant on each subset of X of the form $\pi^{-1}(y)$, for $y \in Y$. Consider the induced map f defined via $f \circ \pi = g$.

1) f is continuous iff g is continuous.
2) f is an identity map iff g is.

Proof: First note that $f(y) = g(\pi^{-1}(y))$

1) \rightarrow Let f be cont. Since $g = f \circ \pi$ is the
 composition of cont. functions, f is continuous.
(⇒) Let g be cont. Let $U \subset Z$ be open, so $g^{-1}(U)$ is open in X. One can check
\[g^{-1}(U) = \pi^{-1}(f^{-1}(U)) \]
Since π is an identity map, $f^{-1}(U)$ is open in Y.

(⇐) Let f be an identity map. Then so is g because it is the composition of identity maps.

(⇒) Let g be an identity map. So g is cont. and $U \subset Z$ is open iff $g^{-1}(U)$ is open in X. By (1)
f is cont. Let $f^{-1}(U)$ be open in Y. We must show U is open in Z. By (⇒) and (⇒) identity, $g^{-1}(U)$ is open in X. Be g ident.

Also, f is cont. by given $x \in Z \Rightarrow$
\[\pi(\pi^{-1}(f(x))) = f(x) = z. \]