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Abstract. Stable localized roll structures have been observed in many physical problems and
model equations, notably in the 1D Swift–Hohenberg equation. Reflection-symmetric localized rolls
are often found to lie on two “snaking” solution branches, so that the spatial width of the localized
rolls increases when moving along each branch. Recent numerical results by Burke and Knobloch
indicate that the two branches are connected by infinitely many “ladder” branches of asymmetric
localized rolls. In this paper, these phenomena are investigated analytically. It is shown that both
snaking of symmetric pulses and the ladder structure of asymmetric states can be predicted com-
pletely from the bifurcation structure of fronts that connect the trivial state to rolls. It is also shown
that isolas of asymmetric states may exist, and it is argued that the results presented here apply to
2D stationary states that are localized in one spatial direction.
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1. Introduction. To motivate the results presented in this paper, we begin with
a concrete example, namely the Swift–Hohenberg equation, which is given by

Ut = −(1 + ∂2
x)2U − µU + νU2 − U3, x ∈ R.(1.1)

We shall focus exclusively on the case µ > 0, for which the trivial state U = 0 is
stable, and also keep ν > 0 fixed. For appropriate values of the parameters, the
Swift–Hohenberg equation admits stable stationary spatially-periodic patterns which
we refer to as rolls. In fact, rolls form a one-parameter family, parametrized by
their wavelength. We are interested in localized roll patches, such as those shown
in Figure 1.1, which can be thought of as subjecting rolls to a localized amplitude
modulation.

The bifurcation diagrams shown in Figure 1.1, which have been discussed, for
instance, in [29, 44, 8, 3, 14, 32, 33, 34, 15, 16, 24, 27], exhibit several intriguing
features, which are commonly referred to as snaking. There are two intertwined
wiggly solution branches that correspond to localized patterns whose width, measured
by the L2-norm, increases as we move along each branch. In particular, there exists
a parameter interval so that (1.1) has infinitely many localized patterns for each µ in
this interval. The end points of the interval correspond to saddle-node bifurcations
of the localized states, which are aligned along a well-defined vertical asymptote.
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Fig. 1.1. Bifurcation diagrams of localized rolls are plotted in panels (i) and (ii) for the Swift–
Hohenberg equations (1.1) with ν = 1.6 and (1.2) with ν = 2, respectively. The insets show localized
rolls U(x) as functions of x. Solutions on the vertical snaking branches are symmetric under the
reflection x 7→ −x, and the Z2-action U 7→ −U for (1.2), while solutions on the horizontal ladder
branches are asymmetric.

The pulses associated with the snaking branches are symmetric with respect to the
reflection x 7→ −x. Recently, [5, 4] found numerically that the two snaking branches
discussed above are connected by ladder branches associated with asymmetric pulses
as shown in Figure 1.1(i). The asymmetric pulses bifurcate from symmetric pulses
via pitchfork bifurcations.

Snaking has also been observed in the cubic-quintic Swift–Hohenberg equation

Ut = −(1 + ∂2
x)2U − µU + νU3 − U5;(1.2)

see, for instance, [5, 4, 15, 16, 24, 32, 33, 34]. Equation (1.2) is equivariant under the
Z2-action U 7→ −U , and we can expect to find both even and odd localized states.
This is indeed the case, and a summary of the resulting snaking observed in the
references mentioned above is reproduced in Figure 1.1(ii).

Planar steady states that are localized modulations in one or two spatial directions
of an underlying domain-covering structure such as hexagons or rolls can also exhibit
snaking, and we refer to [1, 23] for recent computations for the planar Swift–Hohenberg
equation

Ut = −(1 + ∆)2U − µU + νU2 − U3, x ∈ R
2.(1.3)

To illustrate this phenomenon, we reproduce a computation from [23] in Figure 1.2.
Slanted snaking, where the snaking curve is not vertical but slanted to one side, has
also been observed recently in [9, 12].

On a geometric level, snaking of symmetric localized 1D roll structures is well
understood, and we recall briefly the key arguments from [29, 44, 8]. To this end, we
write the steady-state equation

−(1 + ∂2
x)2U − µU + νU2 − U3 = 0

associated with (1.1) as the first-order system

ux = f(u, µ), u = (U, Ux, Uxx, Uxxx) ∈ R
4,(1.4)
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Fig. 1.2. Panel (i) shows a contour plot of a stationary solution of the planar Swift–Hohenberg
equation (1.3) for (µ, ν) = (0.31, 1.6). The solution is localized in the horizontal direction and
periodic in the vertical direction. Panel (ii) shows the corresponding snaking curve. Moving up on
the snaking curve causes the hexagonal region of the solution in panel (i) to expand in the horizontal
direction. Reproduced from [23].
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Fig. 1.3. Localized rolls can be found as intersections of the stable and unstable manifolds of
u = 0 near periodic orbits γ with γ(ϕ) ∈ FixR. These intersections appear and disappear in fold
bifurcations. As indicated here schematically, heteroclinic connections between u = 0 and rolls γ
organize the overall dynamics, and their fold bifurcations determine the asymptotic limits of the
folds associated with localized rolls.

where we chose to omit the dependence on ν, which we keep fixed. Equation (1.4)
has several interesting features. First, it is conservative as it admits the first integral

H(u, µ) = u2u4 −
u2
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+
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whose value does not change along solutions u(x) of (1.4). Furthermore, the Z2-
symmetry x 7→ −x of the Swift–Hohenberg equation implies that (1.4) is reversible
with reverser Ru = (u1,−u2, u3,−u4) which, by definition, means that u(x) satisfies
(1.4) if and only if Ru(−x) does. We say that a solution u(x) is symmetric if u(x) =
Ru(−x) for all x, which is equivalent to u(0) ∈ FixR, the fixed-point space of R, and
guarantees that the associated solution U(x) is even. Rolls correspond to symmetric
periodic orbits of (1.4), and pulses correspond to orbits homoclinic to the origin that
pass close to the periodic orbits.

The first integral allows us to restrict (1.4) to the three-dimensional zero energy
level set H−1(0), which is invariant under the flow associated with (1.4). Choosing
an appropriate Poincaré section, we can further reduce the dynamics of (1.4) near a
periodic orbit γ(x) with zero energy to a two-dimensional map. A schematic picture of
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Fig. 1.4. Intersections of W s(0, µ) with the strong unstable fiber W uu(γ(ϕ), µ) of the point γ(ϕ)
on the periodic orbit γ(·) are measured in the section Σout. We assume that the stable manifold
W s(0, µ) is, locally near each heteroclinic orbit, a graph over the unstable manifold W u(γ, µ).

the expected dynamics of this map is shown in Figure 1.3. The assumption underlying
Figure 1.3 is that heteroclinic orbits that connect the origin to the periodic orbit
appear and disappear in fold bifurcations as the parameter µ is varied. Once these
heteroclinic orbits are present, homoclinic orbits to the origin that pass near the
periodic orbit appear also. If we plot their L2-norm against the parameter µ, we obtain
the characteristic snaking curve shown in the center panel of Figure 1.3, and we refer
to [44, 8] and [23, §2.1] for geometric arguments that show why the bifurcation branch
has this shape. Figure 1.3 shows that the folds of each homoclinic snaking curve line
up with the folds of the heteroclinic orbits. The reduction outlined above can be
carried out near each intersection point of γ(x) with FixR, and, since symmetric
periodic orbits intersect FixR precisely twice [42], we obtain two distinct snaking
curves of symmetric homoclinic orbits, in agreement with Figure 1.1.

The goal of this paper is to formulate a set of hypotheses about the connect-
ing orbits between the trivial state and rolls that guarantee snaking. Our approach
captures not only the bifurcation curves of symmetric localized structures but also
of asymmetric solutions. In the remainder of the introduction, we outline the key
assumptions we shall make and the conclusions we can draw from them; we refer to
§2 for precise statements.

As indicated in Figure 1.3, we expect that the overall dynamics of snaking is
organized by heteroclinic connections between the trivial state and rolls. We consider
a general reversible conservative system of the form (1.4) and assume that it has a
periodic orbit γ(x) of period 2π, say, with zero energy1 for each µ. We are interested
in describing heteroclinic orbits that connect the trivial equilibrium to the periodic
orbit γ. To do so, we choose a section Σout as indicated in Figure 1.4 and consider
intersections of the stable manifold W s(0, µ) of u = 0 with the strong unstable fiber
W uu(γ(ϕ), µ) of the point γ(ϕ) on the periodic orbit γ in Σout. Such intersections are
encoded in the set

Γ := {(ϕ, µ) ∈ S1 × R : W s(0, µ) ∩ W uu(γ(ϕ), µ) ∩ Σout 6= ∅}, S1 = [0, 2π]/∼,

and Figure 1.4 illustrates the additional assumption that the stable manifold W s(0, µ)
in the section Σout is the graph of a smooth function g(ϕ, µ), locally near each het-
eroclinic orbit; we refer to [13] for the numerical verification of this scenario for an
equation of complex Ginzburg–Landau type with constant forcing added. For the

1The orbit, and its period, may depend on µ but we ignore this in our outline
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Fig. 1.5. Three example sets Γ are shown. The set Γ shown in panel (iii) is not a graph and
corresponds to an isola of heteroclinic orbits.
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Fig. 1.6. The bifurcation curves of symmetric and asymmetric localized rolls associated with
the sets Γ from Figure 1.5 are plotted. The vertical axis L measures the “time” x spent by the
homoclinic orbit in the vicinity of the periodic orbit γ and is therefore roughly equivalent to the
L2-norm of the corresponding localized state. The vertical snaking curves in panels (i) and (ii) and
the sequence of ellipsoids in panel (iii) correspond to symmetric pulses, while the horizontal and
Z-like branches correspond to asymmetric pulses. Note that the dashed/solid curves in panels (i)
and (ii) correspond to the dark/light snaking curves in Figure 1.1.

sake of clarity, we focus on the case where Γ is the graph of a function z,

Γ = {(ϕ, µ) ∈ S1 × R : µ = z(ϕ)},

and examples are shown in Figure 1.5(i)-(ii). The set Γ drawn in Figure 1.5(iii) is
not a graph, and we shall outline in §6.1 how our results can be adapted to cover this
situation.

Our main results assert that the complete bifurcation diagram of symmetric and
asymmetric pulses can be drawn using only the function z, and we plot in Figure 1.6
the diagrams corresponding to the functions given in Figure 1.5. We now outline how
the function z determines the bifurcation diagram. We may assume that γ(ϕ0) ∈
FixR if and only if ϕ0 ∈ {0, π}. Symmetric pulses that spend time2 2L near the
periodic orbit γ exist if and only if

µ = µ∗(L, ϕ0) = z(L + ϕ0) + O(e−ηL), L ≫ 1(1.5)

for some η > 0, where ϕ0 ∈ {0, π}. Furthermore, the bifurcation curves of asymmetric
pulses that spend time 2L in the vicinity of the periodic orbit γ are exponentially close

2“Time” refers to the evolution variable x of (1.4) and therefore corresponds to spatial extent of
the resulting patterns
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Fig. 1.7. Solutions (L, ϕ) of (1.6) can be found graphically by finding two intersection points
of a fixed horizontal line with the graph of z whose abscissas give L±ϕ. Continuing these solutions
by moving the horizontal line up and down generates the entire bifurcation branch. An example is
given in the center panel, and the resulting bifurcation curve (L, µ) is plotted in the right panel. If
ϕ reaches π, the corresponding branch terminates at the second snaking curve.
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Fig. 1.8. The function z plotted in the left panel generates the figure-eight like isola of asym-
metric pulses shown in the right panel. The center panel explains how the positions of L ± ϕ that
satisfy z(L−ϕ) = z(L+ϕ) can be computed using the procedure from Figure 1.7: the solution (L, ϕ)
is unique and periodic, and therefore generates an isola.

in L to the set

{(L, µ) = (L, z(L + ϕ)) : z(L + ϕ) = z(L − ϕ) for some ϕ ∈ S1}.

This set is determined by the solutions (L, ϕ) ∈ R
+ × S1 of

z(L + ϕ) = z(L − ϕ),(1.6)

which can be found graphically as outlined in Figure 1.7. Using Figure 1.7, it is not
difficult to obtain the diagrams given in Figure 1.6 for the sets Γ given in Figure 1.5.
We will also prove that the asymmetric branches that emerge from maxima of z will
terminate at minima. All asymmetric branches that bifurcate from the symmetric
branch (1.5) with ϕ0 = 0 terminate at the same branch except for the branch emerg-
ing from the global maximum of z, which will connect to the symmetric branch (1.5)
with ϕ0 = π, and vice versa. The start and end points of the asymmetric branches
that emerge from and terminate at symmetric branches correspond to pitchfork bi-
furcations. Interestingly, isolas of asymmetric solutions are also possible provided the
function z has more than two maxima, and an example is shown in Figure 1.8. We
emphasize that (1.6) is 2π-periodic in L so that each solution curve of (1.6) gives an
infinite sequence of branches of asymmetric pulses that are spaced at distances 2π
along the L-axis as indicated in panels (i) and (iii) of Figure 1.6.

A practical implication of these results is that all branches of asymmetric pulses,
including isolas, can be predicted once the snaking curves of the symmetric states
have been computed. Indeed, Figure 1.7 illustrates how these branches can be found
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from the function z, while (1.5) establishes that the branch µ∗(L, ϕ0) of symmetric
pulses is exponentially close to the graph µ = z(L + ϕ0) of z, so that we can reliably
determine z through numerical computations of the branch µ∗(L, ϕ0) of symmetric
pulses. This is of interest as symmetric pulses are typically quite easy to compute
since they, in contrast to asymmetric pulses, lie on one or two single branches.

Our choice of example graphs in Figures 1.5 and 1.6 is motivated by those en-
countered in numerical computations. The bifurcation diagrams in Figure 1.6(i) cor-
respond to those reproduced in Figure 1.1, while bifurcation diagrams similar to Fig-
ure 1.6(ii) have recently been computed in [1]. A sequence of isolas of pulses, similar
to the one shown in Figure 1.6(iii), has been found in [3, Figure 24] for (1.1), which
suggests that fronts are present in this situation whose bifurcation structure resembles
Figure 1.5(iii).

In the preceding discussion, we focused on conservative reversible differential
equations. We wish to emphasize that reversibility is the only feature essential for
snaking to occur. In particular, systems that are reversible, but not conservative,
will also exhibit snaking, and we consider this situation in §6.4. The existence of a
conserved quantity guarantees that the bifurcating asymmetric pulses are standing
waves: if the system is not conservative, these pulses will travel with a velocity close
to zero. We also remark that our results can be extended to planar patterns that are
localized in one spatial variable and periodic in the second one: this will be discussed
further in §6.2.

We now discuss related works. Homoclinic orbits that bifurcate in reversible
systems from heteroclinic cycles between equilibria have been investigated earlier in
[19]. Of relevance for the snaking behaviour discussed here are homoclinic orbits that
bifurcate from heteroclinic cycles connecting equilibria to periodic orbits: their ge-
ometry was elucidated in [29, 44, 8] and detailed numerical studies were carried out,
for instance, in [44, 3, 5, 4]. Analytical gluing results for heteroclinic cycles involv-
ing periodic orbits have, to our knowledge, been given only in the context of generic
systems without reversibility. In [30], for instance, heteroclinic cycles of codimension
one and two were studied, and the role played by the winding number of the sta-
ble manifold W s(0) with respect to the periodic orbit for obtaining global solution
branches was illuminated. The proofs given in [30] utilized Lin’s method, while we
shall transform our system near the periodic orbit into Fenichel’s normal form and
use reversible Shilnikov variables for the resulting system. For the Swift–Hohenberg
equation (1.1), the existence of fronts and of symmetric and asymmetric pulses was
recently investigated in [21, 7] near the onset to rolls, and more specifically near the
codimension-two point (µ, ν) = (0,

√

27/38), using formal asymptotics beyond all or-
ders. We complement these results by proving how fronts between rolls and the trivial
state can be glued together to produce localized states. Our analysis is not limited
to the parameter region near onset, but, in contrast to [21, 7], it is not capable of
establishing the existence of fronts in the first place. We compare our results in more
detail in §7 with those obtained in [21, 7].

The rest of the paper is organized as follows. In §2, we state our hypotheses and
the main results for systems in R

4. We introduce reversible Shilnikov variables in §3,
and the proofs of the main results for symmetric and asymmetric pulses are given
in §4 and §5, respectively. Various extensions, for instance to isolas and to higher-
dimensional systems including 2D patterns, are outlined and proved in §6. We end in
§7 with a discussion of the Swift–Hohenberg equation and the stability of symmetric
and asymmetric localized states with respect to the underlying partial differential
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equation (PDE).

2. Main results. We consider ordinary differential equations

ux = f(u, µ), u ∈ R
4, µ ∈ R(2.1)

in R
4, where f is assumed to be a smooth function, and remark that extensions

to higher-dimensional systems are discussed in §6.2. We are interested in reversible
systems and therefore assume the following.

Hypothesis 1. There exists a linear map R : R
4 → R

4 with R2 = 1 and
dimFixR = 2 so that f(Ru, µ) = −Rf(u, µ) for all (u, µ).

From the reversibility hypothesis 1, we infer that Ru(−x) satisfies (2.1) whenever
u(x) does. We say that a solution u(x) is symmetric or reversible if u(0) ∈ FixR,
which implies that u(x) = Ru(−x) for all x.

Next, we assume that (2.1) is conservative which, by definition, means that it
has a first integral H, which we assume to be invariant under the reverser R. This
assumption is not essential for our analysis, and we refer to §6.4 for extensions to
systems that are reversible but not conservative.

Hypothesis 2. There exists a smooth function H : R
4×R → R with H(Ru, µ) =

H(u, µ) and 〈∇uH(u, µ), f(u, µ)〉 = 0 for all (u, µ). We normalize H so that H(0, µ) =
0 for all µ.

We can now state our assumptions on the specific solutions of (2.1) we are inter-
ested in.

Hypothesis 3. The origin u = 0 is a hyperbolic equilibrium of (2.1). More
precisely, we assume that f(0, µ) = 0 for all µ and that fu(0, µ) has two eigenvalues
with strictly negative real part and another two eigenvalues with strictly positive real
part.

Hypothesis 1 implies that the spectrum of fu(0, µ) is invariant under multiplica-
tion by −1. Next, we require that (2.1) has, for each µ in an appropriate interval,
a symmetric periodic orbit in the zero energy level set. Throughout, we reserve the
term “periodic orbit” for solutions with nonzero minimal period.

Hypothesis 4. We assume that there is a closed interval J ⊂ R with nonempty
interior J̊ so that (2.1) has, for each µ ∈ J , a periodic orbit γ(x, µ) with minimal
period ℓ(µ) which satisfies:

(i) The family γ(x, µ) depends smoothly on µ ∈ J .
(ii) γ(x, µ) is symmetric with γ(0, µ) ∈ FixR for all µ ∈ J .
(iii) γ(x, µ) has zero energy: for each µ ∈ J , we have H(γ(x, µ), µ) = 0 and

Hu(γ(x, µ), µ) 6= 0 for one, and hence all, x.
(iv) γ(x, µ) has two positive nontrivial Floquet multipliers3 e±2πα(µ) with α(µ) > 0

for all µ ∈ J .

Rescaling time if necessary, we can, without loss of generality, assume that the
minimal periods ℓ(µ) are all equal to 2π. In particular, [42] implies that γ(π, µ) ∈
Fix(R). We will always identify S1 = [0, 2π]/∼.

Some of our results change if (2.1) has additional symmetries. To account for
such systems, we shall sometimes assume that (2.1) respects the reflection symmetry
κ : u 7→ −u. Consider the variational equation

vx = fu(γ(x, µ), µ)v

3The particular form of the Floquet exponents facilitates a rescaling of the period of γ to 2π
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about γ(x, µ) which, due to Hypothesis 4(iv), has two nontrivial solutions vs and vu

of the form

vs(x) = e−α(µ)xps(x, µ), vu(x) = eα(µ)xpu(x, µ),(2.2)

where pj(x, µ) are 2π-periodic in x. We shall normalize these functions by requiring
that

pu(x, µ) = Rps(−x, µ)(2.3)

for all x and µ ∈ J .
Hypothesis 5. The nonlinearity f is odd in u so that f(−u, µ) = −f(u, µ) for all

(u, µ). Furthermore, we assume that the orbit γ(·, µ) is invariant under κ : u 7→ −u
and that ps(π, µ) = κps(0, µ) for all µ ∈ J .

Hypothesis 5 implies that κR = −R is a second reverser of (2.1). Furthermore,
the first part of Hypothesis 5 implies that the flow Φx(u) of (2.1) satisfies κΦx(u) =
Φx(κu), and therefore DΦx(u) = DΦx(−u), for all x and u. If the orbit γ(·, µ) is
invariant under κ, then necessarily κγ(x, µ) = γ(x + π, µ) for all x. In particular,
we have DΦπ(γ(0, µ)) = DΦπ(γ(π, µ)), which implies that ps(π, µ) = ±ps(0, µ). The
second part of Hypothesis 5 assumes that the negative sign occurs in our system so
that, in fact, κps(x, µ) = ps(x + π, µ) for all x.

Lemma 2.1. Assume that Hypotheses 1-4 are met, then there exist a δ > 0, a
smooth reversible change of coordinates near γ(·, µ), and smooth real-valued functions
hc, hs

j and hu
j for j = 1, 2 so that (2.1) restricted to the zero energy level set is for all

µ ∈ J of the form

vc
x = 1 + hc(v, µ)vsvu,

vs
x = −[α(µ) + hs

1(v, µ)vs + hs
2(v, µ)vu]vs,(2.4)

vu
x = [α(µ) + hu

1(v, µ)vs + hu
2(v, µ)vu]vu,

where v = (vc, vs, vu) ∈ V := S1 × I × I and I = [−δ, δ]. The reverser R and the
symmetry κ (if Hypothesis 5 is met) act on v via

R(vc, vs, vu) = (−vc, vu, vs), κ(vc, vs, vu) = (vc + π, vs, vu).(2.5)

We shall prove Lemma 2.1 in §3. Note that vs = 0 corresponds to the unstable
manifold of the periodic orbit γ(·, µ) and its strong unstable fibers W uu(γ(ϕ, µ), µ)
are given by further fixing ϕ. As illustrated in Figure 1.4, we define the sections

Σin = S1 × {vs = δ} × I, Σout = S1 × I × {vu = δ}.
We are interested in orbits that connect the periodic orbits γ(x, µ) to the equilibrium
u = 0, and therefore define

Γ := {(ϕ, µ) ∈ S1 × J : W s(0, µ) ∩ W uu(γ(ϕ, µ), µ) ∩ Σout 6= ∅}.(2.6)

As in the introduction, we now assume that Γ is a graph and refer to §6.1 for extensions
to isolas of fronts.

Hypothesis 6. The set Γ is the graph of a smooth function z : S1 → J̊ . Fur-
thermore, there exist an open neighbourhood UΓ of Γ in S1 × J , positive constants
ǫ, b > 0, and a smooth function g : UΓ → I so that

{(ϕ, vs, δ) ∈ W s(0, µ) ∩ Σout : |vs| < ǫ, (ϕ, µ) ∈ UΓ}
= {(ϕ, vs, δ) = (ϕ, g(ϕ, µ), δ) : (ϕ, µ) ∈ UΓ}
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and |gµ(ϕ, µ)| ≥ b > 0 for all (ϕ, µ) ∈ UΓ.
Hypothesis 6 encodes the bifurcation diagram of fronts or heteroclinic orbits that

connect the periodic orbits γ to u = 0 through the intersections of the strong unsta-
ble fibers W uu(γ(x, µ), µ) and the stable manifold W s(0, µ); see also Figures 1.4-1.5.
Nondegenerate maxima and minima of z correspond to saddle-node bifurcations of
fronts, that is, to quadratic tangencies of W s(0, µ) and W uu(γ(x, µ), µ) at which het-
eroclinic connections disappear. For our results on asymmetric pulses, we need to
assume that the only critical points of z are nondegenerate maxima or minima which
occur at different values of z.

Hypothesis 7. We assume that z′(ϕ) = 0 implies z′′(ϕ) 6= 0. Furthermore,
we assume that z(ϕ1) = z(ϕ2) and z′(ϕ1) = z′(ϕ2) = 0 implies ϕ1 = ϕ2 modulo 2π
(modulo π if Hypothesis 5 is met).

We define

Θ :=

{

{0, 1
2π} if Hypothesis 5 is met,

{0, π} otherwise.

We can now state our two main results on the existence of symmetric and asymmetric
1-pulses, which are homoclinic orbits that follow the cycle formed by the heteroclinic
orbits from Hypothesis 6 precisely once.

Theorem 2.2 (Symmetric 1-pulses). Assume that Hypotheses 1-4 and 6-7 are
met, then there are constants L∗ ≫ 1 and η > 0 so that the following is true: for each
L > L∗, (2.1) has a symmetric homoclinic orbit u(x) for µ ∈ J that spends time 2L
in the neighbourhood V of γ(·, µ) if and only if

µ = µ∗(L, ϕ0) = z(ϕ0 + L) + O
(

e−ηL
)

(2.7)

for an appropriate ϕ0 ∈ Θ, and u(0) lies near γ(ϕ0, µ) in Fix(R) for ϕ0 ∈ {0, π}.
If Hypothesis 5 is met, too, then z is π-periodic, the above statements are true for

ϕ0 ∈ {0, π/2}, and u(0) lies near γ(π/2, µ) in Fix(−R) when ϕ0 = π/2. Furthermore,
symmetric 1-pulses come in pairs: if u is a 1-pulse corresponding to ϕ0, then −u is a
1-pulse corresponding to ϕ0 + π.

Lemma 4.1 contains precise expansions of µ∗ and the associated fold bifurcations
that sharpen the expansion (2.7) given in the preceding theorem. The following
theorem makes Figure 1.6 precise: the functions ai(·, n) = ai(·) + h.o.t. describe the
vertical sequence of horizontal branches of asymmetric pulses that begin and end
at pitchfork bifurcations of symmetric pulses, where i runs from 1 to the number of
maxima of z, and n parametrizes the infinite vertical sequence; similarly, the functions
ιj(·, n) = ιj(·)+h.o.t. correspond to an infinite sequence of isolas of asymmetric pulses
which, as indicated in Figure 1.8, may also be present. We denote by

Sϕ0
:= {(µ, L) = (µ∗(L, ϕ0), L) : L > L∗} ⊂ R

2, ϕ0 ∈ Θ

the two branches of symmetric 1-pulses described in Theorem 2.2.
Theorem 2.3 (Asymmetric 1-pulses). Assume that Hypotheses 1-4 and 6-7 are

met, and denote by k the number of maxima of z. There are then an η > 0, natural
numbers n∗ ≫ 1 and k̃ ≥ 0, and smooth curves

ai, ai(·, n, ϕ0), ιj , ιj(·, n, ϕ0) : [0, 1] −→ R
2, 1 ≤ i ≤ k, 1 ≤ j ≤ k̃

defined for n > n∗ and ϕ0 ∈ Θ so that the following is true for n > n∗ and ϕ0 ∈ Θ:
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µ

L

gµ > 0

z
′′

> 0

z
′′

< 0

gµ < 0
µ

L

z
′′

> 0

z
′′

< 0

Fig. 2.1. Shown are the offset of the snaking curve of symmetric 1-pulses [solid line] from the
limiting curve that corresponds to fronts [dotted line], and the relative positions of saddle-node [filled
circles] and pitchfork bifurcations [open circles] along the snaking curve of symmetric 1-pulses; see
also Remark 1.

(i) We have

ai(s, n, ϕ0) = ai(s) + (0, ϕ0 + 2πn) + O(e−ηn), s ∈ [0, 1], 1 ≤ i ≤ k.

For 1 ≤ i < k, the curves ai(s, n, ϕ0) begin for s = 0 in Sϕ0
near a non-global

maximum4 of z and terminate for s = 1 in Sϕ0
near a non-global minimum

of z. The curves ak(s, n, ϕ0) begin for s = 0 in Sϕ0
near the global maximum

of z and terminate for s = 1 in Sϕ0+π near the global minimum of z.
(ii) We have

ιj(s, n, ϕ0) = ιj(s) + (0, ϕ0 + 2πn) + O(e−ηn), ιj(0, n, ϕ0) = ιj(1, n, ϕ0)

for s ∈ [0, 1] and 1 ≤ j ≤ k̃.
(iii) Equation (2.1) has an asymmetric homoclinic orbit u(x) for µ ∈ J that spends

time 2L in the neighbourhood V of γ(·, µ) if and only if (µ, L) lies on one of
the curves ai(s, n, ϕ0) with s 6= 0, 1 or on ιj(s, n, ϕ0) for s ∈ [0, 1].

(iv) The start and end points of the curves ai(s, n, ϕ0) for s = 0, 1 correspond to
pitchfork bifurcations of the symmetric 1-pulses described in Theorem 2.2; no
other pitchfork bifurcations occur on Sϕ0

. The curves ιj(·, n, ϕ0) correspond
to isolas of asymmetric solutions. Furthermore, the curves ai(s) and ιj(s) are
obtained from solutions (L, ϕ) of (1.6) with L ∈ S1 upon setting µ = z(L+ϕ).

Finally, if Hypothesis 5 is met, then the above statements remain true provided we
replace Sϕ0+π in (i) by Sϕ0+π/2. Furthermore, if u is an asymmetric 1-pulse, so are
Ru, −u, and −Ru.

We refer to Lemma 5.1 for expansions of the location of the pitchfork bifurcations
that corroborate the summary given in Figure 2.1. Lemma 5.4 shows that isolas are
only possible when k ≥ 3, and an example of a function z with three maxima that
leads to isolas is given in Figure 1.8.

3. Reversible Shilnikov variables near a periodic orbit. We begin with
the proof of Lemma 2.1.

Proof. [ of Lemma 2.1.] The desired coordinate change will straighten out the
stable and unstable manifolds of the periodic orbit γ(x, µ) inside the zero level set of
the energy H(·, µ). Recall that the variational equation vx = fu(γ(x, µ), µ)v around
the periodic orbit γ(x, µ) admits the two solutions

vs(x) = e−α(µ)xps(x, µ), vu(x) = eα(µ)xpu(x, µ)

4That is, near a point (µ∗, L∗) on Sϕ0
given by (2.7) where z(ϕ0 +L) has a non-global maximum

at L = L∗
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given in (2.2), where pj(x, µ) is 2π-periodic in x. Thus, the tangent spaces of the
strong stable and unstable fibers of γ(x, µ) are spanned by ps(x, µ) and pu(x, µ),
respectively. On the linear level, omitting higher-order corrections to the invariant
manifolds of the periodic orbit, this suggests to use the transformation

v = (vc, vs, vu) ∈ S1 × I × I 7−→ u = γ(vc, µ) + vsps(vc, µ) + vupu(vc, µ),(3.1)

which maps (vc, 0, 0) onto the periodic orbit, and (vc, vs, 0) and (vc, 0, vu) onto the
tangent spaces of the stable and unstable manifolds. We first determine the action of
R on v: the calculation

Ru = Rγ(vc, µ) + vsRps(vc, µ) + vuRpu(vc, µ)

(2.3)
= γ(−vc, µ) + vspu(−vc, µ) + vups(−vc, µ)

shows that Ru corresponds to Rv = R(vc, vs, vu) = (−vc, vu, vs), which gives the rep-
resentation of R stated in (2.5). Similarly, Hypothesis 5 and the discussion following
it imply that

κu = κγ(vc, µ) + vsκps(vc, µ) + vuκpu(vc, µ)

= γ(vc + π, µ) + vsps(vc + π, µ) + vupu(vc + π, µ),

which shows that κu corresponds to κv = (vc + π, vs, vu) as asserted in (2.5). The
transformation (3.1) therefore shows that the zero energy level set near γ(·, µ) is
diffeomorphic to S1 × I × I. Amending this transformation appropriately so that
(vc, vs, 0) and (vc, 0, vu) parametrize the strong stable and unstable fibers of γ(vc, µ)
on the periodic orbit in a reversible and equivariant fashion, and subsequently using
the transformation v 7→ u to straighten out the invariant stable and unstable manifolds
of the periodic orbit and its stable and unstable fibers transforms (2.1) into (2.4)
locally near the periodic orbit [11].

We now solve (2.4) near the periodic orbit.
Lemma 3.1. There exist positive constants L0 and η so that the following is true

for all L > L0 and ϕ ∈ S1: there is a unique solution v(x), also referred to as v(x, ϕ),
of (2.4), defined for x ∈ [−L, L], so that

v(−L) ∈ Σin, v(L) ∈ Σout, vc(0) = ϕ, v(x) ∈ V ∀x ∈ [−L, L].

Furthermore, we have

v(−L) =
(

ϕ − L + O(e−ηL), δ, δe−2α(µ)L(1 + O(e−ηL))
)

,

v(L) =
(

ϕ + L + O(e−ηL), δe−2α(µ)L(1 + O(e−ηL)), δ
)

,(3.2)

v(0) =
(

ϕ, δe−α(µ)L(1 + O(e−ηL)), δe−α(µ)L(1 + O(e−ηL))
)

.

The solution v(x) is smooth in (ϕ, µ, L), and the error estimates in (3.2) can be
differentiated. Furthermore, we have

v(x,−ϕ) = Rv(−x, ϕ), ϕ ∈ S1, |x| ≤ L(3.3)

and, if Hypothesis 5 holds,

v(x, π + ϕ) = κv(x, ϕ), ϕ ∈ S1, |x| ≤ L,(3.4)
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where R and κ act according to (2.5). In particular, the solution v(x, ϕ) is R-
reversible, with v(0) ∈ Fix(R), if and only if ϕ = 0, π, and κR-reversible, with
v(0) ∈ Fix(κR), if and only if ϕ = π/2, 3π/2.

Proof. Existence and uniqueness follow, for instance, from [22, Theorem 4 and
§5] or [40, Theorem 2.1]. The expansion for v(x) follows from [40, Theorem 2.1],
while the expansions for vs(x) and vu(x) follow then as in [22, §5] or [35]. The claims
about reversibility follow from the expression for vc(0) together with the uniqueness
of the solution considered in the lemma. Note that (2.5) implies that RΣin = Σout

and that the elements on the periodic orbits fixed by R and κR are ϕ = 0, π and
ϕ = π/2, 3π/2, respectively.

In the proofs given in §4 and §5, we shall denote different positive exponential
rates η that appear in estimates of remainder terms by the same constant, as they
are bounded from below by the same positive constant.

Next, we consider the intersection of W u(0, µ) with Σin.

Lemma 3.2. We have v = (ϕ, δ, vu) ∈ W u(0, µ) if and only if Rv = (−ϕ, vu, δ) ∈
W s(0, µ). If Hypothesis 5 holds, then v ∈ W s(0, µ)∩Σout if and only if κv ∈ W s(0, µ)∩
Σout; in particular, g(ϕ, µ) and z(ϕ) are then π-periodic in ϕ for all (ϕ, µ) ∈ UΓ.

Proof. Reversibility of (2.1) implies that v ∈ W u(0, µ) if and only if Rv ∈
W s(0, µ). The first statement of the lemma now follows from Lemma 2.1 and the
representation (2.5) of the reverser R. Next, assume that (2.1) is equivariant under κ,
which implies that v = (vc, vs, δ) ∈ W s(0, µ)∩Σout if and only if κv = (vc +π, vs, δ) ∈
W s(0, µ) ∩ Σout. Hypothesis 6 shows that v = (ϕ, vs, δ) ∈ W s(0, µ) if and only if
vs = g(ϕ, µ). Applying this statement to ϕ = vc and ϕ = vc + π, we can conclude
that g(vc, µ) = vs = g(vc + π, µ) for all vc. A similar argument shows that z(ϕ) is
periodic with period π.

In particular, both g and z are π-periodic in ϕ if Hypothesis 5 is met, which
explains why we imposed the conditions in Hypothesis 7 only modulo π in this case.
We record also that, on account of Hypothesis 6, we have

g(ϕ, z(ϕ)) ≡ 0 ∀ϕ, g(ϕ, µ) = 0 if and only if µ = z(ϕ).(3.5)

Using Lemmas 3.1 and 3.2, we can now construct symmetric and asymmetric homo-
clinic orbits to u = 0 that pass near the periodic orbit γ(·, µ).

4. Symmetric 1-pulses. In this section, we are interested in finding reversible
homoclinic orbits v(x) to u = 0 that spend a long time near the periodic orbit γ(·, µ).
We focus on reversible 1-pulses which satisfy by definition

v(x) ∈ V for x ∈ [−L, L],

v(L) ∈ W s(0, µ) ∩ Σout,(4.1)

v(0) ∈ Fix(R) or v(0) ∈ Fix(κR)

for sufficiently large L ≫ 1. Lemma 3.1 implies that (4.1) is met if and only if

v(L) = (vc(L, ϕ0, µ), vs(L, ϕ0, µ), δ) ∈ W s(0, µ),

where ϕ0 ∈ Θ is fixed. For L ≫ 1, Hypothesis 6 shows that this equation is met if
and only if

(vc(L, ϕ0, µ), vs(L, ϕ0, µ)) = (ϕ, g(ϕ, µ))
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for some (ϕ, µ) ∈ UΓ or, equivalently,

g(vc(L, ϕ0, µ), µ) = vs(L, ϕ0, µ).(4.2)

We have

vc(L, ϕ0, µ)
(3.2)
= ϕ0 + L + O(e−ηL), ϕ0 ∈ Θ fixed

and define

ℓ := vc(L, ϕ0, µ) − ϕ0 = L + O(e−ηL),(4.3)

where we treat ℓ as an element of the universal cover R of S1. Thus, ℓ measures the
phase in Σout, while 2L is the time spent by the solution v(x) near the periodic orbit
γ(·, µ). We can solve (4.3) uniquely for L ≫ 1 to get

L = L∗(ℓ, µ) = ℓ + O(e−ηℓ), ℓ ≫ 1, µ ∈ J.(4.4)

Substituting (4.4) into (4.2), we obtain the equation

g(ϕ0 + ℓ, µ) = vs(L∗(ℓ, µ), ϕ0, µ)
(3.2)
= δe−2α(µ)ℓ(1 + O(e−ηℓ)).(4.5)

It suffices now to solve (4.5) for ℓ ≫ 1 and µ ∈ J , where ϕ0 ∈ Θ is fixed.
Lemma 4.1. Fix ϕ0 ∈ Θ, then there exists an ℓ0 ≫ 1 so that (4.5) has a unique

solution µ = µ∗(ℓ, ϕ0) ∈ J for each ℓ > ℓ0. Furthermore,

µ∗(ℓ, ϕ0) = z(ϕ0 + ℓ) +
δe−2α(z(ϕ0+ℓ))ℓ

gµ(ϕ0 + ℓ, z(ϕ0 + ℓ))
(1 + O(e−ηℓ))(4.6)

for all ℓ > ℓ0. Near each ℓ∗ with z′(ϕ0 + ℓ∗) = 0, there is a unique fold bifurcation of
the symmetric 1-pulses: the fold is nondegenerate and occurs at

ℓ = ℓ∗ +

(

2α

gµz′′
+

gϕµ

g2
µz′′

)

δe−2αℓ∗(1 + O(e−ηℓ∗)),(4.7)

where all terms are evaluated at (ϕ0+ℓ∗, z(ϕ0+ℓ∗)). No other fold bifurcations occur.
Proof. We set µ := z(ϕ0 + ℓ) + µ̃ so that (4.5) becomes

g(ϕ0 + ℓ, z(ϕ0 + ℓ) + µ̃) = δe−2α(z(ϕ0+ℓ)+µ̃)ℓ(1 + O(e−ηℓ)).

On account of (3.5), g(ϕ, µ) = 0 if and only if µ = z(ϕ). Thus, the above equation
can be written as

µ̃ + O(µ̃2) =
δ

gµ(ϕ0 + ℓ, z(ϕ0 + ℓ))
e−2α(z(ϕ0+ℓ)+µ̃)ℓ(1 + O(e−ηℓ)),

where we used that |gµ| ≥ b > 0 in Γ by Hypothesis 6. Using the implicit function
theorem, we readily obtain (4.6). Fold bifurcations occur precisely when ∂ℓµ∗(ℓ, ϕ0) =
0. Inspecting (4.6), we find that folds can only occur near values ℓ∗ for which z′(ϕ0 +
ℓ∗) = 0, and a straightforward calculation gives (4.7) as the unique location of the fold
near such an ℓ∗. The fold is nondegenerate since ∂2

ℓ µ∗ = z′′(ϕ0 + ℓ∗) + O(e−ηℓ∗) 6= 0
by Hypothesis 7.

Theorem 2.2 is a direct consequence of Lemma 4.1.
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5. Asymmetric 1-pulses. We now consider 1-pulses that are not necessarily
symmetric. Throughout this section, we assume that Hypotheses 6-7 are met. We
first consider the case where we do not have an additional Z2-symmetry, that is, we
do not assume Hypothesis 5, and shall comment in §5.4 below on the case where
Hypothesis 5 is met.

Arbitrary 1-pulses correspond to solutions v(x) with

v(x) ∈ V for x ∈ [−L, L],

v(−L) ∈ W u(0, µ) ∩ Σin,(5.1)

v(L) ∈ W s(0, µ) ∩ Σout

for sufficiently large L ≫ 1. Using Lemmas 3.1 and 3.2, we see that (5.1) is equivalent
to G(L, ϕ, µ) = 0, where G is defined by

G(L, ϕ, µ) :=

(

g(vc(L, ϕ, µ), µ) − vs(L, ϕ, µ)
g(−vc(−L, ϕ, µ), µ) − vu(−L, ϕ, µ)

)

(5.2)

(3.3)
=

(

g(vc(L, ϕ, µ), µ) − vs(L, ϕ, µ)
g(vc(L,−ϕ, µ), µ) − vs(L,−ϕ, µ)

)

and ϕ ∈ S1 is arbitrary.

5.1. Pitchfork bifurcations from symmetric 1-pulses. We begin by inves-
tigating bifurcations from the symmetric 1-pulses. We set

G̃(L, ϕ, µ) :=

(

G1(L, ϕ, µ) + G2(L, ϕ, µ)
G1(L, ϕ, µ) − G2(L, ϕ, µ)

)

(5.3)

(5.2)
=

(

G1(L, ϕ, µ) + G1(L,−ϕ, µ)
G1(L, ϕ, µ) − G1(L,−ϕ, µ)

)

,

where (G1,G2) are the components of G defined in (5.2). Note that G̃(L,−ϕ, µ) =
ρG̃(L, ϕ, µ) for all (L, ϕ), where ρ is the reflection

ρ =

(

1 0
0 −1

)

.

In particular, G̃2(L, ϕ0, µ) ≡ 0 for the fixed points ϕ0 ∈ Θ = {0, π} of the Z2-action
ϕ 7→ −ϕ on S1 = [0, 2π]/∼, and the symmetric 1-pulses found in §4 correspond to
solutions of G̃1(L, ϕ0, µ) = 0 with ϕ0 ∈ Θ. Bifurcations from symmetric 1-pulses occur
only when

G̃1(L, ϕ0, µ) = 0, ∂ϕG̃2(L, ϕ0, µ) = 0(5.4)

for some ϕ0 ∈ Θ, and the presence of the Z2-action given by ϕ 7→ −ϕ and ρ shows
that any such bifurcation will be a pitchfork bifurcation in the sense that solution
branches will be invariant under the action ϕ 7→ −ϕ. Inspecting (5.3), we see that
(5.4) is equivalent to

G1(L, ϕ0, µ) = 0, ∂ϕG1(L, ϕ0, µ) = 0,

that is, to

g(vc(L, ϕ0, µ), µ) − vs(L, ϕ0, µ) = 0,(5.5)

∂ϕ[g(vc(L, ϕ, µ), µ) − vs(L, ϕ, µ)]
∣

∣

ϕ=ϕ0

= 0
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for some ϕ0 ∈ Θ. The following lemma gives the location of all pitchfork bifurcations
from symmetric 1-pulses and asserts that these lead to locally unique branches of
asymmetric 1-pulses which are parametrized by ϕ near ϕ0.

Lemma 5.1. Fix ϕ0 ∈ Θ, then there are numbers σ > 0 and ℓ0 ≫ 1 with the
following property. Near each ℓ∗ > ℓ0 with z′(ϕ0 + ℓ∗) = 0, there is a unique pitchfork
bifurcation of the symmetric 1-pulses, occurring for µ = µ∗(ℓ, ϕ0) as in (4.6) and

ℓ = ℓ∗ +
gϕµ

g2
µz′′

δe−2αℓ∗(1 + O(e−ηℓ∗)),(5.6)

where all terms are evaluated at (ϕ0+ℓ∗, z(ϕ0+ℓ∗)) and ℓ is related to L via (4.3). At
these pitchfork bifurcations, a locally unique branch of asymmetric 1-pulses bifurcates,
and this branch is parametrized smoothly by ϕ for ϕ ∈ Uσ(ϕ0). No other bifurcations
occur.

Proof. Equation (5.5) gives necessary conditions for bifurcations from symmetric
1-pulses. We have already solved the first equation of (5.5) in Lemma 4.1, obtaining

µ = µ∗(ℓ, ϕ0) = z(ϕ0 + ℓ) +
δe−2α(z(ϕ0+ℓ))ℓ

gµ(ϕ0 + ℓ, z(ϕ0 + ℓ))
(1 + O(e−ηℓ))(5.7)

=: z(ϕ0 + ℓ) + µ̃(ℓ)

with ℓ given in (4.3). The remaining second equation of (5.5), given by

∂ϕG1(L, ϕ0, µ) = gϕ(vc(L, ϕ0, µ), µ)vc
ϕ(L, ϕ0, µ) − vs

ϕ(L, ϕ0, µ) = 0,

is evaluated at (L, µ) = (L∗(ℓ, µ∗(ℓ, ϕ0)), µ∗(ℓ, ϕ0)), and equations (3.2), (4.3), and
(5.7) show that it is given by

gϕ(ϕ0 + ℓ, z(ϕ0 + ℓ) + µ̃(ℓ))(1 + O(e−ηℓ)) − O(e−(2α(z(ϕ0+ℓ))+η)ℓ) = 0.(5.8)

We expand as follows:

gϕ(ϕ0 + ℓ, z(ϕ0 + ℓ) + µ̃(ℓ))

= gϕ(ϕ0 + ℓ, z(ϕ0 + ℓ)) + gϕµ(ϕ0 + ℓ, z(ϕ0 + ℓ))µ̃(ℓ) + O(|µ̃(ℓ)|2)
(3.5)
= −gµ(ϕ0 + ℓ, z(ϕ0 + ℓ))z′(ϕ0 + ℓ) + gϕµ(ϕ0 + ℓ, z(ϕ0 + ℓ))µ̃(ℓ) + O(|µ̃(ℓ)|2)

so that (5.8) becomes

−gµ(ϕ0 + ℓ, z(ϕ0 + ℓ))z′(ϕ0 + ℓ)(5.9)

+gϕµ(ϕ0 + ℓ, z(ϕ0 + ℓ))µ̃(ℓ) + O(e−(2α(z(ϕ0+ℓ))+η)ℓ) = 0.

Since gµ is bounded away from zero by Hypothesis 6 and µ̃(ℓ) → 0 as ℓ → ∞, the
above equation can be satisfied only near points ℓ∗ with z′(ϕ0 + ℓ∗) = 0. Setting
ℓ = ℓ∗ + ℓ̃, expanding (5.9) around ℓ∗, and using that z′′(ϕ0 + ℓ∗) 6= 0 by Hypothesis 7
gives (5.6).

To prove that a locally unique branch bifurcates at each pitchfork bifurcation and
that this branch can be parametrized by ϕ for ϕ near ϕ0, it suffices to prove that

d

dL
[∂ϕG1(L, ϕ0, µ∗(L, ϕ0))] 6= 0.
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Using (4.4) and (5.9), we find

d

dL
[∂ϕG1(L, ϕ0, µ∗(L, ϕ0))](5.10)

= −gµ(ϕ0 + ℓ∗, z(ϕ0 + ℓ∗))z
′′(ϕ0 + ℓ∗) + O(e−ηℓ∗)

at the solution ℓ given in (5.6), and this expression is indeed bounded away from zero
uniformly in ℓ∗ by Hypotheses 6 and 7. Finally, the neighbourhood Uσ(ϕ0) over which
we can parametrize the branches in ϕ is uniform in ℓ∗, since the estimates in (5.9)
and (5.10) and the dependence of (5.2) on ϕ are uniform in ℓ∗.

Remark 1. We briefly compare the locations of saddle-node and pitchfork bifur-
cations given in Lemmas 4.1 and 5.1, respectively. Near each ℓ∗ with z′(ϕ0 + ℓ∗) = 0,
there is a unique saddle-node at

ℓsn = ℓ∗ +

(

2α

gµz′′
+

gϕµ

g2
µz′′

)

δe−2αℓ∗(1 + O(e−ηℓ∗))

and a unique pitchfork at

ℓpf = ℓ∗ +
gϕµ

g2
µz′′

δe−2αℓ∗(1 + O(e−ηℓ∗)),

where all terms are evaluated at (ϕ0 + ℓ∗, z(ϕ0 + ℓ∗)), see (4.7) and (5.6), respectively.
Thus, we have

ℓsn = ℓpf +
2α

gµz′′
δe−2αℓ∗(1 + O(e−ηℓ∗)),

and the sign of the offset between these bifurcations is determined by the sign of the
product gµz′′. The resulting scenarios are summarized in Figure 2.1.

5.2. Continuation of asymmetric 1-pulses. We showed in §5.1 that a locally
unique branch of asymmetric 1-pulses bifurcates at each of the infinitely many pitch-
fork bifurcations identified in Lemma 5.1. In this section, we prove that each of these
branches terminates at another pitchfork bifurcation, and we determine at which one.

To find asymmetric 1-pulses, we need to solve G(L, ϕ, µ) = 0, where G is defined
in (5.2). Lemma 3.1 implies that this equation is given by

g(L + ϕ + O(e−ηL), µ) = O(e−ηL),(5.11)

g(L − ϕ + O(e−ηL), µ) = O(e−ηL),

where ϕ ∈ S1 is arbitrary, possibly after adjusting η to a smaller positive value.
For ϕ = ϕ0 ∈ Θ, we recover the symmetric 1-pulses. For each ϕ0 ∈ Θ and near

each L∗ with z′(L∗ +ϕ0) = 0, Lemma 5.1 guarantees the existence of a locally unique
branch of asymmetric solutions of (5.11) that are parametrized by ϕ ∈ Uσ(ϕ0). Fur-
thermore, no other bifurcations to asymmetric 1-pulses occur. We are now interested
in continuing the branches of asymmetric 1-pulses.

The first equation in (5.11) can be solved for µ as in §4, and we find

µ = z(L + ϕ) + O(e−ηL).

Using this expression, the second equation in (5.11) becomes

g(L − ϕ + O(e−ηL), z(L + ϕ) + O(e−ηL)) = O(e−ηL).(5.12)
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We expect that the O(e−ηL) terms in (5.12) will be of higher order. Omitting these
terms for a moment, we arrive at the equation

g(L − ϕ, z(L + ϕ)) = 0,(5.13)

which, on account of (3.5), has a solution (L, ϕ) if and only if

z(L − ϕ) = z(L + ϕ).(5.14)

Recall that z is 2π-periodic in its argument. Thus, for ϕ ∈ Θ, (5.14) is met for all
L, and these solutions correspond to symmetric 1-pulses. In Lemma 5.1, we found all
solutions (L, ϕ) of (5.11) near each (L∗, ϕ0) with ϕ0 ∈ Θ and z′(L∗ + ϕ0) = 0. Our
goal is now to show that all other solutions of (5.11) can be found by solving (5.14).

Lemma 5.2. The function ḡ(L, ϕ) := g(L− ϕ, z(L + ϕ)) is 2π-periodic in both ϕ
and L, and we have ∇ḡ(L, ϕ) 6= 0 at each point (L, ϕ) for which z(L−ϕ) = z(L + ϕ)
except when both ϕ ∈ Θ and z′(L + ϕ) = 0.

Proof. We have

∇ḡ(L, ϕ) =

(

1 1
−1 1

) (

gϕ(L − ϕ, z(L + ϕ))
gµ(L − ϕ, z(L + ϕ))z′(L + ϕ)

)

.

Equation (5.14) means that the argument (L−ϕ, z(L+ϕ)) = (L−ϕ, z(L−ϕ)) lies in
Γ = graph(z). Hypothesis 6 then implies that |gµ(L−ϕ, z(L+ϕ))| ≥ b > 0, and we can
conclude that ∇ḡ(ϕ, L) = 0 if and only if both z′(L+ϕ) = 0 and gϕ(L−ϕ, z(L+ϕ)) =
gϕ(L−ϕ, z(L−ϕ)) = 0. Using Hypothesis 6 and the definition of g, it is easy to see,
via a Taylor expansion, that the second equation implies z′(L − ϕ) = 0. Thus, we
have z′(L ± ϕ) = 0 which, together with (5.14) and Hypothesis 7, implies ϕ ∈ Θ as
claimed.

Lemma 5.2 will allow us below to solve (5.12) by the implicit function theorem
near any solution (L, ϕ) of (5.14) uniformly in L ≫ 1, unless we have both ϕ ∈ Θ and
z′(L + ϕ) = 0 in which case we already know all solutions by Lemma 5.1.

Thus, we initially focus on solving (5.14)

Z(L, ϕ) := z(L + ϕ) − z(L − ϕ) = 0(5.15)

for (L, ϕ). We shall see that the shape of the graph of z determines the entire solution
structure of (5.15) and refer to Figure 1.7 for an illustration. We set Q := S1 × [0, π]
and

Λ := {(L, ϕ) ∈ Q : Z(L, ϕ) = 0}, Λbif := {(L, ϕ) ∈ ∂Q : z′(L + ϕ) = 0}.

Equation (5.15) readily shows that Λbif ⊂ ∂Q ⊂ Λ. Furthermore, choose LM and Lm

in S1 so that

M := max
L∈S1

z(L) = z(LM), m := min
L∈S1

z(L) = z(Lm)

and note that LM and Lm are unique in S1 by Hypothesis 7. The following lemma
contains the main result of this section, see also Figure 5.1.

Lemma 5.3. Assume that Hypotheses 6 and 7 are met, and let k be the number
of maxima of the function z.

(i) Λ is the disjoint union of the one-dimensional manifolds ∂Q = S1×{0, π}, Λpf

and Λiso: Λpf is the disjoint union of the 2k distinct global solution branches
described in (ii) and (iii) below, and Λiso consists of finitely many isolas, each
diffeomorphic to a circle, whose projection onto the L-axis is not onto.
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µ

ϕ

z(ϕ)

LmLM minmax0 2π

ϕ

L

Q

∂Q

Λ

∂Q

Λbif LM + π

LM Lm

Lm + π

max min
0

2π

π

+ −

+ +

−

−−

Fig. 5.1. The set Λ = Z−1(0) corresponding to the function z displayed in the right panel is
shown together with the sign of Z in the components of Q \ Λ. The set Λbif is the union of the
bullets located at (L, 0) and (L, π) which correspond to maxima and minima of z(L+ϕ). In general,
Λ may also contain isolas.

(ii) Each element (L∗, 0) and (L∗, π) of Λbif is a generic pitchfork bifurcation
point, giving rise to a unique global branch of solutions of (5.15) in Q. These
branches do not cross, and they begin and end in Λbif .

(iii) The branches starting at (Lm, 0) and (LM , 0) terminate at (LM − π, π) and
(Lm − π, π), respectively. Each branch starting at (L1, 0), where L1 6= LM

is a non-global maximum of z, terminates at a point (L2, 0) where L2 6= Lm

is a non-global minimum of z. Similarly, branches starting at (L1, π), where
L1 6= LM is a non-global maximum of z, terminate at points (L2, π), where
L2 6= Lm is a non-global minimum of z.

Proof. We record that

∇Z(L, ϕ) =

(

1 −1
1 1

) (

z′(L + ϕ)
z′(L − ϕ)

)

and consider the planar Hamiltonian vector field
(

Ls

ϕs

)

= F (L, ϕ) :=

(

0 1
−1 0

)

∇Z(L, ϕ)(5.16)

associated with the energy Z(L, ϕ), whose zero level set is Λ. Note that ∇Z vanishes
at (L, ϕ) ∈ Λ if and only if both z′(L + ϕ) = 0 and z′(L − ϕ) = 0. Hypothesis 7
asserts that this can only happen when ϕ = 0 or ϕ = π, that is, when (L, ϕ) ∈ Λbif .
Thus, all equilibria of (5.16) in Λ lie in Λbif , and they are hyperbolic saddles since

DF (L, ϕ0) = 2

(

z′′(L − ϕ0) 0
0 −z′′(L − ϕ0)

)

, ϕ0 ∈ {0, π}

at each such equilibrium. Since ∇Z is non-zero everywhere else on Λ, it follows from
Poincaré–Bendixson that Λ \ Λbif is a one-dimensional manifold, namely the union
of the heteroclinic orbits that emanate from and terminate at Λbif and finitely many
periodic orbits. This proves (ii). We have also shown all claims made in (i) except
that we have not yet proved that isolas cannot extend from L = 0 to L = 2π. This
will follow at once from (iii) since the branches that connect global extrema serve as
a barrier; see Figure 5.1.

If (L, ϕ0) ∈ Λbif corresponds to a maximum of z, then the eigenvalue belonging to
the eigenvector (0, 1) is positive, and it is the unstable manifold of the equilibrium that
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L+ϕL−ϕ

z(ϕ)

L

LM

µ

L+ϕL−ϕ

z(ϕ)

L

LMLm

µ

Fig. 5.2. The left panel shows representative solutions L ± ϕ of z(L + ϕ) = z(L − ϕ) near the
pitchfork bifurcation from L = LM. The right panel illustrates that the solutions L − ϕ and L + ϕ
are trapped in the intervals (Lm, LM) and (LM, Lm + 2π), respectively, with 0 < ϕ < π until either
L − ϕ = Lm and L + ϕ = Lm + 2π (which implies ϕ = π), or else L = LM and ϕ = 0.

evolves into the interior Q̊ of Q. Similarly, at minima of z, it is the stable manifold
that points into Q̊. Thus, orbits emanating from maxima of z must terminate at
minima of z, and vice versa; see also Figure 5.1. This proves part of (iii).

Consider now the pitchfork branch emerging from (L, ϕ) = (LM , 0) where z(LM )
is the uniquely assumed maximal value of z. We wish to prove that this branch
terminates at (L, ϕ) = (Lm ± π, π). To prove this assertion, note that L−ϕ < LM <
L + ϕ near the bifurcation point, see Figure 5.2. Thus, inspecting Figure 5.2, we see
that there are precisely two possibilities: first, L − ϕ or L + ϕ reach Lm or Lm + 2π
at some point, in which case both must assume these values as Lm is the only value
modulo 2π for which z(L) = z(Lm); in this case, ϕ = π, and the branch terminates
at L = Lm ± π. The second option is that L − ϕ or L + ϕ reach LM , in which case
they both must assume this value together; this is ruled out though by the vector-field
interpretation discussed above. Thus, only the first possibility can occur which proves
the assertion.

Next, we consider a branch emerging from (L, ϕ) = (L∗, 0) where L∗ corresponds
to a non-global maximum or minimum of z. Without loss of generality, we may
assume that L∗ ∈ (Lm, LM ). We conclude that L − ϕ and L + ϕ can never leave the
interval (Lm, LM ) along the branch for ϕ > 0 since m < z(L − ϕ) = z(L + ϕ) < M
for all L ± ϕ ∈ (Lm, LM ), see also Figure 5.2. Thus, the branch must terminate at
ϕ = 0 as claimed. This finishes the proof of (iii).

The results established in Lemma 5.3 are valid for (5.14) and therefore also for
(5.13). We need to lift these results to the full problem (5.12) given by

g(L − ϕ + O(e−ηL), z(L + ϕ) + O(e−ηL)) = O(e−ηL).

By decomposing L = ℓ + 2πn uniquely for ℓ ∈ S1 and n ∈ N, we arrive at the
equivalent system

g(ℓ − ϕ + O(e−ηn), z(ℓ + ϕ) + O(e−ηn)) = O(e−ηn), (ϕ, ℓ) ∈ Q.(5.17)

Lemma 5.1 shows that Λ and the solution set of (5.17) are diffeomorphic in Uσ(Λbif)
for all n sufficiently large. Outside this neighbourhood of Λbif , Lemmas 5.2 and 5.3
show that the solution set of (5.17) is diffeomorphic to Λ, since Λ = Z−1(0), zero is a
regular value of Z when restricted to the complement of Uσ(Λbif), and no additional
solutions can appear for (5.17) due to compactness of Q. This completes the proof of
Theorem 2.3.
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5.3. Isolas of asymmetric 1-pulses. We show that isolas of asymmetric 1-
pulses can occur for appropriate functions z.

Lemma 5.4. Assume that Hypotheses 6 and 7 are met, and let k be the number of
maxima of the function z. For k = 1, 2, the set Λ = Z−1(0) discussed in Lemma 5.3 is
connected, and therefore does not contain any isolas. For k ≥ 3, isolas of asymmetric
1-pulses may exist; an example of a function z for which an isola exists is given in
Figure 1.8.

Proof. Using the procedure outlined above in Figure 1.7, it is easy to check
that isolas cannot exist for functions z with one or two maxima. We omit a formal
proof, which can be obtained using the arguments given in the proof of Lemma 5.3.
Figure 1.8 gives an example of a function z that admits an isola. Lemma 5.3 shows
that the drawn isola is necessarily a manifold diffeomorphic to S1.

5.4. Z2-symmetry. Finally, we comment on Z2-equivariant systems for which
Hypothesis 5 is met. In this case, Lemma 3.2 implies that g, and therefore z, are
periodic in ϕ with period π. Thus, we can repeat the analysis carried out above
for period π instead of 2π or, alternatively, simply factor out the Z2-action near the
periodic orbits and apply our results to the system on the Z2-orbit space. Either way,
we find that the branches emerging from global maxima and minima connect ϕ = 0
to ϕ = ±π/2 and ϕ = π/2 to ϕ = 0 and ϕ = π.

6. Extensions. We discuss and prove various extensions of our results. Isolas of
fronts are considered in §6.1, while higher-dimensional systems and extensions to 2D
patterns such as those shown in Figure 1.2 are treated in §6.2 and §6.3, respectively.
Snaking in reversible systems without a conserved quantity is studied in §6.4.

6.1. Isolas of fronts. Hypothesis 6 excludes the case illustrated in Figure 1.5(iii),
where the fronts between rolls and the trivial state lie on an isola in parameter space.
The expected bifurcation diagram, shown in Figure 1.6(iii), predicts isolas of symmet-
ric pulses, and such isolas have indeed been observed recently in [3, Figure 24] for the
Swift–Hohenberg equation (1.1). We assumed in Hypothesis 6 that the set Γ, defined
in (2.6) as

Γ := {(ϕ, µ) ∈ S1 × J : W s(0, µ) ∩ W uu(γ(ϕ, µ), µ) ∩ Σout 6= ∅},

is a graph (ϕ, z(ϕ)) and that we can parametrize W s(0, µ)∩Σout over (ϕ, µ). A natural
generalization is to assume that there is a smooth function G : S1 × I × J → R so
that

(ϕ, vs) ∈ W s(0, µ) ∩ Σout ⇐⇒ G(ϕ, vs, µ) = 0

with Γ = {(ϕ, µ) ∈ S1×J : G(ϕ, 0, µ) = 0} ⊂ S1×J̊, which precludes that Γ intersects
S1 × ∂J . Note that if Hypothesis 6 is met, we have G(ϕ, vs, µ) = g(ϕ, µ) − vs. The
nondegeneracy conditions

∇(ϕ,µ)G(ϕ, 0, µ) 6= 0, ∇(ϕ,vs)G(ϕ, 0, µ) 6= 0 ∀(ϕ, µ) ∈ Γ(6.1)

guarantee that Γ is a manifold and that W s(0, µ)∩Σout is, locally near each element
of Γ, the graph of a smooth function that depends on (vs, µ) or on (ϕ, µ).

Theorem 6.1. In the situation described above, assume that (6.1) and Hypothe-
ses 1-4, and possibly Hypothesis 5, are met. For all points (ϕ, µ) ∈ Γ near which
we can parametrize Γ over ϕ, we also assume that Hypothesis 7 is met. There are
then constants η > 0 and L∗ ≫ 1 so that, for each L > L∗ and ϕ0 ∈ Θ, (2.1) has a
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symmetric 1-pulse for µ ∈ J that spends time 2L in the neighborhood V near γ(·, µ)
if and only if (L, µ) ∈ Sϕ0

, where Sϕ0
is a smooth one-dimensional manifold, which

is O(e−ηL) close in C1 to the manifold

{(µ, L) ∈ J × (L∗,∞) : G(L + ϕ0, 0, µ) = 0}.

Furthermore, (2.1) has branches of asymmetric 1-pulses that can be constructed as
illustrated in Figure 1.7 and discussed in §5. If Γ is diffeomorphic to S1 and the
projection of Γ onto its first component ϕ ∈ S1 is not onto, then Sϕ0

is the union of
infinitely many disjoint circles, and branches of asymmetric states that emerge and
terminate at maxima and minima of Γ connect each of these circles to itself.

In particular, if Γ is an isola, then isolas of symmetric pulses for different ϕ0 are
not connected, see Figure 1.6, in contrast to the situation discussed in Theorem 2.3.

Proof. The proofs given in §4 and §5 need only minor modifications which we
now outline. For symmetric pulses, the bifurcation equation (4.2) is replaced by

G(vc(L, ϕ0, µ), vs(L, ϕ0, µ), µ) = G(ϕ0 + L + O(e−ηL), O(e−ηL), µ) = 0.

The first nondegeneracy condition in (6.1) allows us to use the implicit function the-
orem to solve the above equation uniquely near each (L, µ) with (L mod2π, µ) ∈ Γ.
Pitchfork bifurcations from symmetric to asymmetric states occur near elements
(ϕ, µ) ∈ Γ with ∂ϕG(ϕ, 0, µ) = 0: equation (6.1) ensures that W s(0, µ) can be
parametrized via vs = g(ϕ, µ) near such points, and we are therefore back in the
setting of §5.1. Branches of asymmetric states can also be continued: (5.11) is now
given by

G(L + ϕ + O(e−ηL), O(e−ηL), µ) = 0, G(L − ϕ + O(e−ηL), O(e−ηL), µ) = 0,(6.2)

and it is easy to verify that the Jacobian with respect to (L, ϕ, µ) of the left-hand
side has full rank except at pitchfork bifurcation points. This shows that solutions of
the asymptotic problem, obtained by omitting the O(e−ηL) terms in (6.2), persist for
(6.2).

6.2. Higher-dimensional ODEs. We focus now on generalizations of the re-
sults in §2 to higher-dimensional systems where u ∈ R

2n with n > 2. In this situation,
the parametrization of invariant manifolds is slightly different. We assume that the
linearization of the time-2π map of the periodic orbits has two simple real Floquet
multipliers at e±2πα(µ) with α(µ) > 0 for all µ ∈ J and that there is an η > 0 so
that the remaining Floquet multipliers have modulus either less than e−2π(α(µ)+η)

or larger than e2π(α(µ)+η) uniformly in µ ∈ J . We can now choose coordinates
(vc, vs, vss, vu, vuu) near the periodic orbits γ(x, µ) in the zero energy level set that re-
flect the uniform spectral decomposition assumed above. In particular, W u(γ(x, µ), µ)
is given by (vc, 0, 0, vu, vuu) in these coordinates, and we can define the section Σout

by requiring vu = δ. The key hypothesis is that

W s(0, µ) ∩ Σout = {(vc, vs, vss, δ, vuu) = (vc, gs(vc, vss, µ), vss, δ, guu(vc, vss, µ));(6.3)

(vc, vss, µ) ∈ S1 × B × J}

for appropriate smooth functions gs and guu, where B is a small ball centered at the
origin in R

n−1. In particular, zeros of gs correspond to heteroclinic orbits between
u = 0 and u = γ(x, µ). Note that (6.3) requires that the stable manifold W s(0, µ) ap-
proaches the unstable manifold W u(γ(x, µ), µ) of the periodic orbits in backward time
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along the direction associated with the unstable leading Floquet multiplier e2πα(µ) and
that W s(0, µ) intersects W u(γ(x, µ), µ) as transversely as possible.

The results in [40, Theorem 2.1 and (2.8)] show that there is an η > 0 so that
Lemma 3.1 remains true provided (3.2) is replaced by

v(−L) =
(

ϕ − L + O(e−ηL), δ, vss + O(e−ηL), O(e−ηL), O(e−ηL)
)

,

v(L) =
(

ϕ + L + O(e−ηL), O(e−ηL), O(e−ηL), δ, vuu + O(e−ηL)
)

,

v(0) =
(

ϕ, O(e−ηL), O(e−ηL), O(e−ηL), O(e−ηL)
)

.

To find symmetric 1-pulses, we need to solve

(vc, gs(vc, vss, µ), vss, δ, guu(vc, vss, µ))

=
(

ϕ + L + O(e−ηL), O(e−ηL), O(e−ηL), δ, vuu + O(e−ηL)
)

which, upon solving for (vss, vuu), reduces to

(vc, gs(vc, vss, µ)) = (ϕ + L + O(e−ηL), O(e−ηL)).

A similar reduction works for asymmetric 1-pulses.
We conclude that the results presented in §2 remain true for systems in R

2n,
provided we replace all terms of the form e−2α(µ)ℓ by O(e−ηℓ). Thus, while we lose
information about the specific location of saddle-node and pitchfork bifurcations and
about the specific offset of the snaking curves, the results about the bifurcation struc-
ture remain valid.

6.3. Snaking in the planar Swift–Hohenberg equation. We consider sta-
tionary planar patterns that are periodic and reflection-symmetric in one spatial di-
rection and localized in the other direction, and refer to Figure 1.2 or [4, Figure 15a]
for examples. As shown in Figure 1.2, snaking is possible for these patterns, and
our goal is to show that the results described in §2 apply to such patterns under
assumptions similar to those discussed in §6.2.

For the sake of clarity, we outline the framework within which we can study such
patterns only for the planar Swift–Hohenberg equation

Ut = −(1 + ∆)2U − µU + νU2 − U3(6.4)

with (x, y) ∈ R
2. We assume that U(x, y) is a smooth solution of (6.4) that is periodic

in y with minimal period ℓ > 0. We define the wave number κ = 2π/ℓ and introduce
the rescaled variable φ = κy, which allows us to consider the equation

∂4
xU + 2κ2∂2

x∂2
φU + κ4∂4

φU + 2(∂2
xU + κ2∂2

φU) + (1 + µ)U − νU2 + U3 = 0

with φ ∈ S1 = [0, 2π]/∼. For fixed κ and ν, we write this equation as a first-order
system in x and obtain

ux = A(µ)u + N(u),(6.5)

where

A(µ) =









0 1 0 0
0 0 1 0
0 0 0 1

−κ4∂4
φ − 2κ2∂2

φ − (1 + µ) 0 −2 − 2κ2∂2
φ 0









,

N(u) =









0
0
0

νU2 − U3









,
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and

u = (U, Ux, Uxx, Uxxx) ∈ Y := H3
e (S1) × H2

e (S1) × H1
e (S1) × L2

e(S
1)

with L2
e(S

1) = {u ∈ L2(S1) : u(φ) = u(−φ)}. In other words, for each x, u(x) is an
even periodic function of φ. We record that A(µ) is closed and densely defined on Y
with domain Y 1 = H4

e ×H3
e ×H2

e ×H1
e , and for each µ > 0 there is a constant C > 0

so that the resolvent estimate

‖(A(µ) − ik)−1‖L(Y ) ≤
C

1 + |k| ∀k ∈ R(6.6)

holds. Note also that the nonlinearity N : Y → Y is smooth due to Sobolev’s
embedding theorem. In the remainder of this section, we will denote by | · | the norm
in Y .

Localized structures such as those shown in Figure 1.2 correspond to homoclinic
orbits of (6.5) in x that connect the trivial state u = 0 to itself in the space Y
of periodic functions in φ, and we are therefore in a familiar setting. As in §6.2,
Lemma 3.1 is the key technical result that we need to carry forward our analysis, and
much of this section will deal with extending Lemma 3.1 to (6.5).

We first discuss the analogues of Hypotheses 1-7 that we need to analyse symmet-
ric and asymmetric patterns. As shown in [23, §3.3], (6.5) is reversible with reverser
Ru = R(u1, u2, u3, u4) = (u1,−u2, u3,−u4) and conservative with first integral

H(u, µ) =

∫ 2π

0

[

u2u4 −
u2

3

2
+ u2

2 +
(1 + µ)u2

1

2
− νu3

1

3
+

u4
1

4

−κ2(∂yu2)
2 − κ2(∂yu1)

2 +
κ4(∂2

yu1)
2

2

]

dy.

We infer from (6.6) that the origin is hyperbolic for µ > 0 as required in Hypothesis 3.
We need to assume the existence of a family γ(x, µ) of symmetric periodic so-

lutions of (6.5) that have zero energy so that H(γ(·, µ), µ) = 0 for all µ in a closed
nontrivial interval J ⊂ R

+. Furthermore, we assume that the gradient of H does not
vanish along the family γ(0, µ) and that the Floquet spectrum of the orbits γ(x, µ)
is as described in §6.2, where we remark that [25] ensures that these spectra are well
defined for solutions of (6.5). The results proved in [2, 26, 23] show that this ana-
logue of Hypothesis 4 is satisfied by both rolls and hexagons provided 0 < µ ≪ 1. If
the cubic-quintic nonlinearity U 7→ νU3 − U5 is used in (6.4), Hypothesis 5 is also
satisfied, at least for 0 < µ ≪ 1.

It remains to discuss Hypotheses 6-7 which are concerned with the invariant
manifolds of the origin u = 0 and the periodic orbits γ(x, µ). Even though (6.5)
is ill-posed as an initial-value problem, the theory developed in [28, 39] shows that
stable and unstable manifolds exist. Moreover, [39, Theorem 5.1] shows that the
stable and unstable manifolds of γ are foliated by smooth strong stable and strong
unstable fibers. Since the zero-energy level set is a smooth manifold near the periodic
orbits, we can flatten it. Using the smooth invariant foliations, we can then define
coordinates v = (vc, vs, vss, vu, vuu) near the periodic orbits γ(x, µ) in the zero-energy
level set as in §6.2. In these coordinates, we assume that there exist smooth functions
gj for j = u,uu,s,ss so that we have

W s(0, µ) ∩ Σout = {v = (vc, gs(vc, vss, µ), vss, δ, guu(vc, vss, µ)) :
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(vc, vss, µ) ∈ S1 × B × J},
W u(0, µ) ∩ Σin = {v = (vc, δ, gss(vc, vuu, µ), gu(vc, vuu, µ), vuu) :

(vc, vuu, µ) ∈ S1 × B × J},

where B denotes a small ball in the infinite-dimensional space used to parametrize
the strong stable and unstable fibers.

Lemma 6.2. Under the above assumptions, there exist positive constants L0 and
η such that the following is true for all L > L0 and ϕ ∈ S1: there is a unique solution
v(x, µ) of (6.5), defined for x ∈ [−L, L], so that

v(−L) ∈ Σin, v(L) ∈ Σout, vc(0) = ϕ,

and v(x) lies in a neighborhood of the periodic orbits γ(x, µ) for all x ∈ [−L, L].
Furthermore,

v(−L) =
(

ϕ − L + O(e−ηL), δ, vss + O(e−ηL), O(e−ηL), O(e−ηL)
)

,

v(L) =
(

ϕ + L + O(e−ηL), O(e−ηL), O(e−ηL), δ, vuu + O(e−ηL)
)

,(6.7)

v(0) =
(

ϕ, O(e−ηL), O(e−ηL), O(e−ηL), O(e−ηL)
)

.

The solution v(x) is smooth in (ϕ, µ, L), and the error estimates in (6.7) can be
differentiated. In addition,

v(x,−ϕ) = Rv(−x, ϕ), ϕ ∈ S1, |x| ≤ L

and, if Hypothesis 5 holds,

v(x, ϕ + π) = κv(x, ϕ), ϕ ∈ S1, |x| ≤ L.

In particular, the solution v(x, ϕ) is R-reversible, with v(0) ∈ Fix(R), if and only if
ϕ = 0, π, and κR-reversible, with v(0) ∈ Fix(κR), if and only if ϕ = π/2, 3π/2.

Once this lemma has been proven, analogies of Theorems 2.2 and 2.3 can be
proven in a manner similar to the finite-dimensional setting, and we omit the details.

Proof. We cannot prove the statements within the zero-energy level set as flatten-
ing out this manifold destroys the semilinear nature of (6.5) which we need to apply
the results on exponential dichotomies in [28]. Instead, we consider (6.5) in the full
space Y .

Hypothesis 4 implies that there is a smooth two-parameter family γ(·, µ, e) of sym-
metric periodic orbits that are parametrized by µ and their energy e = H(γ(0, µ, e), µ)
for e near zero. We normalize the family γ(x, µ, e) of periodic solutions so that
γ(0, µ, e) ∈ Fix(R) for all (µ, e). For fixed (µ, e, ϕ), we parametrize the strong sta-
ble fiber of γ(x + ϕ, µ, e) by b+ which incorporates the variable vss in the coordi-
nates discussed before Lemma 6.2 and the time-like direction x. Thus, we denote by
q+(x, µ, e, ϕ, b+) the strong stable fiber of γ(x + ϕ, µ, e) so that q+ is smooth in all
arguments and

|γ(x + ϕ, µ, e) − q+(x, µ, e, ϕ, b+)| ≤ Ke−ηx, x ≥ 0.

Similarly, q−(x, µ, e, ϕ, b−) denotes the strong unstable fiber of γ(x + ϕ, µ, e). From
now on, we denote various different constants by the letter K: these different constants
will be bounded by a uniform constant that does not depend on any of the parameters
or variables involved.
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Fig. 6.1. A schematic picture of the matching procedure near the periodic orbit.

We seek solutions of the form

u+(x) = q+(x, µ, e+, ϕ+, b+) + w+(x), x ∈ [0, L],

u+(0) ∈ Σin,

u−(x) = q−(x, µ, e−, ϕ−, b−) + w−(x), x ∈ [−L, 0],

u−(0) ∈ Σout,

u+(L) = u−(−L),

and refer to Figure 6.1 for an illustration. Thus, u± satisfy (6.5) if and only if w±

satisfy

w+
x =

[

A(µ) + Nu(q+(x, µ, e+, ϕ+, b+))
]

w+ + N+(x, w+), 0 ≤ x ≤ L,(6.8)

where N+(x, w+) := N(q+ +w+)−N(q+)−Nu(q+)w+ = O(|w+|2), and analogously
for w−. For the Floquet spectrum of the periodic orbits γ(·), we had assumed that
there exists an η > 0, independent of (µ, e), such that the real part of the spectrum,
other than the two eigenvalues at zero, is bounded in absolute value from below by η.
The results in [28] then imply that the linear part of (6.8) has exponential dichotomies
Φcs

+(x, y) and Φu
+(x, y) that are smooth in (µ, e, ϕ+, b+) such that, for ǫ > 0 sufficiently

small, there exists a K > 0 with

|Φcs
+(x, y)|L(Y ) ≤ Keǫ(x−y), x ≥ y ≥ 0,

|Φu
+(x, y)|L(Y ) ≤ Ke−η(y−x), y ≥ x ≥ 0.

The variation-of-constants formula shows that solutions of (6.8) on [0, L] satisfy the
integral equation

w+(x) = Φu
+(x, L)a+ +

∫ x

L

Φu
+(x, y)N+(y, w+(y)) dy(6.9)

+

∫ x

0

Φcs
+(x, y)N+(y, w+(y)) dy

=: [F(µ, e+, ϕ+, a+, b+, w+)](x)
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and vice versa, where the quantity a+ ∈ Rg(Φu
+(L, L)) is an arbitrary element of

the unstable fiber of q+ at x = L and represents the final linear displacement off
the center-stable manifold. For each fixed (µ, e+, ϕ+, a+, b+), we wish to view F
as a smooth map from C0([0, L], Y ), equipped with the weighted norm ‖w+‖ :=
sup0≤x≤L eη(L−x)|w+(x)|, into itself. Indeed, F is well defined since

‖F(µ, e+, ϕ+, a+, b+, w+)‖

≤ K|a+| + sup
0≤x≤L

Keη(L−x)

∫ x

L

e−η(y−x)e−2η(L−y)‖w+‖2 dy

+ sup
0≤x≤L

Keη(L−x)

∫ x

0

eǫ(x−y)e−2η(L−y)‖w+‖2 dy

≤ K|a+| + sup
0≤x≤L

K

[

e−ηL

∫ x

L

eηy dy + e−η(L+x)eǫx

∫ x

0

e(2η−ǫ)y dy

]

‖w+‖2

≤ K|a+| + K‖w+‖2,

and it is also straightforward to verify that F is smooth in (µ, e+, ϕ+, a+, b+, w+). In
particular, for all sufficiently small a+, (6.9) has a unique solution w+, which satisfies
|w+(x)| ≤ K|a+|e−η(L−x) for all x ∈ [0, L]. We also have

|w+(L) − a+| ≤ K|a+|2, |w+(0)| ≤ K|a+|e−ηL.

Analogous arguments apply to the function w−, which satisfies the integral equation

w−(x) = Φs
−(x,−L)a− +

∫ x

−L

Φs
−(x, y)N−(y, w−(y)) dy(6.10)

+

∫ x

0

Φcu
− (x, y)N−(y, w−(y)) dy

for x ∈ [−L, 0], where a− ∈ Rg(Φs
−(−L,−L)) is in the stable fiber of q− at x = −L.

The unique solution of (6.10) satisfies

|w−(−L) − a−| ≤ K|a−|2, |w−(0)| ≤ K|a−|e−ηL.

We now solve the matching condition u+(L) = u−(−L) given by

γ(L + ϕ+, µ, e+) − γ(−L + ϕ−, µ, e−) + a+ − a− = O(|a+|2 + |a−|2 + e−ηL),(6.11)

where we used the fact that |q+(L, µ, e+, ϕ+, b+) − γ(L + ϕ+, µ, e+)| = O(e−ηL) and
analogously for q−. To solve these equations, we fix (ϕ, e) and set

e+ = e + ê, ϕ+ = ϕ + ϕ̂ − L,

e− = e − ê, ϕ− = ϕ − ϕ̂ + L

for (ϕ̂, ê) small, so that (6.11) becomes

γ(ϕ + ϕ̂, µ, e + ê) − γ(ϕ − ϕ̂, µ, e − ê) + a+ − a− = O(|a+|2 + |a−|2 + e−ηL).(6.12)

Since the left-hand side vanishes at (ϕ̂, ê, a+, a−) = 0, and its derivative with respect
to these variables is invertible, we find a locally unique solution (ϕ̂0, ê0, a

+
0 , a−

0 ) of
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(6.12), which depends smoothly on the variables (µ, e, ϕ, b−, b+, L). We can also solve
the remaining equations

u+(0) = q+(0, µ, e+, ϕ+, b+) + O(e−ηLa+) ∈ Σin,

u−(0) = q−(0, µ, e−, ϕ−, b−) + O(e−ηLa−) ∈ Σout

for (ϕ̂0, ê0, a
+
0 , a−

0 ) as functions of (µ, e, ϕ, b−, b+, L). We record that (ϕ̂0, ê0, a
+
0 , a−

0 ) =
O(e−ηL).

We determine now when these solutions are reversible. For given (µ, e, ϕ, b−, b+, L),
we define

v+(x) := Ru−(−x), v−(x) := Ru+(−x),

and note that these functions satisfy (6.5) and

v+(L) = Ru−(−L) = Ru+(L) = v−(−L),

v+(0) = Ru−(0) ∈ RΣout = Σin,

v−(0) = Ru+(0) ∈ RΣin = Σout,

where we used that u+(L) = u−(−L). We want to show that v± = u± whenever
ϕ ∈ {0, π} and b− = Rb+. For ϕ = 0 and b− = Rb+, we have

u+(x) = q+(x; µ, e + ê0, ϕ̂0 − L, b+) + Φu(x, L)a+
0 + ŵ+(x),

u−(x) = q−(x; µ, e − ê0, ϕ̂0 + L, b−) + Φs(x,−L)a−
0 + ŵ−(x)

for a unique (ϕ̂0, ê0, a
+
0 , a−

0 ), where all integrals present in (6.9) are subsumed into
ŵ±. Hence,

v+(x) = Ru−(−x) = q+(x; µ, e − ê0,−ϕ̂0 − L, b+) + Φu(x, L)Ra−
0 + Rŵ−(x),

v−(x) = Ru+(−x) = q−(x; µ, e + ê0,−ϕ̂0 + L, b−) + Φs(x,−L)Ra+
0 + Rŵ+(x).

In the above, we have used Rq+(x; µ, e + ê0, ϕ̂0 − L, b+) = q−(x; µ, e + ê0,−ϕ̂0 +
L,Rb+) together with b− = Rb+, and similarly for q−. We have shown above
that (ϕ̂0, ê0, a

+
0 , a−

0 ), and therefore the functions ŵ±, are uniquely determined by
(µ, ϕ, e, b+, b−, L). On the other hand, a comparison of the above expressions for u±

and v± shows that both (ϕ̂0, ê0, a
+
0 , a−

0 ) and (−ϕ̂0,−ê0,Ra−
0 ,Ra+

0 ) give solutions for
the same data (µ, ϕ, e, b+, b−, L) which means that ê0 = ϕ̂0 = 0 and u± = v± as
claimed. This establishes that u is reversible whenever ϕ = 0 and b− = Rb+, and a
similar argument gives reversibility when ϕ = π.

Finally, we need to show that we can choose e so that the solutions u± lie in the
zero energy set. Using that H is conserved along solutions, we find

H(u+(0)) = H(u+(L)) = H(q+(L, µ, e, ϕ − L, b+) + O(e−ηL))

= H(γ(ϕ, µ, e) + O(e−ηL)) = H(γ(0, µ, e)) + O(e−ηL)

and therefore d
deH(u+(0)) 6= 0 near e = 0 by hypothesis. Thus, we can solve near

e = 0 for the unique solution e = e(µ, ϕ, b+, L) that will guarantee that H(u+) = 0.
We are now in a position to transfer the results obtained in Y to the flattened

zero-energy level set by applying out the coordinate transformations described briefly
before Lemma 6.2, and we omit the details.
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6.4. Reversible systems without first integral. We assumed in Hypothesis 2
that the underlying ODE is conservative. For symmetric pulses, this assumption is
not needed, and Theorem 2.2 is true for systems that satisfy only Hypotheses 1, 3-
4, and 6-7. More precisely, we assume that there is a smooth two-parameter family
γ(·, µ, e) of symmetric periodic orbits that are parametrized by µ and a second internal
parameter e. To find homoclinic orbits, we can utilize the Shilnikov variables that
were discussed in the proof of Lemma 6.2 in §6.3 to characterize solutions that pass
near the two-parameter family of symmetric periodic orbits. Symmetric orbits can
then be found by following the proofs in §4 except that we now solve simultaneously
not only for (L, µ) but also for the variable e that encodes which of the reversible
orbits γ(·, µ, e) the homoclinic orbit follows.

To construct asymmetric pulses, we note that a first integral in R
4, say, allows us

to reduce each of the three-dimensional sections Σin and Σout to a two-dimensional
section. If we do not have a first integral, we need two additional free variables to
be able to solve in each section in the direction corresponding to e along the one-
parameter family γ(x, µ, e) of reversible periodic orbits. In one section, we can simply
use the parameter e itself. For non-conservative systems, no other free variables are
available, and stationary asymmetric pulses should therefore not exist. Instead, asym-
metric pulses should begin to move, and we are led to consider the Swift–Hohenberg
equation in a moving frame y = x − ct,

Ut = −(1 + ∂2
y)2U + c∂yU − µU + νU2 − U3,

and seek stationary localized states U(y) for this equation, where c provides now an
additional free parameter. Using the unique periodic solution of the adjoint variational
equation around each reversible periodic orbit, we find that the equation for e in
Fenichel’s normal form becomes ey = c + h.o.t.. Thus, we can use e and c to solve
in the remaining directions in each section, and we conclude that asymmetric pulses
exist exponentially close to the sets described by Lemma 5.3 for wave speeds that are
O(e−ηL).

7. Discussion. In this paper, we identified conditions on the global bifurcation
structure of heteroclinic orbits between equilibria and periodic orbits that guarantee
that we can glue connecting orbits together to construct both symmetric and asym-
metric orbits that are homoclinic to the underlying equilibrium. We also showed that
snaking occurs provided the global structure of fronts is as shown in Figure 1.5(i)-
(ii), while the structure sketched in Figure 1.5(iii) leads to infinitely many isolas of
pulses. We reiterate that our results can be used to predict all branches of asymmetric
pulses once the branches of the symmetric states have been computed: Figure 1.7 in-
dicates how bifurcation branches can be constructed from the function z, while (1.5)
shows that the branch µ∗(L, ϕ0) of symmetric pulses is exponentially close to the
graph µ = z(L + ϕ0) of z, so that we can accurately calculate z through numerical
computations of the branch µ∗(L, ϕ0) of symmetric pulses.

PDE stability. We now comment on temporal stability of symmetric and asym-
metric pulses in the context of self-adjoint partial differential equations (PDEs) such
as the Swift–Hohenberg equation (1.1). Numerical computations of the first few eigen-
values of symmetric pulses of (1.1) have been published in [3, Figures 10-11], and our
goal here is to compare these computations with theoretical predictions.

The spectrum of each front is the union of isolated eigenvalues and the essential
spectra Σ0

ess and Σrolls
ess of the trivial state and the asymptotic rolls, respectively. We

assume that the front spectrum looks as shown in the top panel of Figure 7.1(i). In
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Fig. 7.1. Panel (i) shows the anticipated PDE spectra of fronts [top] and symmetric 1-pulses
[bottom]: Σ0

ess denotes the essential spectrum of the trivial state U = 0; the essential spectrum Σrolls
ess

of the asymptotic rolls for fronts breaks up into O(L) eigenvalues for pulses; if the front has a single
saddle-node eigenvalue, then we expect that pulses have two eigenvalues that move back and forth
as we move along the snaking curve and cause saddle-node and pitchfork bifurcations. The expected
movement of the saddle-node [solid circles] and pitchfork [open circles] eigenvalues is shown in more
detail in panels (ii) and (iii), respectively corresponding to gµ > 0 and gµ < 0, along branches of
symmetric [solid] and asymmetric [dotted] 1-pulses, where we assumed that symmetric pulses are
stable along the lower branch.

particular, we assume that Σ0
ess lies on the negative real axis R

−, at some distance
away from zero, and that Σrolls

ess , which emerges from λ = 0, lies in R
−
0 . The origin

λ = 0 is a branch point of the dispersion relation of the rolls. It remains to discuss
the point spectrum of the fronts. Inspecting a typical bifurcation diagram such as
Figure 1.5(i), we may expect that there is a single eigenvalue associated with the fronts
that moves back and forth through zero at each fold bifurcation: note, however, that
once the “eigenvalue” lies on the negative real axis, it is contained in Σrolls

ess , and there
may no longer be a genuine eigenfunction associated with it. The Evans function5

provides a mechanism for identifying the saddle-node eigenvalue even when it lies in
R

−
0 . The results in [18, 17] show that the Evans function E(γ, µ) is analytic in γ

near the origin6, where γ2 = λ, and that positive roots γ of E(γ, µ) correspond to
genuine positive eigenvalues λ, while negative roots γ have only exponentially growing
eigenfunctions. Thus, saddle-node eigenvalues can be tracked as zeros of E even for
λ < 0. Typically, we expect that a root γ crosses from R

+ to R
− as we pass through a

saddle-node bifurcation, and we therefore seem to lose the fold eigenvalue (as negative
roots γ do not correspond to genuine eigenvalues). However, if we take into account
that γ0 = 0 is a zero of the Evans function for all µ due to translation invariance,
then a preliminary analysis yields the expansion E(γ, µ) = γ[aγ2 +b(µ−µsn)+h.o.t.],
which implies that the fold root γ moves from the positive axis onto the imaginary
axis, and λ = γ2 < 0 indeed becomes negative.

Next, we consider symmetric pulses along the snaking curve which are constructed
by gluing together a front Uf(x) and its symmetric counterpart Uf(−x). We argue
that the spectra of symmetric pulses should look as shown in the bottom panel of
Figure 7.1(i). The essential spectrum of the linearization about a symmetric pulse
is given by the spectrum Σ0

ess of U = 0. The essential spectrum Σrolls
ess of rolls is

not in the spectrum of the pulses but instead breaks up into O(L) eigenvalues whose
union converges to Σrolls

ess in the symmetric Hausdorff distance as L → ∞ [37, 38, 31].

5We refer to [36] for a survey
6To keep with standard notation, γ stands for ±

√
λ, and not for the periodic orbits, in this

discussion
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Fig. 7.2. Panel (i) shows the numerically computed saddle-node eigenvalue λsn of the symmetric
pulses of (1.1) for ν = 1.6 along the snaking curve. Panel (ii) contains a schematic plot of the
numerically computed saddle-node eigenvalue λsn from panel (i) [upper-left dotted] and an absolute
eigenvalue λ [lower-right dotted], plotted together with the eigenvalue λf of the front [solid blue]
and the theoretically predicted absolute eigenvalues λabs [horizontal lines]. The computations in
(i) suggest that the saddle-node eigenvalue becomes the first absolute eigenvalue once it reaches
Re λ < 0.

Translation symmetry implies that the root γ0 = 0 of the front persists as a simple
eigenvalue of the pulses, which is in agreement with the numerical computations in
[3, Figure 10].

For parameter values µ for which the front has an unstable saddle-node eigenvalue
λf > 0, [37] shows that symmetric pulses will have two eigenvalues, belonging to even
and odd eigenfunctions, respectively, within O(e−ηL) distance of λf . At saddle-node
and pitchfork bifurcations, these eigenvalues will cross through the origin onto the
negative real axis, in agreement with the preceding discussion for fronts, where we
asserted that the fold roots γ ∈ iR of the Evans function correspond to elements
λ = γ2 < 0 on the negative axis. The fold and pitchfork eigenvalues will then collide
with the O(L) absolute eigenvalues which emerge from the essential spectrum of the
rolls and are situated at approximately O(1/L)-distance from each other. The spectral
picture shown in [3, Figure 10] suggests that the saddle-node and pitchfork eigenvalues
can be distinguished from these absolute eigenvalues. Our numerical computations,
shown in Figure 7.2, indicate that this is not the case: instead, the saddle-node
eigenvalue assumes the role of the first absolute eigenvalue. We do not know whether
this is an artifact of the discretization or a genuine effect of the PDE operator but
believe it is the latter.

Finally, we comment on the expected spectra of the asymmetric pulses that bi-
furcate at pitchfork bifurcations from the symmetric pulses. As illustrated in Fig-
ure 7.1(ii)-(iii), we expect asymmetric pulses to be unstable near onset, and we shall
assume that symmetric pulses are stable along the lower branch. In the case of Fig-
ures 1.5(i) and 1.6(i), the asymmetric pulses do not undergo additional fold bifurca-
tions and should therefore be unstable across the branch. In contrast, in the situation
shown in Figures 1.5(ii) and 1.6(ii), the asymmetric pulses undergo additional folds
as indicated in Figure 7.1(ii)-(iii), and the two critical eigenvalues are expected to be
either both unstable or both stable along the middle branch.

Formal front interaction equations. To gain insight into the stability properties of
asymmetric pulses, we discuss a formal approach in the spirit of collective coordinates,
which attempts to capture the temporal interaction of the fronts that make up the
pulses we constructed. We emphasize that this approach is, in the current context,
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entirely formal7. Starting point is the assumption that the underlying PDE

Ut = −(1 + ∂2
x)2U + F (U, µ)

has an invariant manifold consisting of possibly time-dependent pulse-like solutions
of the type shown in the bottom panel of Figure 7.1(i). We parametrize this manifold
by U = U(L, ϕ), where 2L is the spatial width of the roll plateau and ϕ is the phase
of the solution, relative to the rolls, at x = 0. Substitution into the PDE gives

ULLt + Uϕϕt = −(1 + ∂2
x)2U + F (U, µ),(7.1)

where (L, ϕ) depends only on t. In §3-5, we showed that stationary solutions of (7.1)
with (Lt, ϕt) = 0 are determined by the matching conditions

(

g(L + ϕ, µ)
g(L − ϕ, µ)

)

+ O(e−ηL) = 0,(7.2)

which we derived in §5. If (Lt, ϕt) is small, then the left-hand side of (7.1) is, for each
fixed t, a small inhomogeneous perturbation of the ODE on the right-hand side, and
we arrive at a matching condition similar to (7.2) which then uniquely determines
(Lt, ϕt); this is one way of deriving the pulse-interaction equations in [10, 45] and [36,
§5.3]. In our situation, (Lt, ϕt) is not small, and the resulting matching condition could
be complicated. Without any rigorous justification, we assume that the contribution
of the left-hand side of (7.1) to (7.2) is linear. Assuming furthermore, for simplicity,
that g(ϕ, µ) = z(ϕ) − µ, then a comparison of the parametrization by (L, ϕ) with
(3.2) leads to the dynamical system

Lt + ϕt = a[z(L + ϕ) − µ] + O(e−ηL),(7.3)

Lt − ϕt = a[z(L − ϕ) − µ] + O(e−ηL)

for the temporal evolution of (L, ϕ). Adding and subtracting the two equations in
(7.3), we obtain

Lt =
a

2
[z(L + ϕ) + z(L − ϕ) − 2µ] + O(e−ηL),(7.4)

ϕt =
a

2
[z(L + ϕ) − z(L − ϕ)] + O(e−ηL).

In the Swift–Hohenberg equation, the trivial state invades rolls for all sufficiently large
µ, while rolls invade the background state for µ sufficiently small. This requires a > 0,
and we therefore focus on the equation

Lt = z(L + ϕ) + z(L − ϕ) − 2µ + O(e−ηL),(7.5)

ϕt = z(L + ϕ) − z(L − ϕ) + O(e−ηL),

obtained by rescaling time in (7.4) for a > 0. The linearization of (7.5) about an
equilibrium has eigenvalues λ± = z′(L ± ϕ) + O(e−ηL). In particular, we can read
off the PDE eigenvalues predicted by this formal approach from the geometric con-
struction of asymmetric pulses that we outlined in Figure 1.7. In the situation of
Figure 7.1(ii)-(iii), these heuristic arguments predict that the asymmetric pulses are

7Situations in which interaction equations can be justified are discussed in [45] and the references
therein
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µ > 0 µ < 0µ = 0

Fig. 7.3. Displayed are the spatial eigenvalues in the complex plane near a Hamiltonian Hopf
bifurcation. This bifurcation corresponds to a Turing bifurcation, which occurs for µ = 0 in the
Swift–Hohenberg equation.

stable on the middle branch, since we have z′(L ± ϕ) < 0 along the middle branch,
while they have one unstable eigenvalue on the other two branches in agreement with
Figure 7.1(ii)-(iii).

The preceding formal analysis also predicts that symmetric pulses with ϕ0 ∈
{0, π} have two eigenvalues exponentially close to z′(L + ϕ0), which agrees with the
discussion above that led to Figure 7.1(i). The additional correlation between the
derivative of the snaking curve and the fold and pitchfork eigenvalues of symmetric
pulses is, at least qualitatively, reflected in the numerical computations of [3, Fig-
ure 10].

While the arguments outlined above are formal, we expect that our predictions
for the location of eigenvalues of asymmetric pulses can be proved, or disproved,
rigorously near each fold on the asymmetric bifurcation curves as we can utilize center-
manifold reductions, but we have not yet pursued this further.

Multi-pulses. So far, we exclusively discussed pulses that follow the heteroclinic
cycle formed by the front and its symmetric counterpart exactly once. In addition to
these single-hump pulses, we expect to find multi-pulses that follow the heteroclinic
cycle N -times for each N ≥ 2, and the question is then whether these multi-pulses
snake as well. The numerical computations in [41, 43], and more recently in [6, 20],
suggest that multi-pulses actually lie on isolas. The techniques employed in this paper
can also be used to study multi-pulses, and we currently carry this analysis out.

The Swift–Hohenberg equation, and degenerate Hamiltonian Hopf bifurcations.
We now return to the steady-state equation

(1 + ∂2
x)2U + µU − νU2 + U3 = 0(7.6)

of the Swift–Hohenberg equation. It is known that rolls bifurcate from U = 0 in
a Turing bifurcation, which occurs for µ = 0 and is supercritical for ν < ν∗ :=
√

27/38 and subcritical for ν > ν∗. For the first-order ODE associated with (7.6),
this bifurcation corresponds to a Hamiltonian Hopf bifurcation, where two pairs of
eigenvalues collide and split on the imaginary axis as shown in Figure 7.3. It was
shown in [44] that the normal form of the degenerate Hamiltonian Hopf bifurcation
near ν∗ =

√

27/38 has a heteroclinic cycle that connects u = 0 to a periodic orbit
along a branch ν = νM(µ) in parameter space that emerges from (µ, ν) = (0, ν∗).
Since the normal form is integrable and admits an S1-symmetry, these heteroclinic
orbits are degenerate in the sense that the two-dimensional unstable manifold of u = 0
coincides with the two-dimensional stable manifold of the periodic orbit in the zero
energy level set. In other words, the function g(ϕ, µ) from Figure 1.4 is identically
zero, and so is the resulting function z(ϕ): snaking does not occur in the normal form
as the solution branch is vertical. However, the normal form does not represent the
full equation, which cannot be transformed into normal form.
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Chapman and Kozyreff [21, 7] recently investigated the existence of fronts and of
symmetric and asymmetric pulses of (7.6) along the branch ν = νM(µ) for 0 < µ ≪
1 near the degenerate Hamiltonian Hopf bifurcation through a formal asymptotics-
beyond-all-orders analysis. In their analysis, they fixed 0 < µ ≪ 1 and showed that,
as ν is increased from a value below to a value above νM(µ), two fronts are first
created and subsequently destroyed; the width of the associated existence interval is
exponentially small in µ. Chapman and Kozyreff then constructed symmetric and
asymmetric pulses by gluing these fronts together. In particular, they showed that
symmetric pulses of (7.6) with a roll plateau of length 2L exist for ν given by

ν(µ, L) = νM(µ) +
a0e

− π√
µ

µ
cos

(

L + ϕ0 +
log µ

4
√

734
+ a1

)

+ O(
√

µe−
√

µL)(7.7)

for constants a0, a1 ∈ R and with ϕ0 ∈ {0, π} and L ≫ 1/µ, see8 [7, Eqn. (162)].
They also showed that the two snaking branches are connected by ladder branches
corresponding to asymmetric pulses. These results are established by a careful mul-
tiscale analysis: To any polynomial order in (µ, ν), the phase of the Turing patterns
that emerge from µ = 0 is not visible in the amplitude equations that describe slow
modulations of the Turing patterns; this decoupling creates a one-parameter family
of degenerate fronts in each truncated amplitude equation, which correspond to the
degenerate heteroclinic orbits found in the normal form mentioned above. However,
using the analyticity of (7.6), Chapman and Kozyreff showed how the exponentially
small coupling of the fast phase to the slow modulation can be recovered through the
calculation of Stokes curves of front and pulse solutions when the independent vari-
able x is moved into the complex plane. In summary, the beyond-all-orders analysis
for (7.6) in [21, 7] establishes that the function z(ϕ), which describes fronts, is given
by

z(ϕ) = νM(µ) +
a0e

− π√
µ

µ
cos

(

ϕ +
log µ

4
√

734
+ a1

)

(7.8)

and that symmetric pulses exist along two snaking branches, while asymmetric pulses
exist on ladder branches that connect the snaking branches; the width of all branches
is exponentially small in µ.

In contrast, for our results, we need to assume that the function z(ϕ) is not
degenerate: this assumption then allows us to construct the bifurcation diagrams of
symmetric and asymmetric pulses. Thus, if we assume that z(ϕ) is given by (7.8), as
shown by the formal analysis in [21, 7], then Theorem 2.2 also gives (7.7). Indeed,
we argued in §4 that Hypotheses 1-3 are satisfied for (7.6). Furthermore, Hypothe-
sis 4 can be checked easily using the amplitude equations near the Hamiltonian Hopf
bifurcation, see [44]. Applying Theorem 2.2 to (7.6) for fixed µ with 0 < µ ≪ 1 and
varying ν, we obtain from (2.7) and (7.8) the bifurcation equation

ν = z(L + ϕ0) + O(e−η(µ)L)

= νM(µ) +
a0e

− π√
µ

µ
cos

(

L + ϕ0 +
log µ

4
√

734
+ a1

)

+ O(e−η(µ)L)

8The relation between the parameters used in [7] and those in (7.6) is explained in [7, Footnote 1
on p. 321]. The full width of the localized states constructed in [7] is given by L/ǫ4 in the notation
of [7] (see [7, Figure 3]), while we measure width relative to the phase ϕ ∈ [0, 2π] of the rolls: this
phase is given in [7, Eqn. (161)], and substitution of this equation into [7, Eqn. (162)] and using L
instead of ϕ gives (7.7). Finally, the constant β in [7, Eqn. (162)] is defined in [7, Eqn. (76)].
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for some η(µ) > 0, where ϕ0 = 0, π. Since the Floquet multipliers ±α(µ) of the
roll patterns are of order

√
µ for all ν, our proof of Theorem 2.2 shows that we may

take η(µ) = O(
√

µ). The x 7→ −x symmetry of (7.6) implies that the two branches
for ϕ0 = 0, π correspond to even localized states: solutions on the first branch have
a maximum at x = 0, while solutions on the second branch have a minimum at
x = 0. Similarly, the cubic-quintic Swift–Hohenberg equation (1.2) will exhibit two
branches of symmetric pulses: one branch corresponds to even solutions U(x) and
their symmetric counterparts −U(x), while the other branch consists of odd solutions
and their symmetric counterparts.

To summarize the differences between our approach and that of [21, 7], their
results establish the existence of fronts and of localized pulses for the Swift–Hohenberg
equation (7.6) near the degenerate Turing (or Hamiltonian Hopf) bifurcation that
occurs at (µ, ν) = (0,

√

27/38); it does not seem possible to extend them to degenerate
Turing bifurcations in systems or to equations that are not analytic. Our results, on
the other hand, establish the existence of localized pulses based on the assumption that
the bifurcation structure of fronts is known: However, our results are not restricted
to the vicinity of Hamiltonian Hopf bifurcations and infer the solution structure of
symmetric and asymmetric localized pulses from the possibly very complex bifurcation
structure of fronts; in addition, our results apply to non-conservative equations, to
systems, and to problems posed on multidimensional cylindrical domains.

Finally, we mention that the theory presented here agrees with the earlier nu-
merical results for both symmetric and asymmetric pulses that are summarized in
Figure 1.1. Isolas of symmetric pulses were found in [3, Figure 24], which is in agree-
ment with Theorem 6.1. Structures that are localized in one direction and periodic in
the other direction were found recently in [1] for the planar Swift–Hohenberg equation.
The numerically computed snaking curve resembles Figure 1.5(ii), and Theorem 2.3
predicts several interesting branches of asymmetric states, see Figure 1.6(ii). The
conjecture stated above asserts that the bifurcating asymmetric solutions are stable
along the middle branch. Subsequent to our analysis, we have computed the predicted
asymmetric states and their PDE spectra [1], and these initial computations indicate
that solutions are indeed stable on the middle branch.
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