Theorem: Let \(\pi : X \to Y \) be an idematically map. Let \(g : X \to Z \) be a continuous function that is constant on each subset of \(X \) of the form \(\pi^{-1}(y) \) for \(y \in Y \). Consider the induced map \(f \) defined by \(f = g \).

1) \(f \) is continuous iff \(g \) is continuous.
2) \(f \) is an idematically map iff \(g \) is an idematically map.

\[\begin{array}{ccc}
X & \xrightarrow{\pi} & Y & \xrightarrow{f} & Z \\
\downarrow g & & \downarrow f & & \downarrow
g(y) = g(\pi^{-1}(y))
\end{array} \]

Proof:

1) \(\implies \) \(f \) is cont. \(\iff \) \(g \) is the comp. of cont. functions. So continuous.

2) \(\iff \) \(g \) is continuous. Let \(U \subset Z \) be open, and note that

\[g^{-1}(U) = \pi^{-1}(f^{-1}(U)) \] (\(\ast \))

Since \(g^{-1}(U) \) is open and \(\pi \) is an idematically map, \(f^{-1}(U) \) is open in \(Y \).
2) \(\Rightarrow \) Again, comp. of idnt. maps are idnt. maps.

(\(\Leftarrow\)) Let \(f \) be an idnt. map. \(f \) is an idnt. map.

We must show \(f \) is cont. and \(U \subset \mathbb{Z} \) is open \(\Rightarrow f^{-1}(U) \subset \mathbb{Y} \) is open.

Onto:

Certainly \(z \in \mathbb{Z} \), \(\exists \ x \in X \) s.t. \(f(x) = z \).

Also, \(\pi(x) = y \) for \(s \in \mathbb{Y} \). Hence

\[
 f(y) = f(\pi(x)) = f(x) = z.
\]

Open: \(U \subset \mathbb{Z} \) open \(\Rightarrow f^{-1}(U) \subset \mathbb{Y} \) open by cont.

Let \(f^{-1}(U) \subset \mathbb{Y} \) be open. Since \(\pi \) is idnt.,

\(U \) must be open. Then \(f \) idnt.

\(U \) must be \(U \subset \mathbb{Z} \) open.

A related result:

- **Prop:** Let \(g : X \to \mathbb{Z} \) be onto and continuous. Let \(X^* \) be the collection of partitions elements defined by

\[
 X^* = \{ g^{-1}(z) : z \in \mathbb{Z} \}.
\]

Cover \(X^* \) the idnt. map \(g \).

1) \(g \) induces a continuous bijection \(f : X^* \to \mathbb{Z} \) that

is a homeomorphism if \(g \) is an idnt. map.
b) If \(Z \) is Hausdorff, then so is \(X^\times \).

\[
\begin{array}{ccc}
X & \xrightarrow{\pi} & X^\times \\
\downarrow & & \downarrow \phi \\
\pi \circ f & \rightarrow & Z
\end{array}
\]

\[f \circ \pi = g\]
\[f(y) = g(\pi^{-1}(y))\]

Proof: Note that we have a natural identification map \(\pi: X \rightarrow X^\times \) that sends a point to its partition element and \(f \) is continuous on subsets of the form \(\pi^{-1}(y) \). Hence the previous theorem applies.

a) 1st Show \(f \) is a cont. bijection: \(f \) is cont. by the proved theorem. It is cont. by the proof of the previous theorem. To see it 1-1, suppose \(y_1 \neq y_2, y_1, y_2 \in X^\times \). Then they are distinct partition elements and so

\[f(y_1) = g(\pi^{-1}(y_1)) \neq g(\pi^{-1}(y_2)) = f(y_2)\]
If g is a homeo. of X, then g is cont. WLC f is.

$\leq\Rightarrow$ Let $g : X \to X$ be cont. Need to show $U \subseteq X$ is open.

Consider $f^{-1}(U) = \{ y \in X : f(y) \in U \} = \bigcap_{x \in U} f^{-1}(x)$.

Note that $f^{-1}(U) = \bigcap_{x \in U} f^{-1}(x)$, which is open in X.

Since $f \circ g$ is cont., $V \subseteq X$ is open. Since f^{-1} is cont., $(f^{-1})^{-1}(V) = U$ is open in Z.

$\Rightarrow\leq$ Let $g : X \to X$ be cont. Need to show f^{-1} is cont. Let $U \subseteq X$ be open. $f^{-1}(U) \subseteq X$ is open by f (idnt. mtp.) and

$$f^{-1}(U) = \bigcap_{x \in U} f^{-1}(x)$$

Hence, $f^{-1}(U)$ is open by f is an idnt. mtp.

b) Let Z be Hausdorff and take $y_1, y_2 \in X^*$, $y_1 \neq y_2$.

Then $g(f^{-1}(y_1)) \neq g(f^{-1}(y_2))$ and so Z open.

For $U_1, U_2 \subseteq Z$, disjoint, $g(f^{-1}(y_2)) \subseteq U_1$.

Since f is cont., $f^{-1}(U_1) = V_1$, $f^{-1}(U_2) = V_2$ are open in X^*. One can also check they're disjoint and $y_j \in V_j$.

\square