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Abstract

Reaction-diffusion equations on the real line that contain a control parameter
are investigated. Of interest are travelling front solutions for which the rest
state behind the front undergoes a supercritical Turing or Hopf bifurcation as
the parameter is increased. This causes the essential spectrum to cross into the
right half plane, leading to a linear convective instability in which the emerging
pattern is pushed away from the front as it propagates. It is shown, however,
that the wave remains nonlinearly stable in an appropriate sense. More precisely,
using the fact that the instability is supercritical, it is shown that the amplitude
of any pattern that emerges behind the wave saturates at some small parameter-
dependent level and that the pattern is pushed away from the front interface. As
a result, when considered in an appropriate exponentially weighted space, the
travelling front remains stable, with an exponential in time rate of convergence.

1. Introduction

Consider the reaction-diffusion equation

ut = D∂2
xu+ f(u;µ), u ∈ Rn, x ∈ R, (1.1)

where D is a diagonal matrix with positive coefficients, µ is a real parameter,
and f is smooth with f(0;µ) = 0 for all µ. We assume that (1.1) has, for all µ
near zero, a travelling front solution u(x, t) = u∗(x− c(µ)t;µ) that moves with
speed c = c(µ) > 0 to the right and satisfies

lim
ξ→−∞

u∗(ξ;µ) = 0, lim
ξ→∞

u∗(ξ;µ) = u+.
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Figure 1: The left panel illustrates the rightmost spectrum of the linearization about the front
in the comoving frame ξ = x− ct at µ = 0. As µ increases, we assume that essential spectrum
crosses into the right half plane. The right panel illustrates how perturbations to the front
profile are pushed, in the comoving frame, towards ξ = −∞ just after bifurcation, whilst their
amplitude saturates at O(

p
|µ|).

We are interested in such fronts for which the zero rest state behind the front
undergoes a supercritical Turing or Hopf instability at µ = 0. In the coordinate
frame x, Turing bifurcations lead to small-amplitude patterns that are spatially-
periodic and time-independent, while Hopf bifurcations lead to patterns that
are spatially homogeneous and time-periodic. In the moving coordinate ξ =
x − c(µ)t, these bifurcations are generically caused by two locally parabolic
curves of essential spectrum that cross into the right half plane at ±iω0, for
some critical temporal frequency ω0 > 0, as µ is increased through zero (see
Figure 1).

Much previous work on travelling fronts and their stability in reaction-
diffusion systems exists; see, for example, [12] and the references therein. In
particular, the various ways in which a front can lose stability have been inves-
tigated. The spectrum can destabilize at ±iω0 due to either a pair of isolated
eigenvalues or the essential spectrum crossing into the right half plane. The
former case is a classical Hopf bifurcation and was first analyzed by Henry [6,
§6.4] using center-manifold theory. In the latter case, because the bifurcation is
due to continuous spectrum, standard reduction techniques cannot be applied.

This type of destabilization, known as an essential instability, was first ana-
lyzed in [14]. The authors were interested in determining whether or not such a
destabilization led to the creation of modulated fronts connecting the remaining
stable rest state with the pattern that emerges. In their analysis they distin-
guished between two distinct cases: when the destabilization is caused by the
rest state behind the front and when it is caused by the rest state ahead of the
front. The reason for considering these cases separately can be seen by ana-
lyzing the Fredholm index of the operator L − λ, where L is the linearization
about the front. Roughly speaking, the Fredholm index is a measure of the
solvability of the system (L − λ)u = h for a given h. When the instability is
ahead of the front, the Fredholm index of L − λ increases from zero to one as
λ moves from right to left through the essential spectrum. This leads to an un-
derdetermined system of equations and the existence of bifurcating modulated
waves. When the bifurcation is behind the front, the index changes from zero
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to minus one, leading to an overdetermined system. Therefore, the only nearby
wave that exists after the bifurcation is the original, linearly unstable front. It
is the nonlinear stability of this solution that we analyze here.

Previous stability analyses in the context of this type of bifurcation include
the following. For the modulated waves that emerge when the bifurcation is
ahead of the front, spectral stability was proved in [14]. Nonlinear stability,
which does not immediately follow due to the presence of the essential spectrum
on the imaginary axis, was proved for Turing bifurcations in [1] using weighted
spaces and renormalization group techniques.

When the bifurcation is behind the front, and so no nearby modulated waves
exist, one could expect some form of nonlinear stability for the original, linearly
unstable front. This is because, in a comoving frame, the emergent pattern gets
pushed towards minus infinity. In addition, because we assume the bifurcation
is supercritical, the amplitude of perturbations behind the front should saturate
at some small value that depends on µ. As a result, in a function space in which
behavior at minus infinity is suppressed, the front should be stable. In this case,
nonlinear stability has been proved for a specific system in which the rest state
behind the front undergoes a Turing bifurcation [4]. However, the techniques
used there include the maximum principle and energy methods, which are diffi-
cult to generalize. Our goal is to show that, for a general class of systems of the
form (1.1), the front u∗(ξ;µ) is nonlinearly stable in an appropriate sense for all
µ near zero when the rest state behind it experiences a supercritical Turing or
Hopf instability. Our strategy for proving nonlinear stability is as follows. First,
using weighted spaces, we show that the front is nonlinearly stable provided the
amplitudes of perturbations to the front profile saturate. Afterwards, we utilize
mode filters and the Ginzburg–Landau equation that governs the dynamics near
the rest state behind the front to establish these a priori estimates. This second
step relies heavily on results by Mielke and Schneider [9, 11, 16, 18].

The outline of the remainder of the paper is as follows. In §2 we precisely
state our assumptions and results. A priori estimates for perturbations in the
weighted space are given in §3. In §4, mode filters are used to show that pertur-
bations in the unweighted space remain small. We briefly summarize our results
in §5.

2. Set-up, assumptions and results

The function spaces in which we work need to contain functions that are not
necessarily localized in space. Hence, we shall work with the so-called uniformly
local spaces that are defined as follows.

We choose the weight function ρul(x) = e−|x| and define (Tyρul)(x) = ρul(x−
y) to be the translation operator Ty applied to the weight function. The weighted
L2 norm and the uniformly local L2 norm are then given respectively by

‖u‖2ρul
=
∫

R
ρul(x)|u(x)|2 dx and ‖u‖L2

ul
= sup

y∈R
‖u‖Tyρul .

3



The uniformly local space L2
ul is then defined as

L2
ul = closure of C∞bdd(R) in

{
u ∈ L2

loc(R) : ‖u‖L2
ul
<∞

}
,

and the Sobolev spaces Hs
ul are defined similarly. The translation operator gives

uniformity in space for the norm, and taking the closure of smooth functions
ensures that the resulting space is complete and that the standard Sobolev
embeddings still hold. Below we work in H1

ul so that solutions are defined
pointwise. For more information on these spaces, we refer the reader to [11].

Hypothesis (H1). For µ = 0, equation (1.1) has a travelling-wave solution
u0
∗(x− c∗t) for an appropriate wave speed c∗ > 0, and the wave profile satisfies

limξ→−∞ u0
∗(ξ) = 0 and limξ→∞ u0

∗(ξ) = u+ for some u+ ∈ Rn.

We now formulate the hypotheses on the spectral stability of the front u0
∗.

Consider the linearized operator

L∗ = D∂2
ξ + c∗∂ξ + fu(u0

∗(ξ); 0),

posed in the comoving frame ξ = x− c∗t, and the asymptotic operators

L−(µ) = D∂2
x + fu(0;µ), L+(0) = D∂2

x + fu(u+; 0)

associated with the spatially homogeneous rest states u = 0 and u = u+, for-
mulated in the laboratory frame, on the space L2

ul with domain H2
ul. To capture

transport, we let ρa be any smooth, monotone function that satisfies

ρa(ξ) =
{

1 if ξ ≥ 1
eaξ if ξ ≤ −1 (2.1)

with a > 0.

Hypothesis (H2). We assume that the following is true:

(i) There is an a0 > 0 such that the spectrum of the operator La∗ := ρaL∗ρ−1
a

on L2
ul lies in the open left half plane for all 0 < a ≤ a0 except for a simple

eigenvalue at λ = 0.
(ii) For all µ close to zero, the spectrum of L−(µ) lies in the open left half plane

except for two curves given by

λ(k, µ) = λ0(µ)− λ2(µ)(k − k0)2 + O(|k − k0|3), |k − k0| � 1

and its complex conjugate, where Reλ2(0) > 0, Reλ′0(0) > 0 and either
Turing: k0 > 0 and λ0(0) = 0, or
Hopf: k0 = 0, λ0(0) = iω0 for some ω0 > 0.

(iii) The spectrum of L+(0) lies in the open left half plane.
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Figure 2: The rightmost parts of the L2
ul spectra of the linearization L∗ and the weighted

operator La
∗ with 0 < a� 1 are shown for the case where Hypothesis (H2) is met. Note that

ω0 = k0c∗ > 0 at Turing bifurcations.

As we shall now argue, Hypothesis (H2) implies that the spectra of the
operators L∗ and La∗ on L2

ul are as shown in Figure 2. In the laboratory frame
x, the critical curves λ(k, µ) in the spectrum of L−(µ) correspond to neutral
eigenmodes of the form eik0xu0 for Turing bifurcations and eiω0tu0 for Hopf
bifurcations. The dispersion curve λ(k, µ) in the laboratory frame x becomes
λ∗(k, µ; c) = λ(k, µ) + ikc in the frame ξ = x− ct that moves with speed c; see
[15]. Since the spectrum of L∗ contains the dispersion curve λ∗(·, 0; c∗) (see,
for instance, [6, Lemma 2 in the appendix to Chapter 5] or [12, §3.4.3]), we see
that its spectrum indeed touches the imaginary axis at ±iω0, where ω0 = k0c∗
at Turing bifurcations. Next, we note that the group velocity −d Imλ

dk (k0, 0) of
the dispersion curve vanishes in the laboratory frame x, which implies that the
essential spectrum of the weighted linearization La∗ in the right-moving frame ξ
will move into the left half plane for all sufficiently small a > 0 (see [13, 14]),
and Hypothesis (H2)(i) ensures that no isolated eigenvalues of La∗ are revealed
on the imaginary axis when the essential spectrum is moved.

Our last assumption is that the bifurcation caused by the critical curve
λ(k, µ) is supercritical. To make this precise, consider (1.1) near u = 0, and
let e(k0) be an eigenvector of the matrix −k2

0D + fu(0; 0) associated with the
eigenvalue λ0(0). Upon substituting the ansatz

u(x, t) = εei(k0x+ω0t)A(εx, ε2t)e(k0) + c.c., µ = ρε2 (2.2)

into (1.1) and expanding in ε, we find that the amplitude A(X,T ) satisfies the
Ginzburg–Landau equation

AT = λ2(0)∂2
XA+ ρλ′0(0)A− b|A|2A (2.3)

for an appropriate value b ∈ C; see [10] and references therein. The sign of
the real part of the cubic coefficient b determines whether the bifurcation is
subcritical or supercritical. We assume the latter:

Hypothesis (H3). We assume that Re b > 0 so that the bifurcation is super-
critical.
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It is a consequence of Hypothesis (H2)(i) that the front u0
∗(x− c∗t) persists

for nearby values of µ. More precisely, there exist a unique profile u∗(ξ;µ) and
a unique wave speed c(µ) with u∗(·; 0) = u0

∗ and c(0) = c∗ so that u(x, t) =
u∗(x− c(µ)t;µ) satisfies (1.1) for all µ near zero. The next theorem shows that
these fronts remain nonlinearly stable, in an appropriate sense, for µ near zero
and, in particular, the fronts do not feel the linear instability that occurs in
their wake.

Theorem 1. Suppose that Hypotheses (H1)-(H3) are satisfied, then there exist
positive constants K, Λ∗, a∗, µ∗, and δ∗ such that the following is true: for all
|µ| ≤ µ∗ and any initial condition satisfying ‖v(·, 0)‖H1

ul
< δ∗, the solution of

(1.1) with initial data u(x, 0) = u∗(x;µ) + v(x, 0) exists for all t ≥ 0 and can be
written as

u(x, t) = u∗(x− c(µ)t− p(t);µ) + v(x− c(µ)t, t)

for an appropriate real-valued function p; furthermore, there is a constant p∗ ∈ R
such that

‖v(·, t)‖H1
ul

+ |p(t)| ≤ K
(
‖v(·, 0)‖H1

ul
+
√
|µ|
)

‖ρa∗(·)v(·, t)‖H1
ul

+ |p(t)− p∗| ≤ Ke−Λ∗t

for all t ≥ 0. In other words, the perturbation v(ξ, t) decays to zero exponentially
in time in the weighted norm ‖ρa∗ · ‖H1

ul
in the comoving frame ξ = x− c(µ)t.

There are two steps in the proof of this theorem. The first, contained in §3,
is to show that, if ‖v(·, t)‖H1

ul
is small for all t ≥ 0, then ‖ρav(·, t)‖H1

ul
≤ Ke−Λ∗t

for some Λ∗ > 0. This will follow using a method analogous to that in [4]. The
second step, contained in §4, is to show that ‖v(·, t)‖H1

ul
is, in fact, small for all

t ≥ 0. This will be proved using the mode filters.

3. A priori estimates in the weighted space

To prove that the fronts u∗(x− c(µ)t;µ) are nonlinearly stable for all µ with
|µ| � 1 , we write solutions to (1.1) in the form

u(x, t) = u∗(x− c(µ)t− p(t);µ) + v(x− c(µ)t, t).

The real-valued function p(t) will be defined in more detail below and will allow
us to remove the neutral behavior due to the zero eigenvalue. From now on, we
fix µ close to zero and consider the dynamics near the front u∗(x− c(µ)t;µ). It
is convenient to formulate all equations in the comoving frame ξ = x − c(µ)t.
To simplify notation, we define

h0(ξ) := u∗(ξ;µ), hp(t)(ξ) := h0(ξ − p(t)) = u∗(ξ − p(t);µ)

and omit the dependence on µ. Similarly, we write c and f(u) instead of c(µ)
and f(u;µ), respectively, from now on. In the comoving frame ξ = x − ct,
equation (1.1) becomes

ut = D∂2
ξ + c∂ξu+ f(u).
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Substituting the ansatz

u(ξ, t) = h0(ξ − p(t)) + v(ξ, t), (3.1)

we obtain the system

vt = L0v + ṗh′p − [fu(h0)− fu(hp)]v + [f(hp + v)− f(hp)− fu(hp)v], (3.2)

where we use the notation ′ = ∂ξ, recall that p = p(t), and set

L0 := D∂2
ξ + c∂ξ + fu(h0).

We shall use the weighted function w(ξ, t) := ρa(ξ)v(ξ, t), with ρa from (2.1),
which then satisfies the equation

wt = La0w + ṗρah
′
p − [fu(h0)− fu(hp)]w +N (v)w, (3.3)

where

La0 = ρaL0ρ
−1
a

= D∂2
ξ +

(
c− 2ρ′a

ρa

)
∂ξ +

(
2(ρ′a)2

ρ2
a

− cρ′a
ρa
− ρ′′a
ρa

+ fu(h0)
)

N (v) =
∫ 1

0

[fu(hp + τv)− fu(hp)] dτ = O(|v|).

We will consider w ∈ H1
ul and choose the exponential rate a in the interval

(0, a0], where a0 is so small that Hypothesis (H2)(i) is met and so that there
exists a C > 0 for which∣∣∣∣h0(ξ)

ρa(ξ)

∣∣∣∣+
∣∣∣∣h′0(ξ)
ρa(ξ)

∣∣∣∣ ≤ C, x ∈ R (3.4)

for 0 < a ≤ a0. We call exponential rates a ∈ (0, a0] admissible. Throughout
the remainder of this paper, we will denote by C any generic constant that does
not depend on the initial data or on a and µ.

Hypothesis (H2) implies that the essential spectrum of La0 lies strictly to the
left of the imaginary axis for all µ near zero and all admissible rates a. The only
eigenvalue on or to the right of the imaginary axis is the simple eigenvalue λ = 0
with eigenfunction ρah′0. Therefore, it is possible to define a spectral projection
P c
a in H1

ul onto the one-dimensional center subspace belonging to λ = 0. The
rest of the spectrum will be bounded away from the imaginary axis, and so the
complement of P c

a is the projection P s
a onto the generalized stable eigenspace.

In particular, there exists a constant K0 that is independent of µ so that

‖eP
s
aL

a
0 t‖H1

ul
≤ K0e−Λ0t (3.5)

for t ≥ 0. We combine this information in the following lemma.
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Lemma 3.1. There exist positive constants K0, Λ0, and µ0 such that the fol-
lowing holds for any |µ| < µ0. The spectral projection P c

a is well defined and, in
fact, given by

P c
aw = 〈ψa, w〉L2ρah

′
0,

where ψa = ρ−1
a ψ0, and ψ0 spans the kernel of the operator adjoint to L0 with

〈ψa, ρah′0〉L2 = 〈ψ0, h
′
0〉L2 = 1. (3.6)

For P s
a = I − P c

a , we have (3.5).

In the decomposition (3.1),

u(ξ, t) = h0(ξ − p(t)) + v(ξ, t),

the shift function p(t) is not defined uniquely, even if p(0) = 0 is assumed. To
avoid ambiguity we require that w(·, t) lies in the range of the projection P s

a for
all t ≥ 0 for which the decomposition (3.1) exists. In other words, we require
that w(ξ, t) satisfies

P c
aw(·, t) = 0 (3.7)

for all t ≥ 0, and, applying the projections P s
a and P c

a to (3.3), we obtain the
system

wt = P s
aLa0w + P s

a

(
ṗρah

′
p − [fu(h0)− fu(hp)]w +N (v)w

)
(3.8)

ṗ =
〈ψa, [fu(h0)− fu(hp)]w −N (v)w〉L2

〈ψa, ρah′p〉L2

for (w, p). Conversely, solutions (w, p) of (3.8) automatically satisfy (3.7). Using
the initial data p(0) = 0, the function p(t) is then defined uniquely. Note
that as long as p(t) remains sufficiently small, the denominator 〈ψa, ρah′p〉L2 =
〈ψ0, h

′
0(· − p(t))〉L2 in (3.8) is bounded away from zero due to (3.6).

We consider the system consisting of (3.8) coupled to (3.2). Because the
nonlinearity f is smooth, there exists a constant K1 so that the nonlinearity N
and the difference in the linearization about h0 and hp satisfy

‖fu(h0)− fu(hp)‖H1
ul

+ ‖N (v)‖H1
ul
≤ K1

(
|p|+ ‖v‖H1

ul

)
(3.9)

|ṗ| ≤ K1

(
|p|+ ‖v‖H1

ul

)
‖w‖H1

ul

for µ close to zero. The second estimate follows from the first and the equation
governing ṗ in (3.8). By [11, Lemma 3.3], the linear operators in (3.2) and (3.8)
are sectorial operators on H1

ul, and the arguments in [6, 11] therefore imply
that solutions exist locally in time, are unique, and depend continuously on
the initial conditions. This proves the local existence and uniqueness of the
decomposition (3.1). Moreover, the continuous dependence of the solutions on
the initial conditions implies that, for any given 0 < η0 ≤ 1, there exists a γ0 > 0
and T > 0, such that

sup
t∈[0,T ]

(
|p(t)|+ ‖v(·, t)‖H1

ul

)
≤ η0 provided ‖v(·, 0)‖H1

ul
≤ γ0. (3.10)
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The maximal time T such that the above holds is denoted by Tmax(η0).
The following lemma states that, as long as the solutions v in the unweighted

space and p remain small, the solution w in the weighted space will decay
exponentially fast in time and control the behavior of p. This is the main result
of this section and is analogous to [4, Lemma 3.2].

Lemma 3.2. Pick Λ such that 0 < Λ < Λ0, then there exists an η̂0 with 0 <
η̂0 ≤ 1 so that the following is true. If 0 < η0 < η̂0 and w is a solution of (3.3)
for which the corresponding solutions v and p satisfy (3.10), then

‖w(·, t)‖H1
ul
≤ Ke−Λt‖w(·, 0)‖H1

ul
, |p(t)| ≤ K‖w(·, 0)‖H1

ul

for all 0 ≤ t ≤ Tmax(η0), for some positive constant K that is independent of µ
and η0. If Tmax(η0) =∞, then there is a p∗ ∈ R with

|p(t)− p∗| ≤ Ke−Λt‖w(·, 0)‖H1
ul

(3.11)

for all t ≥ 0.

Once this lemma has been established, the proof of Theorem 1 will follow if
we can prove that Tmax(η̂0) =∞ for our particular choice of η̂0.

Proof. Consider the equation for w in (3.8) for t ∈ [0, Tmax), rewritten here
for convenience:

wt = P s
aLa0w + P s

a

(
ṗρah

′
p − [fu(h0)− fu(hp)]w +N (v)w

)
.

Applying the variation-of-constants formula to this equation, we obtain

w(·, t) = eP
s
aL

a
0 tw(·, 0) +

∫ t

0

eP
s
aL

a
0 (t−s)P s

a

(
ṗ(s)ρah′p(s)(s)

−[fu(h0)− fu(hp(s))]w(·, s) +N (v(·, s))w(·, s)
)

ds,

where we recall that hp(t) = h0(ξ− p(t)) depends on t through p(t). From (3.5)
and (3.10), it follows that

‖w(·, t)‖H1
ul
≤ K0e−Λ0t‖w(·, 0)‖H1

ul
+K0

∫ t

0

e−Λ0(t−s)
(
|ṗ(s)|‖ρah′p(s)‖H1

ul

+K1

(
|p(s)|+ ‖v(·, s)‖H1

ul

)
‖w(·, s)‖H1

ul

)
ds.

Since ρa and h′p(ξ) = h′0(ξ − p) are bounded uniformly in p, there exists a
constant K2 > 0 such that

‖ρah′p‖H1
ul
≤ K2.

Therefore, using (3.10) we obtain

‖w(·, t)‖H1
ul
≤ K0e−Λ0t‖w(·, 0)‖H1

ul
+K0

∫ t

0

e−Λ0(t−s)K1(K2 + 1)
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×
(
|p(s)|+ ‖v(·, s)‖H1

ul

)
‖w(·, s)‖H1

ul
ds

≤ K0e−Λ0t‖w(·, 0)‖H1
ul

(3.12)

+K0K1(K2 + 1)η0

∫ t

0

e−Λ0(t−s)‖w(·, s)‖H1
ul

ds.

For 0 < Λ < Λ0 and 0 ≤ t ≤ Tmax, define

M(t) := sup
0≤s≤t

eΛs‖w(·, s)‖H1
ul
.

After multiplying (3.13) by eΛt we find that

eΛt‖w(·, t)‖H1
ul
≤ K0e−(Λ0−Λ)t‖w(·, 0)‖H1

ul

+K0K1(K2 + 1)η0

∫ t

0

e−(Λ0−Λ)(t−s)eΛs‖w(·, s)‖H1
ul

ds

≤ K0‖w(·, 0)‖H1
ul

+K0K1(K2 + 1)η0M(t)
∫ t

0

e−(Λ0−Λ)(t−s) ds

≤ K0‖w(·, 0)‖H1
ul

+
K0K1(K2 + 1)η0

Λ0 − Λ
M(t),

and therefore

M(t) ≤ K0‖w(·, 0)‖H1
ul

+
K0K1(K2 + 1)η0

Λ0 − Λ
M(t).

If η̂0 is chosen so that

1− K0K1(K2 + 1)
Λ0 − Λ

η̂0 ≥
1
2

or, equivalently, η̂0 ≤
Λ0 − Λ

2K0K1(K2 + 1)
,

then we have
M(t) ≤ 2K0‖w(·, 0)‖H1

ul

for 0 < η0 < η̂0, and therefore

‖w(·, t)‖H1
ul
≤ 2K0e−Λt‖w(·, 0)‖H1

ul
. (3.13)

From (3.13), (3.9), (3.10) and the assumption that η0 < 1, we then obtain

|ṗ(t)| ≤ 2K0K1η0e−Λt‖w(·, 0)‖H1
ul
≤ 2K0K1e−Λt‖w(·, 0)‖H1

ul
(3.14)

for 0 ≤ t ≤ Tmax. On the other hand,

|p(t)| ≤
∫ t

0

|ṗ(t)|ds ≤ 2K0K1‖w(·, 0)‖H1
ul

∫ t

0

e−Λs ds ≤ 2K0K1

Λ
‖w(·, 0)‖H1

ul
.

If Tmax = ∞, then (3.9), and consequently (3.14) and (3.13), hold for any t.
According to (3.14), p∗ =

∫∞
0
ṗ(s) ds exists, and we have

p(t)− p∗ =
∫ t

∞
ṗ(s) ds
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for all t ≥ 0. To estimate the convergence rate, we use (3.14) and obtain

|p(t)− p∗| ≤ 2K0K1‖w(·, 0)‖H1
ul

∫ ∞
t

e−Λs ds ≤ 2K0K1

Λ
‖w(·, 0)‖H1

ul
e−Λt.

The statements of the lemma then follow with K = max{K0
2 ,

K0K1
2Λ }; recall that

the constants K0, K1 and K2 are independent of η0 and T . �

4. Estimates in the unweighted space via mode filters

In this section, we prove that, in fact, Tmax(η̂0) =∞. In particular, we will
prove the following proposition.

Proposition 4.1. There exist positive constants K, δ∗ and µ∗ such that, if
‖v(·, 0)‖H1

ul
< δ∗, then the solution to (3.2) exists for each µ with |µ| ≤ µ∗ and

satisfies
‖v(·, t)‖H1

ul
+ |p(t)| ≤ K

(
‖v(·, 0)‖H1

ul
+
√
|µ|
)

for all t ≥ 0. In particular, Tmax(η̂0) =∞ for η̂0 = K(δ∗+
√
µ∗) and all µ with

|µ| ≤ µ∗.

The proof will consist of two steps. First, we will show that the behavior of
solutions to (3.2) is really governed by the bifurcation at −∞. Then we will show
that, because this bifurcation is supercritical, the amplitude of perturbations
saturates eventually at O(

√
|µ|) in H1

ul. The combination of these results, which
leads to the above proposition, is contained in Lemma 4.2 below.

4.1. Reduction to behavior at minus infinity
In order to prove Proposition 4.1, we first show that the evolution of v in

the comoving frame is controlled by the dynamics near ξ = −∞. To do this, we
will use a method similar to that of [1, §5], which we now describe.

We write equation (3.2) as

vt = L−v +N−(v) + ∆(p, v), (4.1)

where

L− = D∂2
ξ + c∂ξ + fu(0)

N−(v) = f(v)− fu(0)v
∆(p, v) = ṗh′p + [fu(h0)− fu(0)]v − [fu(h0)− fu(hp)]v

+[f(hp + v)− f(hp)− fu(hp)v]−N−(v).

Notice that L− and N− are respectively the linearization about the unstable
state u = 0 in the comoving frame and the corresponding nonlinearity, where
we recall that we assumed that f(0;µ) = 0 for all µ. The function ∆ consists of
the drift term ṗh′p, the difference between the linearization about the front and
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about 0, and the difference between the nonlinearity evaluated at the front and
at 0. On account of Lemma 3.2, we can view p(t) as a given function. Our goal
is to use the information in §3 about exponential decay in a weighted space and
information about p to obtain the following estimates.

Lemma 4.1. There exists a constant C, depending only on Λ0 and η̂0, such
that

‖∆(p, v)(·, t)‖H1
ul
≤ C‖w(·, t)‖H1

ul
≤ Ce−Λt‖w(·, 0)‖H1

ul

for all 0 ≤ t ≤ Tmax.

This lemma implies that we can think of the evolution of v as being governed
by the evolution near the unstable state plus the effects of an inhomogeneity
that is exponentially decaying in time.

Proof. We will deal with each term inside ∆ separately and use that any
function in H1

ul is defined pointwise by Sobolev embedding.
Consider the term ṗh′p. Since the underlying wave is smooth, we know

that ‖h′p‖H1
ul
≤ K3 for some constant K3. Furthermore, equation (3.9) and

Lemma 3.2 imply that

|ṗ| ≤ K1

(
|p|+ ‖v‖H1

ul

)
‖w‖H1

ul
≤ K4e−Λt‖w(·, 0)‖H1

ul
(4.2)

for 0 ≤ t ≤ Tmax and some constant K4, which gives the desired estimate for
the first term. Next, we write

|[fu(h0)− fu(0)]v(ξ)| ≤ |fu(hp(ξ))− fu(0)|
ρa(ξ)

|w(ξ)|

≤

[
sup

|u|≤|h0|∞
|fuu(u)|

]
|hp(ξ)|
ρa(ξ)

|w(ξ)|.

Equation (3.4) and smoothness of f imply that

‖[fu(h0)− fu(0)]v‖H1
ul
≤ C‖w‖H1

ul
≤ Ce−Λt‖w(·, 0)‖H1

ul

for 0 < a ≤ a0 and 0 ≤ t ≤ Tmax. Similarly,

|[fu(h0)− fu(hp)]v(ξ)| ≤

[
sup

|u|≤|h0|∞
|fuu(u)|

]
|h0(ξ)− h0(ξ − p(t))|

ρa(ξ)
|w(ξ)|

≤ C

[
sup

|ζ|≤sup |p(t)|
|h′0(ξ + ζ)|

]
|p(t)|
ρa(ξ)

|w(ξ)|.

Appealing again to (3.4), this gives

‖[fu(h0)− fu(hp)]v‖H1
ul
≤ Ce−Λt‖w(·, 0)‖H1

ul
.
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It remains to estimate the expression

[f(hp + v)− fu(hp)v − f(hp)]−N−(v)
= [f(hp + v)− fu(hp)v − f(hp)]− [f(v)− fu(0)v].

Rearranging the terms and using that f(0;µ) = 0 for all µ, we get

|[f(hp + v)− f(v)]− [f(hp)− f(0)] + [fu(0)− fu(hp)]v|

=
∣∣∣∣∫ 1

0

[fu(v + shp)− fu(shp)] ds hp −
∫ 1

0

fuu(shp)[hp, v] ds
∣∣∣∣

≤ C|hp||v| =
|hp|
ρa
|w| ≤ C|w|.

Therefore,

‖[f(hp + v)− fu(hp)v − f(hp)]−N−(v)‖H1
ul
≤ Ce−Λt‖w(·, 0)‖H1

ul
,

which proves the lemma. �

4.2. Boundedness of solutions via mode filters
Since the estimate for ∆ in Lemma 4.1 is in H1

ul and does therefore not
depend on the underlying reference frame, we can write equation (4.1) for the
evolution of the small perturbation v in the original frame x and obtain

vt = D∂2
xv + f(v;µ) + ∆(p, v) = D∂2

xv + f(v;µ) + O(e−Λt). (4.3)

In particular, for sufficiently large times, the dynamics of v(x, t) ought to be
governed by the dynamics of the reaction-diffusion system

vt = D∂2
xv + f(v;µ). (4.4)

Since v is small, this suggests that we use the Ginzburg–Landau formalism
for Turing or Hopf bifurcations, which describes the dynamics of the envelopes
A(X,T ) of modulated waves of the form

v(x, t) = Ṽδ(A) := δeik0x+iω0tA(δx, δ2t)e(k0) + c.c., (4.5)

for 0 ≤ |µ| ≤ δ2 � 1 and with e(k0) given via λ(k0, 0)e(k0) = L̂−(ik0, 0)e(k0),
by the Ginzburg–Landau equation

AT = λ2(0)∂2
XA+

µλ′0(0)
δ2

A− b|A|2A. (4.6)

For Re b > 0, which we assumed in Hypothesis (H3), equation (4.6) has a
bounded attractor, and solutions are therefore bounded uniformly in time; see
[9]. Furthermore, it was shown in [18, 11] that these properties for the Ginzburg–
Landau equation imply that solutions of (4.4) belonging to sufficiently small
initial data stay small for all times. The proof of the latter assertion is based
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upon the use of mode filters, which separate the neutral part of the continuous
spectrum near the imaginary axis from the rest of the spectrum and allow one
to decompose the solution of (4.4) into a center-unstable component, governed
by the Ginzburg–Landau equation, and a stable component, governed by an
exponentially decaying semigroup.

The additional O(e−Λt) term that is present in (4.3) prevents us from ap-
plying the results of [18, 11] directly to equation (4.3). However, the ideas and
techniques developed in those papers are still applicable, and by establishing
the so-called approximation and attractivity properties introduced there, we
will show that solutions to (4.3) with sufficiently small initial data remain small
in H1

ul for all t ≥ 0. These two properties will be stated precisely below but,
essentially, the approximation property says that, given any solution A of (4.6),
there is a solution v of (4.3) that is close to Ṽδ(A) in an appropriate sense for
large but finite times. In other words, any small solution v that looks like a mod-
ulated wave at a given initial time will continue to look like a modulated wave
for large finite times. The attractivity property states that, given any solution
v of (4.3), there is a solution A of (4.6) such that Ṽδ(A) is close to v, again in an
appropriate sense, for large but finite times. In other words, all small solutions
v will eventually look like a modulated wave for a large finite time. Proving
this is more difficult and requires the use of the mode filters developed in [18].
These two properties together will then give the proof of Proposition 4.1. We
state the details for Turing bifurcations only and remark that the modifications
for the Hopf case require the use of the results of [19].

First, we define precisely the spaces in which we will work. Let Yv =
H1

ul(R,Rn) and St be the semiflow associated with equation (4.3) in Yv. In
addition, let GT be the semiflow associated with (4.6) in YA = H1

ul(R,C). Local
existence for both these semiflows follows from standard arguments. As men-
tioned above, it is known that the flow for (4.6) is globally bounded [9]. We
will also need to use the fact that solutions to (4.6) remain in a ball of radius
O(
√
|µ|/δ) in H1

ul for all t ≥ 0. This result, for the space H1
ul rather than L2

ul

or L∞, follows from the energy estimates of [9, §3].
To define the mode filters, we introduce a cutoff function χ̂ ∈ C∞(R, [0, 1])

that satisfies

χ̂(k) =
{

1 if k ∈ [−γ, γ]
0 if k /∈ (−2γ, 2γ),

where γ is some small constant that is independent of µ and δ. Let

L−(µ) = D∂2
x + fu(0;µ)

be the linearized operator at u = 0 in the original frame x and denote its
Fourier transform and associated adjoint by L̂− = L̂−(k, µ) and L̂∗− = L̂∗−(k, µ),
respectively. For k close to k0, these operators have the eigenvalue λ(k, µ) from
Hypothesis (H2)(ii), plus its complex conjugate, and we denote by ê(k, µ) and
ê∗(k, µ) the respective eigenvectors with 〈ê, ê∗〉 = 1 for all (k, µ). We now define
the operators P̂± in Fourier space as the multiplication operators

(P̂±û)(k) = χ̂(k ∓ k0)〈ê∗(k, µ), û(k)〉ê(k, µ)
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and the associated complex-valued versions p̂± via

p̂±û = χ̂(k ∓ k0)〈ê∗(k, µ), û(k)〉.

These multipliers, and the ones to follow, depend on µ, but we shall suppress this
dependence in our notation. Note also that the functions ê(k, µ) and ê∗(k, µ)
need only be defined in balls of radius 2γ around ±k0 for the above definitions
to be meaningful. We also define

(P̂±mf û)(k) = χ̂(2(k ∓ k0))〈ê∗(k, µ), û(k)〉ê(k, µ),

and similarly p̂±mf , which have smaller support in Fourier space. Using these
operators, we can define the multipliers

P̂ c := P̂+ + P̂−, P̂ s := 1− P̂ c, P̂ c
mf := P̂+

mf + P̂−mf , P̂ s
mf := 1− P̂ c

mf ,

which filter either the stable or center modes, and the associated complex-valued
operators p̂c, p̂s, p̂c

mf , and p̂s
mf . It was shown in [17, Lemma 5] that the operators

P̂ jmf and P̂ j defined above in Fourier space correspond to bounded linear oper-
ators P jmf and P j from Hs

ul into itself for any s ≥ 0. Furthermore, P jmf and P j

commute with L− and map their ranges into itself. Though the operators P jmf

and P j are not projections, we have P cP c
mf = P c

mf , which we shall use below.
Next, define the scaling operator Rδ by (Rδu)(x) = u(δx) and the multipli-

cation operator Θ by (Θu)(x) = eik0xu(x), which is just a translation operator in
Fourier space. To relate the reaction-diffusion system and the Ginzburg–Landau
equation, we use the modified ansatz

v(x) = Vδ(A) := δΘF−1 [χ̂(k)ê(k + k0, µ)F(RδA)] + c.c. : YA → Yv,

where F denotes the Fourier transform. The map that sends a solution to its
approximation by extracting its critical modes is given by

Aδ : Yv → YA, Aδu =
1
δ
R1/δΘ−1p+u. (4.7)

We may now state, in terms of Vδ and Aδ, the attractivity property that will
be used to connect the flows for equations (4.3) and (4.6). Let BZR denote the
ball of radius R in Z centered at 0.

Proposition 4.2 (Attractivity). For each r0 > 0, there exist positive con-
stants r1, r̃1, R0, T0 and δ0 such that

sup
v∈BYvδr0

inf
A∈BYAR0

|ST0/δ2(v)− Vδ(A)|Yv ≤ r1δ
5/4 (4.8)

⋃
t∈[0,T0/δ2]

St(BYvδr0) ⊂ BYvδr̃1 (4.9)

for all δ and µ with 0 < δ < δ0 and |µ| ≤ δ2.
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Remark 4.1. Proposition 4.2 asserts that we can extend the time interval on
which v(·, t) is defined and remains small from 0 ≤ t ≤ Tmax to 0 ≤ δ2t ≤ T0,
for some T0. Technically, we cannot extend this time interval for v without also
doing so for p. However, one can see that, on any time interval where ‖v(·, t)‖H1

ul

remains small, ‖w(·, t)‖H1
ul

decays exponentially, and |p(t)| must therefore also
remain small due to equation (4.2). We will use this fact below.

Proof (of Proposition 4.2). Since the emphasis in this proof is on the tem-
poral behavior of solutions, we write throughout v(t) and w(t) instead of v(·, t)
and w(·, t). All norms are taken with respect to the spatial variable for fixed
time t.

The method of proof is similar to that of [18, Lemma 10], except that we
need to take the term ∆(p, v) into account. We will show the following: there
exists a T0 with 0 < T0 ≤ 1 and a constant C, independent of µ and δ, such that,
for any v0 satisfying ‖v0‖Yv ≤ δr0, the corresponding solution to (4.3) satisfies
‖v(t)‖Yv ≤ Cδ for all 0 ≤ δ2t ≤ T0. Furthermore, we can write v(T0/δ

2) =
δuc + δ2us, where ‖uj‖Yv ≤ C and P juj = uj for j = c, s.

To see why this leads to the statement of the proposition, define

A(T0) = Aδ(v(T0/δ
2)).

We claim that this defines the element of Vδ(BYAR1
) to which St(v0) is attracted,

in the sense of the proposition. Indeed, it is straightforward to show that P cu =
VδAδ(u) for each u with P cu = u, and we therefore have

‖ST0/δ2(v0)− Vδ(A(T0))‖Yv = ‖δuc + δ2us − Vδ[Aδ(δuc + δ2us)]‖Yv
≤ δ‖P cuc − VδAδuc‖Yv + Cδ2

≤ Cδ2.

Hence, it suffices to show how solutions of (4.3) can be controlled using the
mode filters.

Using Lemmas 4.1 and 3.2, we can write ∆(p, v)(x, t) = H(x, t)w(x, t), where
H(x, t) is smooth and bounded uniformly for 0 ≤ t ≤ Tmax, and w(x, t) denotes,
with a slight abuse of notation, the function w(ξ, t) written in the frame (x, t).
We recall that, as we shall use only H1

ul estimates in the remainder of this
section, the frame does not matter. Next, we set vc(·, 0) = δ−1P c

mfv0 and
vs(·, 0) = δ−1P s

mfv0, and substitute v = δvc + δvs into equation (4.3) to get

δ (∂tvc + ∂tvs) = δ (L−vc + L−vs) +N−(δvc + δvs) +H(t)w(t).

We now define vc and vs to be solutions to the following integral equations

vc(t) = eL−tvc(0) (4.10)

+
1
δ
P c

mf

∫ t

0

eL−(t−τ) [N−(δvc(τ) + δvs(τ)) +H(τ)w(τ)] (τ) dτ

vs(t) = eL−tvs(0) (4.11)

+
1
δ
P s

mf

∫ t

0

eL−(t−τ) [N−(δvc(τ) + δvs(τ)) +H(τ)w(τ)] (τ) dτ.
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Using that the mode filters and the semigroup commute, we can prove as in [18,
Lemma 4] that, for each fixed T0, there are constants K1, K2 and κ > 0 such
that

‖P c
mfe
L−tu‖H1

ul
≤ K1‖u‖H1

ul
, ‖P s

mfe
L−tu‖H1

ul
≤ K2e−κt‖u‖H1

ul

for all t with 0 ≤ δ2t ≤ T0. The constant K1 in the above estimate will, in
general, depend on T0 due to the growth of order eµt ≤ eµT0/δ

2
in the center

directions. However, as long as |µ| ≤ δ2, this will not affect our result, because
below we choose 0 < T0 ≤ 1.

We proceed now as follows: First, the system (4.3) has a unique solution
(p, v) on the interval 0 ≤ t ≤ Tmax, which we use to define the inhomogeneity
H(t)w(t). Using this information and the estimate from Lemma 4.1, we see that
the system (4.10) of integral equations defines a contraction in the ball of radius
2R0 centered at (vc(0), vs(0)) in C0

bdd([0, δ−
1
4 ], H1

ul×H1
ul), provided δ−

1
4 ≤ Tmax.

We now estimate vc and vs for 0 ≤ t ≤ δ−
1
4 to show that the components vc,s

indeed remain bounded on this time interval from which we can then infer, via
the relation v = δvc + δvs and by Lemma 3.2 and Remark 4.1, that Tmax must
be at least as large as δ−

1
4 . Using (4.10) and the fact that ‖w(0)‖Yv ≤ δ, we

find for 0 ≤ t ≤ δ− 1
4

‖vc(t)‖Yv ≤ C‖vc(0)‖Yv + Cδ

∫ t

0

(‖vc(τ)‖Yv + ‖vs(τ)‖Yv )2 dτ

+
C

δ

∫ t

0

e−Λτ‖w(0)‖Yv dτ

≤ CR0 + Cδ
3
4R2

0 +
C‖w(0)‖Yv

δ
(since 0 ≤ t ≤ δ− 1

4 )

≤ C1

and, again for 0 ≤ t ≤ δ− 1
4 ,

‖vs(t)‖Yv ≤ Ce−κt‖vs(0)‖Yv + Cδ

∫ t

0

e−κ(t−τ)(‖vc(τ)‖Yv + ‖vs(τ)‖Yv )2 dτ

+
C

δ

∫ t

0

e−κ(t−τ)−Λτ‖w(0)‖Yv dτ

≤ CR0e−κt + CδR2
0 +

C‖w(0)‖Yv
δ

(
e−Λ/δ

1
4 − e−κ/δ

1
4

)
≤ C2

2
(e−κt + δ).

Choosing t = δ−
1
4 , we can conclude from the last estimate that

‖vs(δ−
1
4 )‖Yv ≤

C2

2
(e−κ/δ

1
4 + δ) ≤ C2δ.

We now exploit this better estimate to bound the solution v over the longer time
interval [0, T0/δ

2]. We define uc(0) = vc(1/δ1/4) and us(0) = δ−1vs(1/δ1/4) and
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substitute v = δuc + δ2us into equation (4.3) to arrive at the integral equation

uc(t) = eL−tuc(0) +
1
δ
P c

mf

∫ t

0

eL−(t−τ)
[
N−(δuc(τ) + δ2us(τ)) (4.12)

+H(τ + δ−
1
4 )w(τ + δ−

1
4 )
]

dτ

us(t) = eL−tus(0) +
1
δ2
P s

mf

∫ t

0

eL−(t−τ)
[
N−(δuc(τ) + δ2us(τ))

+H(τ + δ−
1
4 )w(τ + δ−

1
4 )
]

dτ.

Local existence of solutions is clear, and we therefore need to show that solutions
(uc, us) remain bounded on the interval [0, T0/δ

2], uniformly in δ. The key
observation that allows us to obtain the necessary estimates of the right-hand
side of (4.12) is due to Schneider [16] who proved that P c

mfB[P c
mfu, P

c
mfu] = 0 for

any bilinear form B of the form B[u, v] = uTBv, where B ∈ Cn×n. We therefore
write

N−(v) = B[v, v] + Ñ (v), Ñ (v) = O(|v|3)

and note that cubic nonlinearities do not pose any problems for estimates of the
below type [8]. Thus, to keep the analysis simple, we focus from now on on the
quadratic terms and remark that the analysis to follow can be extended easily
to account for the nonlinearity Ñ (v) using ‖Ñ (v1 + v2)‖ ≤ C(‖v1‖3 + ‖v2‖3).
From (4.12), we obtain

‖uc(t)‖Yv ≤ ‖eL−tuc(0)‖Yv + Cδ2

∫ t

0

(
‖uc(τ)‖Yv‖us(τ)‖Yv + δ‖us(τ)‖2Yv

)
dτ

+
Ce−

Λ
δ1/4

δ
‖w(0)‖Yv

‖us(t)‖Yv ≤ ‖eL−tus(0)‖Yv
+C

(
‖uc(t)‖2Yv + δ‖uc(t)‖Yv‖us(t)‖Yv + δ2‖us(t)‖2Yv

)
+
Ce−

Λ
δ1/4

δ
‖w(0)‖Yv .

For j = c, s, we introduce the variables

Uj(t) := sup
0≤τ≤t

‖uj(τ)‖Yv , 0 ≤ t ≤ T0/δ
2

and get

Uc(t) ≤ C‖uc(0)‖Yv + Cδ2

∫ t

0

[
Uc(τ)Us(τ) + δUs(τ)2

]
dτ (4.13)

+
Ce−

Λ
δ1/4

δ
‖w(0)‖Yv

Us(t) ≤ C‖us(0)‖Yv + C
[
Uc(t)2 + δUc(t)Us(t) + δ2Us(t)2

]
+
Ce−

Λ
δ1/4

δ
‖w(0)‖Yv .
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The constant C that appears in (4.13) does not depend on the initial data or
on δ or T0 with T0 ≤ 1. We now choose constants Kc and Ks so that

Kc ≤ C‖uc(0)‖Yv + Ce−
Λ

δ1/4 , Ks ≤ C‖us(0)‖Yv + Ce−
Λ

δ1/4

for all relevant initial data and values of δ, and define

K̃s := 4(Ks + 16CK2
c ).

Next, we pick T0 so that 0 < T0 < min{1, log 2/[4CKs]}. As long as Uc(t) ≤ 4Kc

and Us(t) ≤ K̃s for 0 ≤ t ≤ T0/δ
2, we have

Us(t) ≤ Ks + 16CK2
c + C[4δKcUs(t) + δ2Us(t)2].

Therefore, if δ0 is chosen sufficiently small so that

4Cδ0Kc + Cδ2
04(Ks + 16CK2

c ) ≤ 1
2
,

then, in fact,

Us(t) ≤
1
2
K̃s.

Furthermore, substituting this bound into the equation for Uc, we have

Uc(t) ≤ Kc + CδT0K̃
2
s + 4Cδ2K̃s

∫ t

0

Uc(τ) dτ

for all t with 0 ≤ δ2t ≤ T0. Gronwall’s inequality then implies that

Uc(t) ≤ (Kc + CδT0K̃
2
s )e4CKsT0 ≤ 3

4
Kc

due to our choice of T0, provided δ0 is so small that CδT0K
2
s ≤ Kc/4. This

means that the preceding estimates hold true for all t in the interval [0, T0/δ
2]

as claimed. �

Proposition 4.3 (Approximation). For all positive R0, T1, and r1, there
exist positive constants r2 and δ0 such that the following is true for all δ and
µ with

√
|µ| ≤ δ ≤ δ0. If A0 ∈ BYAR0

and ST0/δ2(v0) ∈ Yv with ‖ST0/δ2(v0) −
Vδ(A0)‖Yv ≤ r1δ

5/4, then

sup
0≤t≤T1/δ2

∥∥St(ST0/δ2(v0))− Vδ(Gδ2t(A0))
∥∥
Yv
≤ r2δ

5/4. (4.14)

Proof. This statement is a generalization, in two ways, of the standard Ginz-
burg–Landau approximation theorems found, for example, in [5, 18] or the re-
view [10]. First, the parameter δ that measures the size of the solutions is
typically taken to be O(

√
|µ|). However, we need to allow for solutions that

do not necessarily shrink to zero as µ does. This type of extension has been
discussed in [11], and a similar technique can be used here.
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Second, we need to account for the term ∆(p, v), which we are viewing as
an inhomogeneity. To deal with this, the statement of the proposition has been
slightly modified so that the approximation does not occur until a time T0/δ

2.
To see why this works, suppose we allow the solution with initial data v0 to
evolve up to the time T0/δ

2. The proof of the preceding proposition shows the
flow is well defined for this long time and that the solution remains bounded.
From the time T0/δ

2 onwards, the inhomogeneity ∆(p, v) will therefore be ex-
ponentially small in δ, even when we replace its argument x by x/δ. As a result,
one can follow the arguments in [18, §3.2] to prove approximation by subsuming
the inhomogeneity into the residual terms. �

By combining these results with the fact that solutions of (4.6) with initial
data of size O(

√
|µ|/δ) remain small, we can now prove that v stays small in Yv

for all time.

Lemma 4.2. Under the assumptions of Propositions 4.2 and 4.3, there exist
positive constants T0, T1 and δ0 such that, for all δ, µ and r0 with

√
|µ| ≤ δ <

δ0 and r0 sufficiently large, we have S(T0+T1)/δ2(BYvδr0) ⊂ BYvδr0 . In particular,
solutions St(v0) with initial conditions in BYvδr0 stay bounded and exist for all
time.

Proof. This is essentially the same proof as in [18, §1], but we restate it here for
convenience. Since the bifurcation is supercritical, the results of [9] imply that
all solutions of (4.6) satisfy lim supT→∞ ‖A(T )‖YA ≤ C

√
|µ|/δ. Furthermore,

they imply that there exists an R∞ such that, for each R0 > 0, there exist
positive constants R1 and T1 so that

GT1(BYAR0
) ⊂ BYAR∞ and

⋃
T∈[0,T1]

GT (BYAR0
) ⊂ BYAR1

. (4.15)

Choose r0 independent of δ and sufficiently large so that

Vδ(BYAR∞) ⊂ BYvδr0/2, (4.16)

which can be done simply by the definition of Vδ. By attractivity, we know that
there are positive constants R0, T0 and r1 so that

ST0/δ2(BYvδr0) ⊂ Ur1δ5/4(Vδ(BYAR0
))

uniformly in δ and µ, where Ur denotes the neighborhood of size r. For this value
of R0, there is then a T1 so that (4.15) holds. Furthermore, by the approximation
property (4.14), there is an r2 so that

ST1/δ2

[
ST0/δ2(BYvδr0)

] (4.14)
⊂ Ur2δ5/4(Vδ(GT1(BYAR0

)))

(4.15)
⊂ Ur2δ5/4(Vδ(BYAR∞))

(4.16)
⊂ BYvδr0 .

Furthermore, it follows from (4.9), (4.14) and (4.15) that these solutions are
bounded by max{r̃1δ, 2R1δ} on the interval [0, (T0 +T1)/δ2]. We can now repeat
and iterate the preceding argument with r0 = 2R∞, which proves the result. �
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Proposition 4.1, and therefore Theorem 1, follows now from the above results
upon taking δ :=

√
|µ| when |v(·, 0)|H1

ul
≤
√
|µ|, while taking δ := |v(·, 0)|H1

ul

when |v(·, 0)|H1
ul
>
√
|µ|.

5. Discussion

We proved nonlinear stability of fronts near a supercritical Hopf or Turing
bifurcation of the rest state left behind by the front. Specifically, we proved
that small bounded perturbations stay bounded for all times and are pushed
away from the front interface towards the wake of the front. Similar results to
the ones obtained here for general reaction-diffusion systems were previously
obtained in [4] for a specific model problem in which the front undergoes a Tur-
ing bifurcation. To prove our stability result, we combined the approach from
[4] with techniques from [9, 16, 18], where a priori bounds of small-amplitude
solutions were established using the Ginzburg–Landau formalism.

Following the arguments in [11], it should be possible to show that the dy-
namics in the wake of the front is governed by the associated Ginzburg–Landau
equation. For Hopf bifurcations, the dynamics of the Ginzburg–Landau equa-
tion depends strongly on the coefficients λ2(0) and b discussed in §2. Depending
on these coefficients, the prevalent dynamics may consist of stable oscillatory
waves or of spatio-temporally complex patterns, which will appear with small
but finite amplitude in the wake of the front. Our results show that the front
will ultimately outrun these structures in its wake. We mention that this re-
sult was previously derived by Sherratt [21] through a formal analysis for fronts
near supercritical Hopf bifurcations in the case when these can be described by
λ-ω systems. We refer the reader to [7, 21, 20] for numerical simulations and
applications to predator-prey systems.

We did not consider Turing–Hopf bifurcations, where both k0 and ω0 are
nonzero in the original frame x. In this case, the dynamics near the desta-
bilizing rest state can be captured formally by a system of coupled Ginzburg–
Landau equations that describe small left- and right-travelling waves of the form
ei(k0x±ω0t). No rigorous approximation or validity results are known in this case.

Finally, we mention that the ideas from [4] have recently been used in [2], see
also [3], to prove nonlinear stability of combustion fronts. The key difficulties
in the situation discussed in [2] are that there are multiple fronts that decay
algebraically to the same rest state as x → −∞ and that both rest states
have essential spectrum up to the imaginary axis. The approach discussed in
[4] allowed the author to obtain a priori estimates that guarantee nonlinear
stability.
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