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Abstract

A rigorous mathematical treatment of chaotic phase synchronization is still
lacking, although it has been observed in many numerical and experimental
studies. This article addresses the extension of results on phase synchronization
in periodic oscillators to systems with phase coherent chaotic attractors with
small phase diffusion. As models of such systems we consider special flows over
diffeomorphisms in which the neutral direction is periodically perturbed. A
generalization of the Averaging Theorem for periodic systems is used to extend
Kuramoto’s geometric theory of phase locking in periodically forced limit cycle
oscillators to this class of systems. This approach results in reduced equations
describing the dynamics of the phase difference between drive and response
systems over long time intervals. The reduced equations are used to illustrate
how the structure of a chaotic attractor is important in its response to a periodic
perturbation, and to conclude that chaotic phase coherent systems may not
always be treated as noisy periodic oscillators in this context. Although this
approach is strictly justified for periodic perturbations affecting only the phase
variable of a chaotic oscillator, we argue that these ideas are applicable much
more generally.

∗josic@math.bu.edu
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The theory of phase synchronization between interacting periodic os-

cillators plays a central role in the mathematical analysis of pattern for-

mation, design of phase lock loops, mathematical neuroscience, and a

number of other areas of physics, engineering and applied mathematics.

A number of experimental and numerical studies have recently demon-

strated that even chaotic oscillators can display phase locking. In this

article we extend the theory of phase locking developed for periodically

perturbed limit cycle oscillators to a class of periodically driven chaotic

oscillators which serve as a model for a wide class of phase coherent sys-

tems. In this case the equations modeling the phase difference between

the periodic perturbation and the oscillator take the form of a circle

map driven by a diffeomorphism obtained from a Poincaré section of the

chaotic attractor. These equations can lead to very complicated behavior

since the structure of the original chaotic attractor plays an important

role in their derivation. We illustrate some of the possibilities for the

long term behavior of the phase difference, including examples in which

the correlation between the drive and response signals decreases with

an increase in coupling strength, contrary to intuition. We demonstrate

that the phase difference in periodically perturbed chaotic systems may

display a range of behaviors that may not always be adequately captured

by approximating the chaotic oscillator with a stochastically perturbed

periodic oscillator.

1 Introduction

The phenomenon of phase synchronization between periodically oscillating systems,
first noted by Huygens [1], has been extensively studied and is well understood. The
recent observation of the phenomenon in chaotic systems [2, 3, 4] has prompted a
large number of numerical and experimental studies. Chaotic phase synchroniza-
tion (CPS) has since been detected in studies of electrically coupled neurons [5, 6],
spatially extended ecological systems [7], earthquake models [8], and a periodically
driven plasma discharge tube [9], to cite just a few in a growing number of examples.
However, there are few rigorous results about CPS in the literature, and several of
its features are still not well understood.

Several approaches have been used to give a heuristic explanation of CPS and to
describe some of its aspects. In [4] it is shown that it is frequently possible to define a
phase variable which is periodic up to a small chaotic term. For systems in which this
chaotic term can be treated as white noise, the methods introduced by Stratonovich
work well [10]. Another approach is to study the phase locking properties of the
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entire attractor in terms of the behavior of periodic orbits embedded in it [11]. Since
the periodic orbits form a skeleton of the attractor, this approach is natural. Other
interesting properties of chaotic phase locked attractors were studied in [12, 13].

Such approaches provide effective ways of studying CPS, however they are fre-
quently difficult to justify rigorously. There are also several fundamental questions
which are hard to address using the ideas proposed so far: What type of chaotic
systems can display CPS? Is it possible to directly extend the well developed the-
ory of phase locking of periodic oscillators to the chaotic case? If so, can chaotic
oscillators in general be thought of as noisy periodic oscillators?

In this paper we develop a rigorous approach to the study of CPS in a somewhat
idealized model which gives a partial answer to these questions. There are several
ways to study phase locking of periodic systems [14, 15, 16, 17]. We will combine
the idea of reducing a phase coherent system to a special flow over a diffeomorphism
[11], with the geometric description of periodic phase locking given by Kuramoto [17]
to provide both a geometrical and mathematical explanation of when and how CPS
occurs. On the basis of this description we develop a model and use it to show that
we can typically expect two obstacles to phase synchronization: one due to the phase
diffusion on the attractor and the second due to the variation of the sensitivity of the
phase across the attractor. In the case of a periodically driven chaotic system the
first obstacle can be eliminated by an increase in the coupling strength. However,
this is not true for the second obstacle. This allows us to conclude that chaotic
oscillators cannot in general be treated as noisy periodic oscillators for the purpose
of studying their phase locking properties. Although we only address the problem
of a chaotic system subject to a periodic perturbation, a similar theory can be
developed for coupled phase coherent systems.

We start by reviewing Kuramoto’s analysis of phase locking in periodic systems
in Section 2, and show how to extend this approach to chaotic systems in Section
3. In Section 4 we introduce an idealized model of a periodically driven chaotic
attractor. We next use an extension of the standard Averaging Theorem to find a
simplified equation for the dynamics of the phase difference in Section 5. In certain
situations a further simplification is possible by averaging over the invariant measure
on the attractor. However if the convergence to the averages is insufficiently fast,
this reduction may not be possible on parts of the attractor. These issues and their
effect on the phase locking properties of the system are discussed in Sections 6 and
7. The proofs of the results used in the paper are contained in the Appendix.
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2 Phase locking in periodic systems

We first review the basic principles behind the analysis of phase locking of periodic
oscillators because they form the basis of our approach to the analysis of chaotic
phase synchronization. Suppose that a system y′ = f(y) with y ∈ Rn has an
exponentially stable periodic orbit of period T . Consider the perturbed system
y′ = f(y)+ εs(t) where εs(t) is a small T ′-periodic signal and T and T ′ are assumed
to be close. Let ∼ denote the identification of the endpoints of the interval [0, T ] so
that [0, T ]/ ∼= S1. It is shown in [15, 17] that there exists a phase coordinate φ(y) ∈
[0, T ]/ ∼ defined in the neighborhood of the unperturbed limit cycle representing
the phase of the driven system. Under the periodic perturbation εs(t) the evolution
of the phase φ is governed by

φ′ = 1 + ε∇φ · s(t)
def
= 1 + εG(t, φ)

where G(t, φ) = ∇φ ·s(t). The gradient of φ(y) measures the sensitivity of the phase
to perturbations, and is therefore called the phase dependent sensitivity. Since the
signal s(t) is T ′-periodic we may think of φd = (T/T ′)t mod T as the phase of the
driving signal, so that φd ∈ [0, T ]/ ∼. Therefore the phase difference Ψ = φ − φd
can also be written as

Ψ = φ−
T

T ′
t mod T (1)

and it satisfies

Ψ′ = ∆+ εG(t,Ψ+
T

T ′
t) (2)

where ∆ = 1− T
T ′ .

G(t,Ψ + T
T ′ t) is T ′-periodic in t, and since T − T ′ is small we can assume that

∆ = O(ε). Thus averaging is justified and we obtain the reduced equation

Ψ′ = ∆+ εΓ(Ψ) (3)

where Γ(Ψ) = 1/T ′
∫ T ′

0 G(t,Ψ+ T
T ′ t)dt. Averaging guarantees that the solutions of

this equation are close to the actual solution up to and including times of O(1/ε).
If (3) has a stable fixed point, then the original equation has a T ′-periodic solution
in an O(ε) neighborhood of this fixed point so that the phase difference φ − φd is
nearly fixed and the oscillator is phase locked with the drive.
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3 Extensions to chaotic systems

The concept of phase locking can be extended to a system y′ = f(y), y ∈ Rn and
f smooth, with a chaotic attractor A on which a meaningful phase can be defined.
Such systems are typically called phase coherent, and are a natural generalization
of periodically oscillating systems. We define phase coherence as follows

Definition 3.1 An attractor A is phase coherent if there exists a smooth, transver-
sal section Σ of the attractor and constants T > 0 and ε > 0 such that all orbits
starting at Σ return to Σ within a time t where |T − t| < ε.

It is natural to extend this definition to systems for which the conditions hold for
µ-almost all, or a large measure of initial conditions on Σ, where µ is some natural
measure on Σ invariant under the Poincaré return map. The constant ε gives a
rough measure of how much the flow on A deviates from being periodic. However,
A does not have to be periodic or quasiperiodic even when ε = 0.

To avoid notational complications which would occur as a consequence of defining
several charts on the section Σ, we assume that a single coordinate chart x : Σ →
Rn−1 is sufficient. We can therefore think of Σ as a subset of Euclidean space Rn−1.
By a slight abuse of notion we will denote initial conditions on Σ by their coordinate
x. Let F : Σ → Σ be the Poincaré return map induced by the flow, and T (x) the
time for a point x ∈ Σ to return to Σ under the flow.

In general the phase of a system is a function φ : N → S1 from a neighborhood
N of the attractor A to the circle. Following Definition 3.1 we consider the circle
S1 = [0, T ]/ ∼ where ∼ denotes identification of 0 and T . The following proposition
shows that a natural, approximately uniformly increasing phase variable can be
defined on a phase coherent attractor.

Proposition 3.2 There exist functions R : N → Rn−1 and φ : N → S1 on a
neighborhood N of a phase coherent attractor A such that (R,φ) are new coordinates
on N in which the equations of motion take the form

R′ = f(R,φ) (4)

φ′ = 1 + δ(R,φ). (5)

The function δ can be chosen arbitrarily close to T
T (x) − 1.

The proof of this Proposition may be found in the Appendix. It follows that
the uniform flow on the circle is nearly a factor map of a phase coherent system
if δ is small. Therefore we can expect that the time series of certain coordinates
v : N → R will have a peak in their power spectrum, and that the width of this
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peak is related to the distribution of return times to the section Σ, as already noted
in [4, 18]. For instance if we think of φ ∈ S1 ⊂ R2 as moving on a circle in the
plane then the time series of the x-coordinate of a point on the circle will be nearly
sinusoidal.

It is clear from the proof of the Proposition that the coordinates R and φ are not
uniquely defined. However, if φ1 and φ2 are two definitions of the phase obtained
from the section Σ so that φ′1 = 1 + δ1(R,φ) and φ′2 = 1 + δ2(R,φ) then

φ1(y(t, x))− φ2(y(t, x)) =

∫ t

0
(δ1(R1, φ1)− δ1(R1, φ1))dt.

Therefore |φ1(y)−φ2(y)| < 2T max(|δ1|, |δ2|). If the original system is phase coherent
than |δ1| and |δ2| can be chosen to be small, so that the definitions of the phase are
nearly the same. Since only a limit cycle can be parameterized by a single phase
variable, it can in general not be expected that δ(R,φ) = 0, however Proposition
3.2 implies that for phase coherent attractors φ may be defined so that |δ(R,φ)| is
close to | T

T (x) − 1| < ε+O(ε2).

If the original system is subject to a small periodic perturbation εs(t) of period
T ′ so that y′ = f(y) + εs(t), we can follow the calculations of Section 2 to obtain

φ′ = 1 + δ(R,φ) + ε∇yφ|(R,φ) · s(t) (6)

where ∇yφ|(R,φ) is the gradient of φ(y) at a point (R,φ).

If we define the phase difference Ψ as in (1), and let ∆ = 1− T
T ′ we obtain

Ψ′ = ∆+ εG(Ψ +
T

T ′
t, R) + δ(Ψ, R). (7)

There are two differences between equations (2) and (7): the term δ and the
dependence of G on R in equation (7). If the autocorrelations of y decay relatively
quickly in time it can be expected that δ acts as a random perturbation since Ψ
evolves on a slow time scale compared to φ and R. Moreover, this term is not
proportional to the coupling strength ε and it can hence be dominated by the term
εG for sufficiently large coupling values if the system does not undergo bifurcations
that significantly change its behavior. These arguments have been used to study
chaotic phase synchronization in [4] using the theory of phase synchronization of
stochastic oscillators [10].

On the other hand the term εG(Ψ+ T
T ′ t, R) in (7) is proportional to the coupling

strength ε. Since the behavior of R and φ are not necessarily correlated, the influence
of this term on the dynamics of Ψ is highly dependent on the particular system.
Sometimes the dependence on R is weak, so that εG(Ψ + T

T ′ , R) ≈ εG̃(Ψ + T
T ′ ).
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In such cases the system may frequently be viewed as a stochastically perturbed
periodic system [11, 4]. If the dependence of G on R is strong, the situation is more
complicated. Unlike the term δ, an increase in coupling strength will only increase
the effect of this term on the dynamics of the phase difference Ψ. Examples in [19]
show that this may significantly affect the phase locking properties of the attractor,
and in the following we explore this situation further.

4 A model system

In this Section we describe a somewhat simplified model that illustrates how the
dependence of the function G on R may influence the phase locking properties of
a system. Some of the ideas we present have already been suggested in [11] in a
somewhat different context and we make certain steps in this approach rigorous.

Following Definition 3.1 we again assume that there exists a transversal section
Σ of the attractor of a system y′ = f(y). This section corresponds to the constant
phase φ = 0 in a neighborhood of the attractor. Let F (x) be the Poincaré map on
Σ and note that by smooth dependence on initial conditions the return time T (x)
of a point x ∈ Σ to Σ is as smooth as the flow ϕt.

Next we define a special flow gt over the Poincaré map F [20]. Let Y = {(x, φ) ∈
Σ× R : 0 ≤ φ < T (x)}. The flow is defined for for positive t and φ ∈ [0, T (x)) by

gt(x, φ) = (x, φ+ t) if 0 ≤ φ+ t < T (x)

gt(x, φ) = (F k(x), u) if 0 ≤ u = t+ φ−
∑

0≤i≤k−1

T (F i(x)) < T (F k(x)) (8)

where k = max{i ≥ 1 : φ + t −
∑i

j=0 T (F
j(x)) ≥ 0}. The flow can be defined

similarly for negative t for points which are on the attractor A. See Fig. 1.
Standard arguments show that the manifold Ỹ = Y/ ∼ obtained by identifying

(x, T (x)) and (F (x), 0) can be given a structure of a smooth manifold with boundary
and that the flow gt generates a flow on this manifold. We can define a function
h : N → Ỹ on some neighborhood N of A by

h(ϕt(x, 0)) = (F k(x), u)

with k as above and u = t −
∑

0≤i≤k−1 T (F
i(x)) < T (F k(x)). It is easy to check

that h can be used to define a smooth conjugacy between the flows ϕt and gt on
their respective attractors. This conjugacy can be extended to a neighborhood of
the attractors for positive time.

Note that h preserves time which will be important in our considerations. There-
fore the flows ϕt and gt are equivalent in a positively invariant neighborhood of
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their attractors with the equivalence preserving parameterization in time, and we
may think of (x, φ) as new coordinates in the neighborhood of the attractor. Since
φ changes between 0 and T (x) during one oscillation it is more convenient to think
of the quantities T

T (x)φ as the phase on the attractor of this system so that we may

think of the phase as defined on [0, T ]/ ∼= S1.
Assume that F : Σ → Σ preserves some natural invariant measure µ on Σ. We

let 〈·〉µ = 〈·〉 denote the average with respect to this measure. Then T = 〈T (x)〉 =

limn→∞ 1/n
∑n−1

i=0 T (F
i(x)) is the average return time to the section Σ, and the

second equality holds µ-almost everywhere. It is natural to use this T in Definition
3.1.

Define the stroboscopic map φN = φ(NT ), so that 〈φN 〉 = 0 by the definition
of T . We will consider the variance of the distribution of φN around 0. The rate of
growth of this variance is called the phase diffusion constant. It measures the speed
of growth of the distribution of phases in an ensemble of systems with equal initial
phases, but different initial radii. Given an initial condition x ∈ Σ, the distance
of the point φN from Σ is given by

∑N−1
n=0 T (Fn(x)) −NT , so that phase diffusion

constant can be defined as the rate of growth of

V (N) =

〈

(
N−1
∑

n=0

(T (Fn(x)))−NT )2

〉

or similarly Dφ = limn→∞ V (N)/N [21]. It can be shown that the central limit
theorem holds for uniformly hyperbolic dynamical systems [22, 23], so that if F is
uniformly hyperbolic

V (N)

N
→
〈

((T (x))2
〉

− T 2 + 2
∞
∑

n=1

〈T (Fn(x))− T 〉 〈T (x)− T 〉 .

This result may be expected to hold in the case of many physical systems [24].
This quantity provides a good measure of how much the return times T (x) devi-

ate from the average return time T . If system (8) can be treated as a stochastically
perturbed periodic system the results in [10, 4] suggest that this quantity deter-
mines how difficult it is to phase lock this system as compared to the unperturbed
periodic system. We will see that in general more information about the structure
of the attractor will be needed.

We now assume that the phase φ, and only the phase, is subject to a small,
additive perturbation of period T ′ = T + O(ε). The assumption that the pertur-
bation acts only on the phase is a simplification. Such couplings are realistic in
certain systems such as Josephson junctions and phase lock loops [25, 26] and have
been considered in the context of chaotic phase synchronization in [27, 11]. If the
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Figure 1: The special flow over a map F (x). The initial point (x0, 0) gets reinjected
at (F (x0, 0) after reaching (x0, T (x0)). The average return time is the average of
the function T (x). We will use a partition of the Poincaré section Σ in the examples
in Sections 6 and 7.

perturbation also influences the dynamics of x, the situation is more difficult to
treat, however if the attractor of the map F is uniformly hyperbolic most of the
results below can be expected to carry over directly for sufficiently small values of ε
[28, 29]. This situation is not typical, and in the case of non-uniformly hyperbolic
systems even small perturbations can lead to bifurcations and drastic changes in
the dynamics of x. Since our results are derived by perturbing from ε = 0, they
may no longer be valid in this case, although results derived for hyperbolic systems
frequently seem to apply approximately to many non-uniformly hyperbolic systems.

For initial conditions (x0, 0), let S
0
−1 = 0 and S0

n =
∑

0≤i≤n−1 T (F
i(x)), so that

S0
n is the total time to the n-th return of the point (x0, 0) to the section Σ. Following

Section 3 the dynamics of system (8) under a small periodic perturbation is given
by

φ′ = 1 + εp(t, φ, xn) (9)

x(t) = xn for S0
n−1 ≤ φ̃ < S0

n

where p(t, φ, xn) is T ′-periodic in t, and φ̃ is the lift of φ to R. Because of the
relation between the special flow on Ỹ and the original system we can assume that
p(t, 0, F (x)) = p(t, T (x), x), and that p is smooth in all variables. We can obtain
equivalent equations for φ̃, the lift of φ to the line.
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If we think of T
T ′ t mod T as the phase of the driving signal, and T

T (x)φ as the

phase of the system, the phase difference Ψ ∈ [0, T ) between the two can be defined
as in (1)

Ψ =
T

T (x)
φ−

T

T ′
t mod T. (10)

The phase difference satisfies the equation

Ψ′ =

(

T

T (xn)
−

T

T ′

)

+ ε
T

T (xn)
p(t, φ, xn) for S0

n−1 ≤ φ̃ < S0
n

= ∆(xn) +
T

T (xn)
εp(t,

T (xn)

T
Ψ+

T (x)

T ′
t, xn) for S0

n−1 ≤ φ̃ < S0
n (11)

where ∆(xn) = T
T (xn) −

T
T ′ = O(ε). The dependence on φ̃ can be eliminated by

considering the lift Ψ̃ of Ψ to the line. Since the change of coordinates from φ to
Ψ has a discontinuous first derivative on the section Σ, the vector field in (11) is
discontinuous. These discontinuities occur on a discrete set of points. Since the
vector field is well behaved in their vicinity we can obtain solutions of system (11)
by integrating between the returns to Σ and using the final value of Ψ during one
oscillation as the initial value in the integration at the next oscillation. Under
the change of coordinates (10) these solutions will agree with those of the original
problem, so that the discontinuity in the vector field will pose no problem in the
following.

Because the dynamics of Ψ depends on xn, these equations will in general not
have fixed points or attracting periodic orbits. However, if |Ψ(t)− θ| < C, for some
θ ∈ [0, T ), then at any time nT ′ we have

∣

∣

∣

∣

T

T (x)
φ− θ

∣

∣

∣

∣

< C (12)

so that if C is sufficiently small, the driven system is phaselocked with the drive with
approximate phase difference θ. Since T

T (x) = 1+O(ε), the constant C measures how

much the phase can deviate from θ at the times nT ′, in other words how “tightly”
the two systems are phase locked.

5 Reduction of the phase difference equation

Since G is not periodic in time, it is not possible to average equation (11) directly
as in the periodic case. It is possible to use a moving time average [30], however
this approach leads to complications. Instead the equation can be averaged between
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returns to the section Σ, i.e. over intervals defined by the condition S0
n−1 ≤ φ̃ < S0

n.
The following theorem shows that such averages can be further simplified and that
the averaged system stays close to the original system up to times of order 1/ε.

We will consider the Poincaré map of system (11) on the section Σ. More
precisely, if Sεn is the time at which the phase variable φ crosses Σ the n-th time, we
find a dynamical systems whose orbits remain close to the phase difference Ψ(Sεn)
for times of order 1/ε.

Theorem 5.1 If ∆(xn) = O(ε), then the orbits of the Poincaré map on the section
Σ of the system (11) are O(ε) close to the orbits of the averaged discrete time system

ρn+1 = ρn + η(xn) + εΓ(ρn, xn) (13)

xn+1 = F (xn)

where η(xn) = ∆(xn)T
′ and

Γ(ρ, xn) =

∫ T ′

0
p(−

T ′

T
ρ+ t,

T (xn)

T ′
t, xn)dt. (14)

The proof of this theorem and the following proposition may be found in the
Appendix. Under certain stability conditions we can extend these results to longer
time intervals. If the system (13) has a trapping region so that |ρn − θ| < C < T
on an arbitrarily long time interval (including infinite time intervals) then we can
conclude that |Ψ(t)− θ| < C +O(ε) on the same time interval if the phase diffusion
and coupling strength are sufficiently small. This means that for long times ρn and
Ψ(Sεn) remain in subsets of [0, T ) that are ε close, even if ρn and Ψ(Sεn) themselves
may remain close only for times of order 1/ε.

Proposition 5.2 Suppose that I2 ⊂ I1 are two subintervals of [0, T ]/ ∼= S1 such
that I1 and I2 are absorbing intervals for system (13) under a particular orbit of
xn+1 = F (xn). Then for sufficiently small ε, the orbits of the unaveraged system
(11) remain in an ε neighborhood of I1.

In general it may not be sufficient to require that system (13) has only an
absorbing region I2 since the orbits starting at the vicinity of that region may visit
much of S1 before reaching I2, and hence the last part of the proof would not go
through. However, such examples seem atypical. We also note that it is easy to show
that if for a given orbit of xn = F (xn−1), the phase difference ρ in (13) undergoes
phase slips on time scales of order 1/ε the same is true for the original system. In
general however, system (13) may not give information about the behavior of the
phase difference Ψ for very long times.
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Remark 5.3 We note that the results in this Section apply to single orbits of the
system xn = F (xn−1). It is possible, and typically likely, that the dynamics of ρ
will be different for different initial values x0 ∈ Σ. As noted in [11] in the case Γ
does not depend on xn, some periodic orbits in the attractor may be phase locked
while others are not, and it is reasonable to study the phase locking properties of the
attractor by examining the proportion of phase locked orbits inside it. This situation
will be discussed further in Sections 6 and 7.

Rather than try to develop a comprehensive theory of the behavior of system
(13) we instead study several examples that illustrate the types of behavior that
can be expected in more general systems. We first discuss systems which can be
reduced further by averaging over the invariant measure on Σ, and subsequently
consider examples of systems for which such averaging is not appropriate.

Systems of the form (13) have already been used to study phase locking of chaotic
systems, however it was assumed that only η depends on xn while Γ does not. In
the following we illustrate what can be expected when both Γ and η depend on xn.

6 Averaging over an invariant measure on Σ

In equation (13) Γ can generally be expected to vary smoothly with xn. However
certain attractors, like the ones found in the Lorenz, Chua and Rikitake systems
consist of several parts on which the dynamics is relatively uniform. For certain
parameter values these systems can also be considered phase coherent. Motivated
by these examples we make the following simplifying assumption on Γ(ρn, xn) and
η(xn). Let {Pi}

n
i=1 be a finite partition of the section Σ and assume that

Γ(ρn, xn) = Γi(ρn) if xn∈Pi

η(xn) = ηi if xn∈Pi (15)

so that Γ and η achieve only finitely many values for a given x (see Fig. 1). Although
condition (15) may be expected to hold only approximately in realistic cases, systems
that satisfy this condition are more easily studied and can hence be used to provide
transparent examples of phenomena that may be expected to occur generally. Note
that since A∩Σ can be separated by open sets in our motivating examples condition
(15) does not imply that the original vector field was discontinuous.

Since the dynamics of ρ is much slower than the dynamics of x it is natural to
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assume that we can average Γ and η as follows:

η̄ = lim
N→∞

1

N

N−1
∑

n=0

η(xn) =

∫

η(x)dµ

Γ̄(ρ) = lim
N→∞

1

N

N−1
∑

n=0

Γ(ρ, xn) =

∫

Γ(ρ, x)dµ(x) (16)

These averages exist almost everywhere for an ergodic, F -invariant probability mea-
sure µ. We may therefore expect that the dynamics of system (13) may be further
reduced to

ρn+1 = ρn + η̄ + εΓ̄(ρn) (17)

for almost all initial points. This conclusion holds in general for times of order up
to, but not including 1/ε since the averages (16) may be achieved very slowly [30].
To make meaningful conclusions about the behavior of system (13) we need results
that hold for times of order 1/ε and hence system (17) may not always be useful for
studying the phase locking properties of the unaveraged system. We will provide
examples of such cases in the next Section and first study the case when (17) is valid
over long times.

Under the assumptions in (15) the averages (16) may be computed as

η̄ =
m
∑

i=1

γiηi Γ̄(ρ) =
m
∑

i=1

γiΓi(ρ) (18)

where γi = µ(Pi), and m is the number of sets in the partition.
In order to understand how phase locking occurs when the averaged system

(17) accurately describes the dynamics of the original system, we consider a few
examples. We will assume that there are only two elements in the partition of Σ,
as examples with more elements in the partition can be constructed similarly. We
will use xn+1 = F (xn) = 4xn(1 − xn), the logistic map on the interval Σ = [0, 1],
and the partition P1 = [0, 1/2) and P2 = [1/2, 1], so that γ1 = γ2 = 1/2 in (18).
This is a noninvertible map, and thus the special flow defined in equation (8) is
only a semi-flow. However the logistic map is similar to the Poincaré map obtained
from the the Rössler system and the fact that it is noninvertible has no effect on
the conclusions of this Section. For simplicity we also assume that T = 2π so that
ρ ∈ [0, 2π).

We first consider an example for which η1 = η2 = 0, corresponding to zero phase
diffusion. Let

Γ1 =
1

2
cos(ρ) + 1 Γ2 =

1

2
cos(ρ)− 1 (19)
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As shown in Fig. 2(a), the average Γ̄(ρ) = 1
2Γ1(ρ) +

1
2Γ2(ρ) has a real root, and

therefore the system will typically be phase locked with the drive.
If we choose Γ1 = cos(ρ) and Γ2 = −.2+ cos(ρ+ π) the average Γ̄ does not have

a real root, as illustrated in Fig. 2(b), and therefore the phase difference ρ will on
average decrease for typical orbits {xn}

∞
n=0.

In both of these examples the effective, long time response to a perturbation as
given by the averaged equation, is very different from the instantaneous response.
We note that in both cases our conclusions hold only for typical orbits of the Poincaré
map xn+1 = F (xn), i.e. orbits that spend approximately equal times in P1 and P2,
and for which the average 1/N

∑∞
n=0 Γ(ρ, xn) is achieved quickly. Some atypical or-

bits, such as periodic orbits which spend long times in either P1 or P2, do not satisfy
these conditions and may lead to very different behavior. This situation is reminis-
cent of periodically perturbed phase oscillators where certain unlikely realizations
of the stochastic process may give atypical results [10].

As shown in Section 4, the difference in the return times to the section Σ leads
to the stochastic behavior of the phase and hence phase diffusion. The dependence
of Γ(ρ, x) on x is due to the differences in the phase sensitivity along the section
Σφ0

= {(φ0, x)|φ0 = const.}. To illustrate the effect of these terms, and the resulting
similarities and differences of our model as compared with a noisy periodic oscillator
in their response to a periodic perturbation, we consider three examples.

In all examples we assume that the periodic perturbation in (9) has the form
p(t, φ, xn) = cp̃(t, φ, xn), so that c may be thought of as the strength of the driving
signal. As a result we have Γ(ρ, x) = cΓ̃(ρ, x), and we can examine how the model
system responds to driving signals of varying strengths. For the following examples
we will fix ε = .01 and vary c between 0.8 and 9.6.

In our first example we choose Γ1 = Γ2 = c cos(ρ), and let η1 = .04 and η2 =
−.04. When c = 0 the behavior of the phase difference ρn is similar to a random
walk. For c > 0, since

|ρn+1 −
π

2
| = |η(xn) + ρn + Γ(ρn)−

π

2
|

the region Ic = {ρ||c cos ρ| < max(η1/ε, η2/ε)} is an absorbing region for ρ. Phase
locking is thus typically achieved after a certain number of transient oscillations
NT . Since the region Ic shrinks with an increase in coupling strength c, the variance
of the distribution of phase differences {ρn}

∞
n=NT

will also decrease, as illustrated
in Fig. 3(a). As in the case of noisy periodic oscillators, an increase in coupling
strength leads to tighter phase locking between the drive and response systems.

For our next example we choose η1 = η2 = 0 and Γ1 = c(1/2 cos(ρ) + 1) and
Γ2 = c(1/2 cos(ρ)−1). Since η(x) = 0 there is no phase diffusion in the unperturbed
system. The average is Γ̄ = c/2 cos(ρ), so that for any finite coupling strength
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Figure 2: a) The graphs of Γ1 = 1/2 cos(ρ) + 1, Γ2 = 1/2 cos(ρ) − 1, and Γ̄ for the
first example. b) The graphs of Γ1 = cos(ρ), Γ2 = −.2 + cos(ρ + π), and Γ̄ for the
second example. c) The evolution of ρ corresponding to the first example, when
phase locking occurs. d) The evolution of ρ corresponding to the second example,
when phase locking does not occur.
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Figure 3: The variance of ρ as a function of the coupling strength c. In a) Γ1 = Γ2 =
c cos(ρ), η1 = .04 and η2 = −.04. In b) Γ1 = c(1/2 cos(ρ)+1), Γ2 = c(1/2 cos(ρ)−1)
and η1 = η2 = 0. In c) Γ1 = c(1/2 cos(ρ) + 1), Γ2 = c(1/2 cos(ρ)− 1), η1 = .04 and
η2 = −.04. The convergence to the trapping region is very slow for small values of
the coupling parameter c, and they have thus been omitted from the figures.

typical orbits are attracted to π/2. However, the step size |ρn+1−ρn| increases with
the coupling strength, and hence the variance of the distribution of {ρn}

∞
n=Nt

will
increase with the coupling strength, as illustrated in Fig. 3(b).

Therefore in these two examples the increase in coupling strength will have
exactly the opposite effect. In the first case it leads to a tighter phase locked state,
while in the second it leads to desynchronization.

In a typical system it is expected that both η(x) and the phase responses Γ(ρ, x)
vary with x, and that the effect of an increase in coupling is a combination of these
two. Our third example is of this type and is illustrated in Fig. 3(c). We take
η1 = .04, η2 = −.04, and Γ1 = c(1/2 cos(ρ) + 1), Γ2 = c(1/2 cos(ρ) − 1). Since the
evolution of the phase difference is governed by ρn+1 = ρn + η(xn) + cΓ(ρ, xn), we
may typically expect that for small coupling values, the effects of the term η(x) will
dominate, while for larger coupling values the effects of the term Γ(ρ, xn) play a
more important role.

We emphasize that the shape of the graph in Fig. 3(c), indicates that typical
systems of this type are expected to have the remarkable property that the most
precise phase locked state occurs at a critical coupling strength. If the coupling
strength is too low, the effects of the phase diffusion will tend to make synchrony
imprecise. Similarly, if the coupling is too strong, the effects of the term Γ(ρ, x) are
going to affect the precision of synchrony. This effect has significant implications
since the precision of synchrony is of fundamental importance in a number of areas.
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7 Insufficiently fast convergence to the average

As we have mentioned above, if the averages in (16) are not achieved sufficiently
fast, then equation (17) may not provide a good approximation to the behavior
of the original system for times of O(1/ε). In this Section we describe a class of
systems which illustrate why the approach discussed in the previous Section may
not be valid in general. In particular, examples can be constructed of systems
for which an increase in the amplitude of the periodic perturbation may lead to
desynchronization in such a way that the frequency of phase slips increases with
the size of the perturbation [31]. This type of system therefore also responds very
differently to periodic forcing than chaotic systems that can be treated as noisy limit
cycles [11, 4].

Consider a system where there are long subsequences in typical orbits of the
Poincaré map that remain mostly in one of the partition elements. Also suppose
that the the fixed points of the functions Γi, i = 1, 2, are oriented so that the stable
fixed points are separated by the unstable ones. While the orbit of the Poincaré
map is in the first element of the partition, the phase difference will approach the
stable fixed point of Γ1. When the orbit moves into the second partition element,
the phase difference will approach the stable fixed point of Γ2, but because of the
positioning of the unstable fixed points, it must move around the entire circle in
doing so. Each time the orbit moves into a new element of the partition, the phase
difference will move around the circle in this manner. We will refer to this process
as slipping. More formally

Definition 7.1 The phase difference Ψ(t) between two oscillators is slipping if the
lift of Ψ(t) to the line can be bounded above (below) by a function F : R → R, such
that F ′ < −K < 0 (F ′ > K > 0), for some constant K > 0.

We now make these ideas more precise. Let us again assume that ρ evolves
according to

ρn+1 = ρn + η(xn) + εΓ(ρn, xn) = ρn + εH(ρn, xn) (20)

xn+1 = F (xn) (21)

We again assume that H(ρ, xn) achieves finitely many values for a fixed ρ so that
H(ρ, xn) = Hi(ρ) if xn∈Pi and that the functions ρ + εHi(ρ) are invertible. For a
fixed i, let {ρsi,k}

ri
k=1 and {ρui,k}

ri
k=1 be the stable and unstable fixed points respec-

tively of the system ρn+1 = ρn + εHi(ρn), i.e. the zeroes of Hi(ρ) with H ′
i(ρ

s
i,k) < 0

and H ′
i(ρ

u
i,k) > 0. For simplicity we also assume that ρsi,t 6=ρ

u
j,v for any i 6= j or t 6= v,

and that the zeroes are a distance O(1) apart (this follows from the assumption that
the H(ρ) are independent of ε). Given an interval I = [a, b] we say that the orbit of
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Figure 4: An illustration of the proof of proposition 7.2. For a sequence
y0, . . . , yN1

, yN1+1, . . . , yN the orbit of ρ0 will first move past ρum,j+δ at the N1-step,
and past ρsi,k at the N -th step.

a point ρ0 ∈ I leaves I through the endpoint b under the dynamics of (20) if there
exists an N such that ρ0, . . . , ρN ∈ I and ρN+1, . . . , ρM > b for some M > N .

Proposition 7.2 Let Ik = [ρui,k, ρ
s
i,k]. If there exists an m such that Hm(ρ

s
i,k) > 0,

then for any ρ0 ∈ Ik there exists a sequence y0, ..., yN such that ρn leaves Ik through
ρsi,k under the dynamics of

ρn+1 = ρn + εH(ρn, yn) (22)

The idea of the proof is illustrated in Fig. 4. The orbit of the point ρ0 will move
past ρum,j+δ given a sufficiently long sequence y0, . . . , yN1

∈ Pi. Once in the interval
[ρum,j + δ, ρsi,k], the orbit of ρ0 will move past ρsi,k given a sufficiently long sequence
yN1

, . . . , yN2
∈ Pm. A full proof may be found in the Appendix. Since the zeroes

the Hi are O(1) apart in ε a similar argument may be used to show that the orbit of
any ρ0 ∈ Ik will leave an interval [ρui,k, ρ

s
i,k+ δ2] through ρ

s
i,k+ δ2 for some δ2 = O(1)

in ε. It follows that the conclusion of Proposition 7.2 also holds for the unaveraged
system (11) for sufficiently small ε. A similar argument also gives a lower bound on
the number of iterates necessary to leave I which is also of order 1/ε.

We note that the sequence y0, ..., yN constructed in the proof needs to actually
occur in the orbit of x0 under xn+1 = F (xn) for the conclusions of Proposition 7.2
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to hold in an actual example. Since the number of steps necessary to leave the
interval I is of order 1/ε it diverges as ε → 0. Therefore the necessary sequences
become longer, and are less likely to occur. However, if, for instance, the sets Pi
give a Markov partition of Σ that leads to a full shift on n symbols, or even a
subshift which contains sequences of the type described in Proposition 7.2, then the
probability that such sequences do occur may be finite for any ε > 0.

The following Theorem shows that if such special sequences occur frequently,
then slipping may occur even if the corresponding averaged system (17) discussed
in the previous Section has stable fixed points.

Theorem 7.3 The orbit of ρ0 ∈ [0, T ) can slip in an increasing (decreasing) direc-
tion if and only if for every ρsi,j∈[0, T ) there exists an m such that Hm(ρ

s
i,j) > 0

(Hj(ρ
s
i,j) < 0).

The proof of the Theorem consists in noting that the conditions imply that an
orbit can move past the barriers posed by the points ρsi,j . As a direct corollary to
the theorem we have sufficient conditions under which slipping is not possible

Corollary 7.4 If there exist points ρsi,j and ρ
s
k,l such that Hm(ρ

s
i,j) ≤ 0 and Hm(ρ

s
k,l) ≥

0 for all m then slipping is not possible.

This corollary is not surprising as the points ρsi,j and ρsk,l form barriers to the
orbit of ρ. This conclusion holds in much more general systems. It is easy to check
that if there exist regions I1, I2 ∈ S1 of size O(1) such that η(xn) + Γ(ρ, xn) ≥ 0 for
all ρ ∈ I1 and all xn, and ∆(xn) + Γ(ρ, xn) ≤ 0 for all ρ ∈ I2 and all xn, then the
orbit of ρ will be trapped between I1 an I2 under the dynamics of (13).

One of the surprising consequences implicit in these results is that the length of
the sequences y0, . . . , yn necessary to induce phase slipping was dependent on ε. In
particular, the larger the coupling strength, the shorter the length of the sequence
necessary to induce phase slipping, and the quicker the phase slips. This leads to
the somewhat surprising result that an increase in coupling strength is expected
to lead to an increase in the frequency and speed of phase slips in the types of
systems described in this Section. It is straightforward to construct model system
demonstrating this behavior using the example described in [31]. Using the ideas of
Theorem 7.3 it is possible to construct examples in which phase slips occur in both
directions.

The situation described in this section may seem unrealistic from the physical
viewpoint. It appears necessary to assume that the time the system spends in each
element of the partition and the rate of approach to the fixed points of the individual
functions Γi need to be related. Since the rate of convergence to the fixed points is
proportional to the forcing strength this would imply a relation between the coupling
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strength and the dynamics of the return map, which does not seem typical. There
are at least two physically realistic situation in which such an assumption is not
necessary:

Suppose we have a system in which the switching time between the elements in
the partition is slow relative to the oscillation frequency. For very small coupling
values phase diffusion can be expected to dominate. For somewhat larger coupling
values, averaging may be appropriate since the time necessary to arrive to a fixed
point of one of the functions Γi may be long compared to the switching time between
the partitions. However, as the coupling is increased, these equilibria are approached
at a faster rate, and we enter the regime described in this chapter. Of course, it is
necessary to assume that the forcing is still sufficiently small so that the arguments
we have presented hold.

Another physical situation in which these observations may be of interest is when
the distribution of switching times between the elements of the partition has a heavy
tail. In this case arbitrarily long switching times may be observed, and the situation
described in this chapter may be relevant even for relatively small couplings.

8 Conclusions

We have shown how the theory of phase locking can be extended to systems with
phase coherent chaotic attractors. Under the simplifying assumption that the system
is subject to a periodic perturbation affecting only its phase variable, equations for
the phase difference can be reduced to a skew-product of a circle map with a chaotic
diffeomorphism. This is a natural generalization of the case of coupled periodic
oscillators in which the dynamics of the phase difference can be described by a
circle map.

The assumption that the periodic perturbation affects only the phase was mo-
tivated by the fact that the phase direction is nearly neutral due to the assumption
of phase coherence. Hence the effect of a perturbation will be greatest in this di-
rection. We therefore believe that the ideas we present hold for more general types
of coupling that affect the dynamics of the radial variable, although to analyze this
case the second equation in (23) would have to be replaced by xn+1 = F (xn, ρn).
Such systems are considered in [32]. We also note that using the ideas presented in
[17], many of the ideas presented here can be extended to bidirectionally coupled
chaotic oscillators.

We note that in our definition of phase locking we require that |ρn − θ| < C <
T . The constant C therefore gives an upper bound on the deviation of the phase
difference from θ. In some applications it may be necessary to require precise phase
locked states, and thus small values of C. In such cases, the phase difference ρn
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could be trapped in a subset of [0, T ), and yet for practical purposes the system
would not be phase locked. The examples of Sections 6 and 7 show that for certain
chaotic systems we may expect that optimal coupling values lead to the tightest
synchronization.

We have studied model systems in which the effects of the different terms in
equation (13) can be isolated and analyzed independently. In typical chaotic phase
coherent systems we expect that all the effects we have described separately play
a role in the evolution of the phase difference. Thus the study of phase locking in
realistic systems will be more complex, and depend on the structure of the chaotic
attractor and the nature on the perturbation. We have indicated that such systems
may exhibit very rich behavior, which may be quite different from that observed
in periodically perturbed stochastic oscillators. It is possible that phase coherent
biological oscillators may benefit from having access to such a richness of responses
to different stimuli.

Theorem 5.1 and the discussion in Section 6 suggest that a similar approach may
be adopted in computing phase response curves for impulsively perturbed chaotic
oscillators [14]. In [33] it was observed that a chaotic oscillator may be phase locked
with a periodic sequence of pulses, even when the corresponding phase response
curve indicates there are no strict trapping regions for the phase difference. We are
currently examining whether this observation can be explained by considering an
appropriate average of phase response curves.

We thank the Max Planck Institute for Physics of Complex Systems for their
generous hospitality in hosting the workshop “Control, Communication, and Syn-
chronization in Chaotic Dynamical Systems” during which this work was first pre-
sented. We also thank G. R. Hall and J. Ritt for stimulating discussions.

9 Appendix

Proof of Proposition 3.2: Let y(t, x) be the solution of y′ = f(y) such that
y(0, x) = x ∈ Σ. Let R : N → Rn−1 be any function such that R(y(0, x)) =
x, R(y(T (x), x)) = F (x) and R(y(T (x) + t, x)) = R(y(t, F (x))) where R(y(t, x))
depends smoothly on both t and x. R may be chosen to have these properties due
to smooth dependence on initial conditions.

Similarly we choose a function φ̃ : N → R such that φ̃(y(0, x)) = 0, φ̃(y(T (x), x) =
T and φ̃(y(T (x)+ t, x) = φ̃(y(t, F (x))+T so that φ̃(y(t, x)) again depends smoothly

on both t and x. Note that we can choose φ̃ such that ∂φ̃
∂t

is close in the L1 norm to
T

T (x) for t ∈ [0, T (x)].

By construction φ̃ is the lift of a phase variable φ ∈ S1 to the line, so that φ and
R define a new coordinate system in the vicinity of the attractor and the equations
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of motion in these new coordinates satisfy (4-5).
¤

Proof of Theorem 5.1: Without loss of generality we will assume that the
initial conditions for system (9), and hence system (11) lie on Σ, since we can always
flow forward to the next intersection. The proof proceeds in two steps. In the first
step we will use estimates of an appropriate average of system (11) over a single
excursion from Σ back to Σ to reduce the system. The second part consists of the
discretization of the reduced system.

By definition, the orbit of the full system lies on Σ when φ = 0. By equation
(10) this means that at the time of crossing Ψ = − T

T ′ t mod T , or t = −T ′

T
Ψ+NT ′,

for some N. Since the function p is T ′ periodic in the first variable we can rewrite
equation (11) for S0

n−1 ≤ φ̃ < S0
n as

Ψ′ = ∆(xn) + εp(−
T ′

T
Ψ+ t,

T (xn)

T ′
t, xn) +O(ε2)

To simplify notation we will therefore define a new function

G(t,Ψ, xn) = p(−
T ′

T
Ψ+ t,

T (xn)

T ′
t, xn).

Our first step will be to show that the original system can be reduced to

ρ̄′ = ∆(xn) + εḠ(ρ̄, xn) for S0
n−1 ≤ φ̃ < S0

n

x(t) = xn = F (xn−1) for S0
n−1 ≤ φ̃ < S0

n. (23)

using averaging.
Following the proof of the Averaging Theorem in [34] we first define a new

variable Ψ̄ on each segment φ̃ ∈ [S0
n, S

0
n+1) by

Ψ = Ψ̄ + εw(t, Ψ̄, xn) (24)

where

w(t, Ψ̄, xn) =

∫ t

0
G̃(s, Ψ̄, xn)ds (25)

and G̃ is the oscillatory part of G, i.e. G̃(t,Ψ, x) = G(t,Ψ, x) − Ḡ(Ψ, x) and

Ḡ(Ψ, xn) = (1/T ′)
∫ T ′

0 G(t,Ψ, xn)dt = (1/T ′)Γ(Ψ, xn) is the average of G. As in

the proof of the Averaging Theorem, ∂w
∂t

= G̃(t,Ψ, xn), where we have chosen the
constant of integration to be 0. Following the estimates in [34] we can conclude that

Ψ̄′ = εḠ(Ψ̄, xn) + ε2H(t, Ψ̄, xn) + ∆(xn) (26)
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whereH = O(1). The solutions of (26) remainO(ε) close to solutions of the averaged
equation

ρ̄′ = εḠ(ρ̄, xn) + ∆(xn) (27)

for all times τ such that |T ′ − τ | = O(ε) if |ρ̄(0)− Ψ̄(0)| = O(ε).
Let T εn = T εn(x(0), 0) be the n-th return time to the section Σ of the perturbed

system (note that we start our count with 0, so that the first excursion ends at the
0-th return time T ε

0). |T
ε
n − T | = O(ε) since the perturbation of the phase in (9) is

O(ε). Let ∆Ψ̄n = Ψ̄(T εn) − Ψ̄(0), and ∆ρ̄n = ρ̄(T εn) − ρ̄(0). If |Ψ̄(0) − ρ̄(0)| = O(ε)
then we can estimate

|∆Ψ̄n −∆ρ̄n| ≤ ε

∫ T ε
n

0
|Ḡ(Ψ̄(t), xn)− Ḡ(ρ̄(t), xn)|dt+ ε2

∫ T ε
n

0
|H(t, Ψ̄(t), xn)|dt

so that |∆Ψ̄n −∆ρ̄n| = O(ε2). This approximation shows that even if we make an
O(ε) error in choosing an initial condition, the error in estimating the n-th change
in Ψ is still only of order ε2.

Let T ε0 + . . . + T εn = Sεn, and define the sequence {ρn}
∞
n=0 of approximations to

the values Ψ(T ε
0 + . . .+ T εn) = Ψ(Sεn) inductively by

ρn = ρ̄n−1(T
ε
n−1) (28)

where ρ̄n−1 are solutions of (27) with initial condition ρ̄n−1(0) = ρn−1, and ρ0 =
Ψ(0). Note that since |T ε

n − T ′| = O(ε)

w(T εn, Ψ̄, xn) =

∫ T ε
n

0
G(t, Ψ̄, xn)dt−

T εn
T ′

∫ T ′

0
G(t, Ψ̄, xn)dt

=

∫ T ε
n

T ′

G(t, Ψ̄, xn)dt+O(ε) = O(ε).

Let Ψn(t) be the solution of equation (11) between the n-th and n+1-st return to
the section Σ, so that Ψn(t) = Ψ(Sεn+ t) and let ∆Ψn = Ψn(T

ε
n)−Ψn(0). Similarly

we define ∆ρn = ρn+1 − ρn. If |ρn −Ψn(0)| = O(ε) then

|∆Ψn −∆ρn| = |Ψ̄(T εn)− Ψ̄(0)− ρ̄n(T
ε
n) + ρ̄n(0) + εw(T ε

n, Ψ̄(T εn), xn)|

= |∆Ψ̄n −∆ρ̄n|+O(ε2) = O(ε2) (29)

where Ψ̄ is the solution of (26) with Ψ̄(0) = Ψn(0). Using induction and a repeated
application of the triangle inequality it follows that

|Ψn(0)− ρn −Ψ(0) + ρ0| = |Ψ(Sεn)− ρn| = O(ε) (30)
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for n = O(1/ε). By the estimates above it also follows that ρ and Ψ are O(ε) close
for times of order 1 if |ρ(Sεn) − Ψ(Sεn)| = O(ε), and we can therefore conclude that
the orbits of system (11) are O(ε) close to the orbits of the system (23) for times of
order 1/ε.

We next reduce (23) to the discrete dynamical system (13). Starting our inte-
gration at the n-th return to the section Σ and ending at time T ε

n afterwards an
application of Gronwall’s Inequality yields

ρn+1 = ρn +∆(xn)T
ε
n + εT εnḠ(ρn, xn) +O(ε2)

= ρn +∆(xn)T
′ + εT ′Ḡ(ρn, xn) +O(ε2) (31)

where we have again used the fact that |T ε
n − T ′| = O(ε). The conclusion of the

theorem follows when we let η(xn) = ∆(xn)T
′, define

Γ(ρn, xn) = T ′Ḡ(ρn, xn),

and, by a slight abuse of notation, drop the O(ε2) terms in equation (31).
¤

Proof of Proposition 5.2: Assume that I2 ⊂ I1 are absorbing regions with
the desired properties for the system

ρn+1 = ζ(xn) + Γ(ρn, xn)

xn+1 = F (xn)

for any ρ0 ∈ S1 and a particular x0 ∈ Σ. Then there exists a time τ after which any
orbit in S1 is trapped in I2. The same conclusion holds for system

ρn+1 = εζ(xn) + εΓ(ρn, xn)

xn+1 = F (xn) (32)

with trapping time τ/ε. By Theorem 5.1, if (32) is obtained from (11) then for
sufficiently small ε we have |Ψn − ρn| < δ(ε) = O(ε) for the time dτ/εe = τ̃ . Here
dre denotes the smallest integer greater than r, and Ψn = Ψ(Sεn) where Sεn is the
time of the n-th return to Σ, as in Theorem 5.1.

Let ρn(ρ0) denote the ρ coordinate of the n-th iterate in the orbit of (32) starting
at (ρ0, x0), and let ν0 = Ψ(0) and

νn = ρτ̃ (Ψ(n−1)τ̃ ).

Therefore |νn−Ψnτ̃ | < δ(ε). Since any orbit starting in S1 reaches I2 within the time
τ̃ it follows that νn ∈ I2 so that d(I2,Ψnτ̃ ) < δ(ε) for all n. Hence for sufficiently
small ε the iterates Ψnτ̃ are in I1. Since I1 is an absorbing region for (32) it follows
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that ρn(Ψnτ̃ ) is contained in I1 for all 0 < n < τ̃ , and hence d(Ψn, I1) < δ(ε) for all
n.
¤

Proof of Proposition 7.2: If Hm(ρ) > 0 for all ρ ∈ [ρ0, ρ
s
i,k], let Mm =

minρ∈[ρ0,ρsi,k]Hm(ρ). Let y0, . . . yN be a sequence such that yi ∈ Pm and N = d |Ik|
εMm

e

where |Ik| is the length of the interval Ik. Then the orbit of any ρ0 ∈ Ik leaves Ik
through ρsi,k in at most N = O(1/ε) steps.

If Hm(ρ) = 0 at some points in [ρ0, ρ
s
i,k] let ρ

u
m,j ∈ Ik be the rightmost such

point. Choose a δ = O(1) in ε such that ρum,j + δ ∈ [ρum,j , ρ
s
i,k]. Let

Mi = min
ρ∈[ρ0,ρum,j+δ]

Hi(ρ)

and let Mm = minρ∈[ρum,j+δ,ρ
s
i,k

]Hm(ρ) so that Mi,Mm > 0. Let N1 = d|[ρ0, ρ
u
m,j +

δ]|/(εMi)e, andN2 = d|[ρum,j+δ, ρ
s
i,k]|/(εMm)e. Choose a sequence so that y0, . . . , yN1

∈
Pi and yN1+1, . . . , yN1+N2

∈ Pm. Then the orbit of ρ0 leaves Ik in at most N =
N1 +N2 = O(1/ε) steps.
¤

Proof of Theorem 7.3: If there exists an m such that Hm(ρ
s
i,j) > 0 for ev-

ery ρsi,j , then the circle S1 = [0, T )/ ∼ can be covered by finitely many intervals

{In}
K
n=1 where In = [ρui,k, ρ

s
i,k] for some i and k such that the conditions of Propo-

sition 7.2 are satisfied on each In. We obtain the desired result by concatenating
the sequences yNi

, . . . , yNi+1
obtained in the proof of Proposition 7.2 to obtain a

sequence y0, . . . , yN1+...+NK
such that the orbit ρ0 will complete a full circle under

the dynamics of (22).
On the other hand if there exists a point ρsi,j such that Hm(ρ

s
i,j) ≤ 0 for all m,

then the orbit of any ρ0 in I = [ρui,j , ρ
s
i,j ] cannot leave I through ρsi,j . Since the fixed

points of the system are assumed to be O(1) apart in ε and the iterates ρn are O(ε)
apart, this concludes the proof.
¤
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