
Stability of Travelling Wave Solutions for
Coupled Surface and Grain Boundary Motion

Margaret Beck ∗ Zhenguo Pan † Brian Wetton ‡

May 14, 2010

Abstract

We investigate the spectral stability of the travelling wave solu-
tion for the coupled motion of a free surface and grain boundary that
arises in materials science. In this problem a grain boundary, which
separates two materials that are identical except for their crystalline
orientation, evolves according to mean curvature. At a triple junc-
tion, this boundary meets the free surfaces of the two crystals, which
move according to surface diffusion. The model is known to possess a
unique travelling wave solution. We study the linearization about the
wave, which necessarily includes a free boundary at the location of the
triple junction. This makes the analysis more complex than that of
standard travelling waves, and we discuss how existing theory applies
in this context. Furthermore, we compute numerically the associated
point spectrum by restricting the problem to a finite computational
domain with appropriate physical boundary conditions. Numerical
results strongly suggest that the two-dimensional wave is stable with
respect to both two- and three-dimensional perturbations.
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Figure 1: The quarter loop bi-crystal geometry.

1 Introduction

Many physical processes in material science and other fields can be approx-
imately described by geometrical motion. For example, interfaces between
crystal grains in an annealing process can be described by curvature motion
in an idealized, isotropic setting. In two dimensional (2D) processes these
interfaces meet at triple junctions at prescribed angles. A comprehensive in-
troduction to grain boundary motion is given in [12]. This type of geometric
curve network problem has attracted much interest in the literature, both
analytical [8, 11] and numerical [2, 20]. The statistics of grain sizes and its
change with time is also of interest [1].

In this paper, we investigate the spectral stability of travelling waves in
a model for coupled surface and grain boundary motion. This is an impor-
tant phenomenon controlling the grain growth in materials processing and
synthesis. The basic physics for this phenomenon were introduced in Dunn
et. al. [9] in the so-called the “quarter loop” geometry shown in Figure 1.
The grain boundary runs parallel to a free surface before it turns up and
attaches to the upper free surfaces at a groove root. The point at which
the three curves meet is often referred to as a triple junction. In certain
applications, when heated at a specific temperature, the grain boundary can
migrate to reduce the surface energy and to heal the orientation mismatch.
This can lead to waves travelling at a constant speed, in which one grain
grows at the expense of the other. Semi-explicit formulae of these travelling
wave solutions can be found in [14, 15]. The grain boundary curve in Fig-
ure 1 moves with curvature motion, that is with normal velocity equal to
the local curvature. The free surface curves in Figure 1 move with surface
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diffusion. Because the quarter-loop problem in Figure 1 involves both cur-
vature motion (second order parabolic) and surface diffusion (fourth order
parabolic) we describe it as a mixed-order problem. Although the detailed
composition of the material can be quite complex, a simple model composed
of a grain boundaries separating components that are identical except for
their crystalline orientation can help elucidate certain aspects of the way the
material behaves. For example, these models give insight into a mixture of
electrical steel and silicon that is an important component in transformers
[10]. In this application, the properties of the material are closely related to
the orientation of the grains.

In general, this process is three-dimensional. As suggested by Figure 1,
we will make the standard assumption that the bi-crystal is uniform along the
cross-sectional direction [16] leading to a two-dimensional model. Ultimately,
one would like to understand the spectral stability of the travelling wave
for the full three-dimensional mixed-order problem. Roughly speaking, this
means linearizing the system about the 2D travelling wave and determining
the spectrum of the resulting operator. If the spectrum, which consists of
both continuous and point spectrum, lies in the left half of the complex plane,
then the wave is said to be spectrally stable. In general, it is possible to
analytically determine the location of the continuous spectrum, but difficult
to do so for the point spectrum, also known as the eigenvalues. Therefore,
we will compute the eigenvalues numerically. This will be done using the
partial differential algebraic equation (PDAE) formulation of the problem
proposed in [20] which has several advantages in this setting and is described
in more detail below and in §2. In §4 and 5, we will present numerical
results that strongly suggest such two-dimensional travelling wave solutions
for the mixed order problem shown in Figure 1 are stable to two- and three-
dimensional perturbations. This is the main contribution of this work. There
is little analysis or computational work in the literature for this mixed-order
problem in 3D. The work in this paper helps to fill that gap for this well-
studied process. See also [4] for recent computational work on this problem
in 3D.

In addition to this mixed-order problem, we also consider a simplified
equal-order model, shown in Figure 2, that involves only grain boundary
(curvature) motion. In this model, three grain boundaries meet at a triple
junction and evolve by curvature motion. At the triple junction, the curves
meet at the given angles θ shown. Far away from the triple junction, they
run parallel to the horizontal direction.
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Figure 2: A curvature motion model.

Solving general geometric curve motion problems with junctions numer-
ically has received a lot of recent attention [17, 24, 2, 3]. A number of
numerical approaches were considered in [25, 26] applied to the quarter-
loop problem of interest in the current paper. The PDAE formulation was
identified as having superior numerical properties during this study and was
presented in [20]. The travelling wave solutions considered here were used to
verify convergence of this method. The approach discovered independently
in [2], although presented quite differently, has underlying similarities to our
approach. This formulation is used in the present work for the numerical
eigenvalue determination for the linearized problem around travelling waves.

A theoretical study of stability is most easily performed for problems
written in Cartesian formulations. In that context, we must allow for per-
turbations not just of the wave but also of the location of the triple junction.
As discussed in §2 below, this leads to the presence of a free boundary in the
linearized problem, which can potentially create additional difficulties and
new phenomenon in the analysis. Stability theory in the presence of free
boundaries has been studied rigorously in [6, 7], and below we will discuss
what these results imply about the current models. Our theoretical discus-
sion is less rigorous for the PDAE formulation of the mixed-order problem,
although we observe good agreement between theoretical predictions of the
absolute spectrum and numerical results.
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Another issue we must deal with is that numerical calculation of the eigen-
values necessarily involves the truncation of the unbounded spatial domain
to one of finite length, and one must be careful in choosing the boundary
conditions so as not to create spurious eigenvalues. Rigorous results for sta-
bility problems in this context can be found in [5, 21, 22], which we will use
to determine the appropriate boundary conditions for this model.

The outline of the remainder of the paper is as follows. The equations
of the models are described in detail in §2. We then present a theoretical
discussion, mainly targeted at the simple, equal order problem, in §3. For
this problem, there exists an explicit travelling wave solution in Cartesian
coordinates. We recall here existing linear stability theory, including that
involving a free boundary and domain truncation for numerical calculation of
the point spectra. In §4, the PDAE method is used to investigate the stability
to 2D perturbations of the travelling wave in the simplified model and the
mixed-order problem. In §5 the analysis is extended to 3D perturbations of
the mixed-order problem. Our results indicate that the travelling waves are
stable in all these settings.

2 Model Formulation

2.1 Simple, equal order grain boundary model

The equations and junction conditions for the simple model shown in Figure 2
are described below first in terms of two-dimensional Cartesian coordinates.
This Cartesian formulation is amenable to the theoretical discussion in §3
of the travelling waves we consider. An alternate formulation, the PDAE
formulation, is subsequently described which is the basis of the numerical
investigation of the point spectra.

To describe the simple curvature motion network problem shown in Fig-
ure 2 in terms of Cartesian coordinates, let yi(x, t), i = 1, 2, 3 be the vertical
displacement of each curve. The location x = q(t) of the junction must be
introduced as an additional unknown. In this formulation, the problem is of
free boundary type. Curvature motion of the three curves is described by

∂tyi =
∂2

xyi

1 + (∂xyi)2
, (1)
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with junction conditions

y1(q(t), t) = y2(q(t), t) = y3(q(t), t)

arctan[∂xy1(q(t), t)]− arctan[∂xy2(q(t), t)] = θ

arctan[∂xy1(q(t), t)]− arctan[∂xy3(q(t), t)] = −θ (2)

and far field conditions

y1(−∞, t) = 0, y2(+∞, t) = 1, y3(+∞, t) = −1. (3)

This free-boundary, Cartesian formulation forms the basis of the discussion
in §3.

The curves in the simple curvature motion network problem shown in
Figure 2 can also be described by parametrized curves Xi(σ, t) with param-
eter σ ∈ [0,∞) with σ = 0 corresponding to the junction. Here, X denotes
a quantity with two components (x, y) in 2D and three components (x, y, z)
in 3D. In this formulation, curves that are not single valued functions can
be described. Such curves can be present in mixed order travelling waves as
shown in Figure 7. An additional numerical advantage of this parametrized
curve formulation is that the junction is a fixed boundary condition, not a
free boundary one. For general parametrized curves in 2D, the tangent T
and normal N vectors and the curvature κ can be calculated as follows

T =
∂σX

|∂σX|
N = T⊥

κ =
∂2

σX ·N
|∂σX|2

The correct normal motion is achieved when

∂tXi ·Ni = κi (4)

for i = 1, 2, 3, where κi and Ni are computed from derivatives of Xi with re-
spect to σ as indicated above. Notice that the tangential velocity away from
the junction can be chosen arbitrarily. An additional condition to specify the
parametrization with good numerical properties was identified in [20] and in-
dependently in [2]. Additional details about the formulation and alternative
approaches to the problem can be found in these papers. The additional
condition is

∂σXi · ∂2
σXi = 0 (5)
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This enforces that the parametrization remains a scaled arc length, although
the scaling can change in time for finite length curves. This is seen by
rewriting the condition above as

1

2
∂σ|∂σXi|2 = 0

The junction conditions for the parametrized formulation above are

X1(0, t) = X2(0, t) = X3(0, t)

∂σX1(0, t)

|∂σX1(0, t)|
· ∂σXi(0, t)

|∂σXi(0, t)|
= cos θ i = 2, 3 (6)

and the far-field conditions are

X1(∞, t) = (−∞, 0)

X2(∞, t) = (∞, 1)

X3(∞, t) = (∞,−1) (7)

|∂σXi(∞, t)| = 1, i = 1, 2, 3

The last condition fixes the parametrization σ to be arc length. Note that
σ = +∞ represents the far-field for all curves in this formulation.

2.2 Mixed-order, quarter loop model

We now return to the mixed-order, quarter loop problem shown in Figure 1.
Aspects of the model of this phenomenon described below were originally
proposed in [18], and its present form was developed in [13] but rewritten in
the PDAE formulation of parametrized curves developed in [20]. Let X1(σ, t)
denote the grain boundary and X2,3(σ, t) denote the free surfaces to the left
and right of the triple junction. The curves are parametrized with σ ≥ 0 as
above. Again σ will remain arc length and σ = 0 corresponds to the triple
junction. A close-up of the junction is shown in Figure 3. Note that the
numbering of the curves follows a different pattern than in the simple equal
order model problem discussed above.

As mentioned above, the quarter loop geometry contains two types of
motion: mean curvature motion for the grain boundary and motion by sur-
face diffusion for the upper free surfaces. The normal velocity of the grain
boundary is proportional to its curvature,

∂tX1 ·N1 = Aκ1,
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Figure 3: A labelled close-up of the junction in the mixed-order, quarter loop
problem shown in Figure 1

which can be computed from derivatives of X1 as in the simple equal order
model above. A is a positive physical constant. The normal velocities of
the free surfaces undergoing surface diffusion are proportional to the surface
Laplacian of curvature, which in 2D is ∂2

sκ where s is arc length. In our
formulation in which σ is scaled arc length, this term can be written

∂2
sκ =

∂2
σκ

|∂σX|2

and so can be written simply in terms of derivatives of X with respect to σ.
For the infinite length curves of this model, σ can remain arc length so the
denominator above is unity. The motion of the free surfaces (upper curves)
is then described by

∂tX2,3 ·Ni = −B∂2
σκi, i = 2, 3

where B is a positive physical parameter. One can show that, by an appro-
priate rescaling of space and time, the constants A and B can be taken to
be one [20]. Therefore, the model we will study is

∂tX1 ·N1 = κ1

∂tX2 ·N2 = −∂2
σκ2 (8)

∂tX3 ·N3 = −∂2
σκ3.
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In addition to equations (8), one must also include

∂σXi · ∂2
σXi = 0, i = 1, 2, 3. (9)

to fix the parametrization as discussed above. Junction conditions are listed
below:

X1(0, t) = X2(0, t) = X3(0, t)

∂sX1 · ∂sXi = cos θ i = 2, 3 (10)

κ2 = −κ3

∂sκ2 = ∂sκ3.

where derivatives in arc length s can be written as scaled derivatives in σ as
discussed above. The first equation in (10) expresses that the curves meet at
a common junction. The second equation, Young’s Law, represents a balance
of surface tensions. Here θ = π/2 + arcsin(m/2) denotes the angle between
the grain boundary and the exterior surfaces and m = γgrain/γexterior ≥ 0 is
a constant measuring the relative surface tensions γ between them. These
junction conditions are modelled in the simple, equal order model above.
The remaining conditions are necessary to complete the specification of the
fourth order, free surface problem. The third condition in (10) reflects the
continuity of the surface chemical potentials, and the last condition represents
the balance of mass flux. Again, the reader can refer to [13] for a discussion
of the model equations (8) and junction conditions (10) and to [20] for a
discussion of the parametrization constraint (9). In this paper, we consider
the linear stability (to 2D and 3D perturbations) of 2D travelling waves for
this system known in the literature. To consider 3D perturbations, a 3D
version of the problem must be considered. The technical details of this case
are left to §5. Far field conditions for the travelling wave are

X1(∞, t) = (∞,−H)

X2(∞, t) = (−∞, 0)

X3(∞, t) = (∞, 0) (11)

∂σxi(∞, t) = 1, i = 1, 2, 3

∂σyi(∞, t) = 0, i = 2, 3

where as (xi, yi) are the components of the curve Xi and H is a specified
grain thickness in the far field that enters as a parameter in the travelling
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wave. The first four conditions above parallel the ones for the simple, equal
order model and the last condition is needed for asymptotic flatness of the
higher order free surface curves.

Existence of the travelling wave was proven in [14] for m . 0.92 and in
[15] for all m ∈ [0, 2). In these papers, implicit formulae for the travelling
waves are also given. Recall that m is a parameter in Young’s Law that
determines the angles between the free surfaces and the grain boundary. For
1.81 . m < 2 the wave is no longer single-valued (for y as a function of x)
and so it is referred to as a “non-classical travelling wave.” An example of
such a solution is shown in Figure 7.

3 Spectral stability of travelling waves

This section contains a theoretical discussion of travelling wave stability in
the context of geometric motion with junctions. Some rigorous statements
can be made on the simple, equal-order model of grain boundary motion
shown in Figure 2. This problem is particularly amenable to analysis be-
cause it possesses an explicit travelling wave solution in terms of Cartesian
coordinates, which is presented below. We discuss the linearization about
the wave and related stability theory, including that involving a free bound-
ary and domain truncation. Some less rigorous statements are made about
the mixed-order problem, motivated by the discussion of the equal-order
problem. The discussion of this section indicates the stability of travelling
waves up to the possible presence of point spectra, which are investigated
numerically in later sections.

3.1 Simple, equal-order model

The simple model (1) with junction (2) and far-field (3) conditions has an
explicit travelling wave solution given by

ȳ1(ξ) = 0

ȳ2(ξ) = 1− 1

c
arcsin[sin(c)e−cξ] (12)

ȳ3(ξ) = −1 +
1

c
arcsin[sin(c)e−cξ],

where the wave speed is c = π−θ, the junction location is given by q(t) = ct,
and the moving coordinate ξ is defined by ξ = x − ct. For a derivation of
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this solution see [19].
We need to allow for a perturbation not just of the grain boundaries but

also of the junction location. This is in contrast to studying the stability of a
travelling wave without the presence of a junction. In that case, if the original
PDE is translation invariant, then any fixed translate of the travelling wave
will also be a solution. This manifests itself in the stability problem through
the presence of a zero eigenvalue with associated eigenfunction given by the
derivative of the wave. Any changes in the speed of the travelling wave,
and hence changes in the location of the interface, can be captured by the
behaviour of perturbations. In the present context, we should still allow for
perturbations that are simply translates of the underlying wave. To do this,
we need to allow for a change in the junction location q(t). Otherwise, there
would be a mismatch in the junction conditions between the perturbation
and the underlying wave. We will see this explicitly, below.

Write the junction location as

q(t) = ct + p(t)

and define a new coordinate x̃ = x− q(t). We proceed below with equations
for the curves y1(x̃, t), dropping the tilde’s on the x variables. Following
[6, 7], we write the perturbation of the wave as

yi(x, t) = ȳi(x) + p(t)∂xȳi(x) + vi(x, t), i = 1, 2, 3. (13)

Note that, to leading order in p, this is equivalent to

yi(x, t) = ȳi(ξ) + vi(x, t).

The motivation for this can be understood as follows. It is advantageous to
work in the coordinates (x, t) because then the junction becomes fixed at
x = 0. However, simply defining

yi(x, t) = ȳi(x) + vi(x, t)

would introduce a term of the form ṗ∂xȳi into the linearized equation. Using
the Ansatz (13) allows one to remove this term at the expense of complicating
the conditions at the junction.

Inserting (13) into (1)-(2) and retaining only the terms that are linear in
vi and p, we obtain

∂tvi =

(
1

1 + (∂xȳi)2

)
∂2

xvi +

(
c− 2∂xȳi∂

2
xȳi

(1 + (∂xȳi)2)2

)
∂xvi =: Livi, (14)
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for i = 1, 2, 3, with the junction conditions

tan(c)p(t) = v1(0, t)− v2(0, t) = −v1(0, t) + v3(0, t)

tan(c) + tan(θ) = [1− tan(θ) tan(c)]∂xv1(0, t)− ∂xv2(0, t)

−2c sec2(c) tan(c)p(t) (15)

tan(c) + tan(θ) = [−1 + tan(θ) tan(c)]∂xv1(0, t) + ∂xv3(0, t)

−2c sec2(c) tan(c)p(t)

and asymptotic condition

v1(−∞, t) = v2(+∞, t) = v3(+∞, t) = 0. (16)

Note that we can combine the equations in (15) to obtain

0 = −2v1(0, t) + v2(0, t) + v3(0, t)

tan(c) + tan(θ) = [1− tan(θ) tan(c)]∂xv1(0, t)− ∂xv2(0, t)

−2c sec2(c)[v1(0, t)− v2(0, t)] (17)

tan(c) + tan(θ) = [−1 + tan(θ) tan(c)]∂xv1(0, t) + ∂xv3(0, t)

+2c sec2(c)[v1(0, t)− v3(0, t)]

Below, we will use the fact that, since c and θ are fixed, (17) is linear in the
six variables (v1(0, t), v2(0, t), v3(0, t), ∂xv1(0, t), ∂xv2(0, t), ∂xv3(0, t)).

In order to rigorously analyze the spectral stability of the wave, one would
need to verify several things about the system (14) - (16). In particular, one
would need to formulate the linear operator in (14) as acting on an appropri-
ate function space that incorporates the boundary and asymptotic conditions
(15) and (16). In addition, one would need to calculate the spectrum of the
operator on that space, or at least prove that the spectrum was contained
entirely within the left half of the complex plane. Since here our focus is
primarily the numerical computation of the spectrum, we will be content to
simply indicate why (14) - (16) is a reasonable way to formulate the stability
problem.

In [6, 7] the stability of travelling waves in the presence of free boundaries
was analyzed rigorously. In those works, the authors use an Ansatz of the
form (13) to fix the location of the boundary at the expense of converting a
linear condition at the boundary to a fully nonlinear one. They prove that
this leads to a well defined spectral problem and use it to rigorously prove the
stability of travelling waves with free boundaries in several applications. Our
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setting, (1)-(2), is slightly more complicated because the equations them-
selves are more complex and the conditions at the free boundary are, at the
outset, nonlinear. However, we expect that a similar analysis would apply.

When studying unbounded linear operators, there are several ways to
characterize different elements of the spectrum. For linear operators on un-
bounded domains, such as the one in equation (14), the most useful way is
to divide the spectrum into the so-called continuous, or essential, spectrum
and the point spectrum, or eigenvalues. The point spectrum is defined to
be the set of all isolated eigenvalues of finite multiplicity, and the essential
spectrum is its complement within the spectrum. The reason this is a useful
characterization is because in general one can explicitly compute the essential
spectrum using the asymptotic limits of the operator [21, 22].

For example, as x → ±∞, equation (14) becomes

∂tvi = ∂2
xvi + c∂xvi =: L∞vi, i = 1, 2, 3. (18)

The associated eigenvalue equation is

λv = L∞v,

which has explicit solutions given by exponentials. A bounded solution exists
only when λ = −k2 + ick for some k ∈ R, and therefore the spectrum of L∞
is given exactly by this set. The results in [21] then imply that the essential
spectrum associated to (14)-(16) is given by

Σess = {λ = −k2 + ick : k ∈ R}. (19)

Determining the point spectrum is, in general, much more difficult. In
certain situations, for example if the equation has conserved quantities or
some type of fast-slow structure, one can analytically determine the eigen-
values or prove that they all lie in the left half of the complex plane. For
details, we refer to the review [21] and, for the situation involving free bound-
aries, [6]. Here this is not the case, and so we will compute the eigenvalues
numerically. Eigenvalues correspond to values of λ ∈ C for which the system

λvi = Livi, i = 1, 2, 3 (20)

has a solution that satisfies (15)-(16). One can explicitly check that, for
λ = 0, vi = δ∂xȳi, i = 1, 2, 3, is an eigenfunction with p(t) = −δ. As discussed
above, this is expected and related to translations of the underlying wave.
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Another way to think of the linearized problem (14)-(16) is in terms
of the Fredholm properties of the linear operator. Since on each half line
the operators Li are just convection-diffusion operators, one can verify that
system (20) for i = 1, 2, 3 has Fredholm index three for values of λ to the
right of the essential spectrum. A bordering lemma can then be used to show
that, after the addition of the boundary conditions at the junction, (15), the
Fredholm index becomes zero. Thus, to understand the spectral stability of
the traveling waves, one really need only look for eigenvalues to the right of
the curve (19). For a discussion of the relationship between the Fredholm and
spectral properties of a linear operator, see [21, §3.3]. A bordering lemma
can be found in [23, Lemma 3.5].

Because any numerical calculations necessarily take place on a finite com-
putational domain, one must truncate the domain to (−L, 0) for v1 and (0, L)
for v2,3 and impose appropriate boundary conditions at ±L. (Note that the
junction conditions at zero remain as in equation (15).) In general, one needs
to be careful when imposing artificial conditions at the ends of the finite do-
main, as spurious eigenvalues can be created. A rigorous study of domain
truncation in the context of stability was conducted in [22]. In that work
the authors did not consider situations involving a free boundary. However,
equation (17) shows how the free boundary can be eliminated from condi-
tions at the junction. Thus, the framework of [22] is applicable to the current
setting, and so we now recall some of their results.

In [22], the authors consider a certain class of operators L, including for
example that which one would obtain when linearizing a system of reaction-
diffusion equations around a travelling wave, defined on the infinite spa-
tial domain R. For the truncated domain (−L, L), the potential boundary
conditions at ±L were divided into two categories: periodic and separated.
Periodic implies that any eigenfunction must satisfy v(−L) = v(L), and sep-
arated includes Dirichlet, v(±L) = 0, and Neumann, v′(±L) = 0, conditions.
The authors were interested in studying how the point spectrum of L on the
truncated domain, ΣL, with a given set of boundary conditions was related
to the spectrum on the infinite domain, Σ. They found that, for periodic
conditions, in the limit L →∞, ΣL accurately approximates both the point
and essential spectrum of L. However, for separated boundary conditions,
although ΣL will capture the point spectrum of L in the limit L → ∞, ad-
ditional eigenvalues can also be created. These spurious eigenvalues are not
necessarily relevant for the stability on the infinite domain and are created
by the boundary conditions. Thus, in general, it is better to use periodic
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conditions when numerically computing point spectra.
However, it is not possible for us to use periodic boundary conditions

for (20). This is due to the presence of the triple junction. Condition (15),
which any eigenfunction must satisfy, is effectively a separated boundary
condition imposed at one end of the domain (x = 0) for each of the functions
vi. Therefore, periodic boundary conditions don’t really make sense in this
context. Since we will necessarily use separated boundary conditions, the
most natural conditions to impose at ±L are therefore the physical conditions

v1(−L) = 0, v2,3(+L) = 0, (21)

which correspond to the asymptotic condition (16). We must check that these
boundary conditions do not create any spurious eigenvalues, and in [22, §4.3]
a condition is derived that allows one to do this. In order to explain this
condition, we must reformulate the eigenvalue problem (20).

For notational clarity, fix v = vi and ȳi = ȳ, for i = 1, 2, 3. We can write
(20) as

d

dx
V = A(x, λ)V, V =

(
v
vx

)
, (22)

where

A(x, λ) =

(
0 1

λ(1 + ȳ2
x(x)) −

[
c(1 + ȳ2

x(x))− 2ȳx(x)ȳxx(x)
1+ȳ2

x(x)

])
, (23)

and we note that

A±(λ) := lim
x→±∞

A(x, λ) =

(
0 1
λ −c

)
. (24)

This formulation is often referred to as a spatial dynamical system, since it
is an ODE in the spatial variable x. In addition to satisfying the junction
condition, an eigenfunction V must decay to zero as x → ±∞. This can be
related to the asymptotic matrices A±, which are equal due to the fact that
only derivatives of the underlying wave appear in the linearized problem.
The eigenvalues of this matrix are given by νs(λ) = [−c −

√
c2 + 4λ]/2 and

νu(λ) = [−c +
√

c2 + 4λ]/2. The subscripts stand for stable and unstable
and are due to the fact that, for λ > 0, Reνs(λ) < 0 and Reνu(λ) > 0.
These eigenvalues are often referred to as spatial eigenvalues to distinguish
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them from the temporal eigenvalues λ. The associated stable and unstable
subspaces are

Es(λ) =

(
1

νs(λ)

)
, Eu(λ) =

(
1

νu(λ)

)
.

In order for V to decay to zero it would need to be asymptotic to Es as
x → +∞ and asymptotic to Eu as x → −∞.

As shown in [22], spurious eigenvalues can be created by the boundary
conditions in the following way. Let Q = (0, 1)T . Any function V that
satisfies the Dirichlet boundary conditions must satisfy V (±L) ∈ span{Q}.
If Q is parallel to either Es(λ∗) or Eu(λ∗) for some λ∗, then the truncated
eigenvalue problem can have a solution that actually becomes unbounded
near ±L as L → ∞. The reason for this is that, when Q is parallel to
either eigendirection, the function V can satisfy the boundary conditions
but lie entirely in the stable subspace at −L, or the unstable subspace at
+L. Thus, even though λ∗ appears to be an eigenvalue, V would have the
wrong asymptotic behaviour as L → ∞. Conversely, if Q is not parallel to
either subspace, one can use this fact to construct true eigenfunctions for the
eigenvalue λ∗.

One can see explicitly that Q is not parallel to Es or Eu for any value of
λ, and so the physical Dirichlet boundary conditions (21) will not create spu-
rious eigenvalues. Note, however, that if one were to use Neumann boundary
conditions, which correspond to Q̃ = (1, 0)T , then this condition would be
violated at λ = 0. In §4, we will see that the zero eigenvalue indeed appears
to have a higher multiplicity if one uses Neumann boundary conditions.

We conclude this section with a few remarks on the so-called absolute
spectrum, which is defined in terms of the asymptotic limits of the operator.
See [22, Definition 3.5] and §3.2 for more details. On unbounded domains,
the absolute spectrum is not actually part of the spectrum. However, it can
provide useful information related to the spectrum. In particular, for sepa-
rated boundary conditions, the spectrum of the truncated operator ΣL will
approximate the absolute spectrum, in addition to the true point spectrum,
as L → ∞. One can explicitly compute the absolute spectrum for (20) and
see that it is (−∞,−c2/4]. This is why, in the numerical calculations of §4,
one sees approximations of this interval in addition to the eigenvalue zero.
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3.2 Mixed-order, quarter loop problem

It would be much more difficult to analyze the mixed-order problem with
the same rigour as the equal-order problem above. In this work, more of the
burden is placed on the numerical calculations in §4 and 5. However, we can
follow formally the steps above and predict an absolute spectra in the finite
domain that corresponds to that seen in the numerical computations.

Here, we consider the problem in 3D but linearized about the 2D travelling
wave. We can formally consider the problem in the far field in terms of
parametrized curves y(x, z, t) (recall that near the junction, the travelling
wave may not be single-valued). As above, we replace x with a coordinate
moving with the travelling wave speed but retain the same name x below.
As x → ±∞

∂tv = L∞v := −∆∆v + c∂xv

where v is the linear perturbation to the travelling wave ȳ in the moving frame
with travelling wave speed c and the biharmonic term −∆∆ = −(∂2

x + ∂2
z )

2

is the linearization of surface diffusion at a flat interface. This equation is
the analogue of (18) above.

The associated eigenvalue equation is

λv = L∞v,

which as above has explicit solutions given by exponentials:

Σess = {λ = −(k2 + ω2)2 + ick : k, ω ∈ R}. (25)

Here, we introduce the wavenumber ω for perturbations in the z direction
that will appear as a parameter in the stability calculations in §5.

The absolute spectra which corresponds to this problem is not known
analytically even in 2D (ω = 0). However, the absolute spectra of the 2D
case

λv = −∂4
xv + c∂xv, (26)

can be partially dealt with analytically and investigated numerically using
[22, Definition 3.5]. We briefly review this for later comparison with the
numerical results in §4.3.

The absolute spectrum is defined in terms of the roots of the characteristic
equation associated with (26), given by

ν4 − cν + λ = 0. (27)
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P1

P2

P3

Figure 4: Numerical computation of the absolute spectra of (26) for c = 1.

If the four spatial eigenvalues, which are simply roots of this equation, are
ordered so that

Re(ν1(λ)) ≤ Re(ν2(λ)) ≤ Re(ν3(λ)) ≤ Re(ν4(λ)),

then the absolute spectrum is defined as

Σabs = {λ : Re(ν2(λ)) = Re(ν3(λ))}.

For c = −1, the numerically computed absolute spectrum of (26) is shown
in Figure 4.

Although it is difficult to analytically determine the roots of (27) - for-
mulas exist for roots of a quartic but they are very complicated - one can
calculate the boundary of the absolute spectrum, which are the points labeled
P1,2,3 in Figure 4.

Assume that λ = λr + iλi and ν = a + ib. Equating real and imaginary
parts in the fourth order polynomial (27), we obtain

f1(a, b; λr, λi) = a4 − 6a2b2 + b4 − ca + λr = 0,

f2(a, b; λr, λi) = 4a3b− 4ab3 − cb + λi = 0.

At any point in the absolute spectrum, there will be two solutions to this
equation given by (a, b) and (a, b̃). Thus, it will not be possible to write
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b = b(a) near those points; i.e. the conditions of the implicit function will
fail. Therefore, to find these points, we just need to find where

∂bf1 = −12a2b + 4b3 = 0, ∂bf2 = 4a3 − 12ab2 − c = 0.

The solution is given by (a1, 0) and (a2,3, b2,3), where

a1 = 3
( c

4

)4/3

, a2,3 = −
( c

32

)1/3

, b2,3 = ±
√

3
( c

32

)1/3

.

Thus, we see that

P1 = − 21

100

(
5c2

2

)2/3

, P2,3 = −3c

8

( c

4

)1/3

± i
3
√

3c

8

( c

4

)1/3

. (28)

This absolute spectrum is seen approximately in the finite difference numer-
ical computations in §4.3 below.

4 Numerical Results in 2D

In this section, we compute the spectrum numerically for travelling waves
both for the simple, equal-order problem and the mixed-order, quarter loop
problem. The discussion in §3 addressed the continuous spectra for these
problems. The numerical results in this section are done primarily to rule
out possible unstable point spectra. However, the results also confirm the
predictions of the theory on the absolute spectra which for the mixed-order
problem are not completely rigorous. The linearization and numerical ap-
proximation procedure is discussed below for the equal-order model which is
less complex but representative.

4.1 Linearization and numerical approximation of the
simple, equal-order model

We describe here the linearization and numerical approximation of the spec-
tra for the PDAE formulation of the equal-order model given in §2.1. Let

X̄i = (x̄i(σ), ȳi(σ)) (29)

represent the parametrized travelling wave solution in the moving frame
x̃ = x − ct with wave speed c = π − θ. This parametrized solution is ob-
tained numerically by converting the Cartesian formulation (12) to a curve
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with parameter σ that is approximately arc-length. Starting at the junction,
points are determined that both lie on the travelling wave and are the given,
fixed resolution distance h = ∆σ apart.

System (4) and (5) in the moving frame becomes

∂tXi ·Ni = κi − C ·Ni (30)

∂σXi · ∂2
σXi = 0

for i = 1, 2, 3 where C = (c, 0). Obviously, X̄ defined by (29) is a steady
state solution of above system.

To analyze the linear stability of the travelling wave solution, we consider
a linear perturbation X̂i to the steady state X̄i, i.e.,

Xi = X̄i + εX̂i

and linearize system (30) around X̄ to get a linear system. We begin with
the linearization of

|∂σX| ≈ 1 + ε∂σX̄ · ∂σX̂

where the fact that the travelling wave parametrization is arc length is used.
The linearization of the normal N is thus

N ≈ N̄ + ε
(
∂σX̂

⊥ − (∂σX̄ · ∂σX̂)N̄
)

and curvature

κ =
∂2

σX ·N
|∂σX|2

≈ κ̄ + ε
(
∂2

σX̂ · N̄ − 3∂σX̄ · ∂σX̂κ̄ + ∂2
σX̄ · ∂σX̂

⊥
)

Inserting these linear expressions in (30) gives

∂tXi · N̄i = ∂2
σXi · N̄i − 3∂σX̄i · ∂σXiκ̄i + ∂2

σX̄i · ∂σX
⊥
i − (31)

C ·
(
∂σX

⊥
i − (∂σX̄i · ∂σXi)N̄i

)
0 = (∂σX̄i · ∂2

σXi) + (∂σXi · ∂2
σX̄i)

for i = 1, 2, 3. Here we have dropped the hats that indicate the O(ε) terms.
The associated eigenvalue problem is given by replacing the time derivative
∂tXi in the first equation of (31) by λXi. The junction conditions (6) can
be linearized to give boundary conditions for this problem at σ = 0. Bound-
ary conditions that are homogeneous versions of (7) are applied at a finite
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Figure 5: Approximate eigenvalue distribution for the equal order model
problem. The computational domain size is L = 20, discretization h =
∆σ = 0.1 and the angles are equal θ = 2π/3. The right picture is a close
look of the left picture near origin.

distance in arc length σ = L from the junction. In (31) derivatives in σ
of the perturbation are approximated by finite differences and derivatives of
the base solution can be found analytically. We now have a large, gener-
alized eigenvalue problem. It is generalized because λ does not appear in
the constraint equations nor in the approximation of the linearization of the
junction conditions (6). Numerical calculation of the eigenvalues for the dis-
crete problem above are done using MATLAB’s eig routine. The results are
discussed below.

4.2 Numerical results for the simple, equal-order prob-
lem

The eigenvalues of the generalized boundary value problem that corresponds
to the equal order model derived above are approximated computationally.
The distribution of the eigenvalues is shown in Figure 5 for a domain size
of L = 20, discretization h = ∆σ = 0.1 and equal angles θ = 2π/3. As
expected, there is a single zero eigenvalue with associated eigenfunction given
by the derivative of the travelling wave which corresponds to its translation
invariance. This eigenvalue is the only member of the point spectrum found
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L = 20 fixed
h λ

0.12 -0.2872
0.06 -0.2870
0.03 -0.2869
0.015 -0.2868

h = 0.1 fixed
L λ
7.5 -0.3404
15 -0.2948
30 -0.2809
60 -0.2764

Table 1: Real part of the leading non-zero approximate eigenvalue λ for the
equal order model problem showing convergence to predicted value -0.2742
with resolution h = ∆σ (left) and domain size L (right)

in the computations. Except for the zero eigenvalue, all other eigenvalues
from the discrete problem are in the left half plane. These other discrete
eigenvalues approximate the absolute spectrum of the continuous problem.
Recall that the absolute spectrum for the limiting problem (20) is given by
(−∞, b] with b = −c2/4. For the equal angle problem, c = π − θ = π/3 and
b ≈ −0.2742. It can be seen from Figure 5 that there is good agreement with
this analytic result. This is confirmed by resolution studies in L and ∆σ
shown in Table 1. Note that as L is further increased, the discrete eigenvalue
problem becomes ill-conditioned and gives spurious results in complex pairs,
although otherwise the results are not easily recognized as incorrect. This
phenomena occurs even for simple problems like (18). It also occurs for large
L computations for the mixed order problem discussed below. Resolving this
numerical difficulty is of interest but outside the scope of this work.

The stability of travelling waves with different wave speed (obtained by
varying the angle θ shown in Figure 2) are also investigated. All exhibit sim-
ilar behaviour to that shown above. Other computations with Neumann far
field boundary conditions give similar results but with three zero eigenvalues
(horizontal translation, vertical shift, and change in wave speed induced by
a widening of the curves in the far field). More details of these and other
results can be found in [19]. In summary, the computational results of this
section give strong evidence that there are no unstable point spectra and
thus this equal order travelling wave is spectrally stable.

22



4.3 Stability of travelling waves for the mixed-order
model

For the coupled surface and grain boundary motion, a travelling wave so-
lution was found in [14, 15] using an angle formulation for a range of the
physical parameter m. An additional parameter in the travelling wave is the
asymptotic thickness H of the upper grain, although this parameter appears
in a different form in the scaling of [14, 15]. In this section, we consider
the stability of these travelling waves. The procedure to derive the discrete,
approximate generalized eigenvalue problem is the same as that described in
§4.2 above, except that the derivatives of the exact solution are computed
using numerical differentiation of the solution on grid points.

The distribution of eigenvalues for a mixed-order travelling wave is shown
in Figure 6. Similar to the simple equal order problem, there is only one
zero eigenvalue with associated eigenfunction given by the derivative of the
wave. There are no other point spectra. All other eigenvalues are contained
in the left half plane which indicates that the travelling wave is stable. It
is convincing that the other discrete eigenvalues approximate the absolute
spectra of the far field problem (26). The points P1, P2,3 of Figure 4 scale to
−0.803 and −0.491 ± 0.850i respectively using (28) for the problem shown
in Figure 6 which has wave speed c ≈ 1.72. There is good agreement with
the results in Figure 6.

Similar results are obtained for a range of values of the parameters m
(which governs the junction angle θ) and thickness H which is varied by
orders of magnitude. With the PDAE formulation, the stability analysis can
be applied to the case when one or more of the three curves are not single-
valued. We consider m = 1.995 when the top right curve is not single-valued.
The profile of the three curve near the junction is shown in Figure 7. Again,
there is strong evidence that there are no unstable point spectra and thus
the mixed order travelling waves are spectrally stable to 2D perturbations.

Figure 8 plots leading eigenvalue (the eigenvalue with largest real part
excluding the zero eigenvalue) as a function of the angle θ between the grain
boundary and the free surface.
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Figure 6: Approximate eigenvalue distribution for the mixed order problem.
The computational domain size is L = 20, discretization h = ∆σ = 0.1 and
the junction angle is θ ≈ 1.82 (m=0.5). The right picture is a close look of
left picture near origin.
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Figure 7: A travelling wave with a non single-valued curve when θ = 3.07
(m = 1.995).
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Figure 8: Plot of leading eigenvalue (the eigenvalue with largest real part
excluding the zero eigenvalue) as a function of the angle θ between the grain
boundary and the free surface.

5 Stability to 3D perturbations

In this section, we consider the spectral stability of travelling waves to 3D
perturbations. We focus only on the more complicated mixed-order problem.
The general approach is similar to that in 2D described above, in which
linear perturbations in the direction z orthogonal to the 2D plane can be
described by a Fourier term with wavenumber ω. However, representing
surfaces with two parameters and computing surface diffusion evolution is
somewhat complicated. Some of the details are given below.

Let X = (x(α, β), y(α, β), z(α, β)) represent a surface in 3D. One has the
following formula for mean curvature:

H =
G11B22 − 2G12B12 + G22B11

2(G11G22 −G2
12)

where

G11 = ∂αX · ∂αX, G22 = ∂βX · ∂βX, G12 = ∂αX · ∂βX,

B11 = ∂2
αX ·N, B22 = ∂2

βX ·N, B12 = ∂2
αβX ·N,
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and N denotes the unit normal given by

N =
∂αX × ∂βX

‖∂αX × ∂βX‖
.

Recall that motion by surface diffusion has normal velocity equal to the
surface Laplacian of mean curvature where the surface Laplacian operator is
defined by

∆surf = ∇surf · ∇surf , ∇surf = ∇−N∂n

where ∂n = N · ∇. Applying the tangential gradient ∇surf to a function H
defined on a surface X = (x(α, β), y(α, β), z(α, β)) gives

∇surfH = g11Hα · ∂αX + g12Hβ · ∂αX + g21Hα · ∂βX + g22Hβ · ∂βX

where gij indicate the components of the inverse matrix of

(gij) =

(
∂αX · ∂αX ∂αX · ∂βX
∂αX · ∂βX ∂βX · ∂βX

)
.

Applying the operator ∇surf one more time gives the surface Laplacian of
mean curvature H:

∆surfH =
1
√

g
(

∂

∂α
(g11√gHα + g12√gHβ) +

∂

∂β
(g21√gHα + g22√gHβ))

(32)

where g = det(gij).
With the expressions above, coupled surface and grain boundary motion

in 3D can be described by

∂tX1 ·N1 = H1,

∂tX2 ·N2 = −∆surfH2,

∂tX3 ·N3 = −∆surfH3, (33)

∂αXi · ∂2
αXi = 0 i = 1, 2, 3,

where Hi represents the mean curvature of curve i. The last equation fixes
the parametrization α but movement in the other (β) tangential direction
is not yet fixed. We proceed by considering the surface parametrized as
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X = (x(α, β), y(α, β), β) where β becomes the z coordinate. Since the third
component is now fixed, we have

∂tX ·N = xt ·Nx + yt ·Ny

where Nx, Ny represent the first two components of the unit normal.
The 2D junction (10) and far field boundary conditions (11) can be ex-

tended in a straightforward way to the 3D case. We point out only one of
the junction conditions which is associated with the balance of mass flux, the
last equation in (10), which becomes

∇surfH2 · (∂βX2 ×N2) = ∇surfH3 · (∂βX3 ×N3) (34)

where the subscripts represent curve indices as before.
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Figure 9: Extension of the 2D travelling wave solution to 3D.

Let X̄ = (x̄(α, t), ȳ(α, t)) represent the travelling wave solution in 2D. A
travelling wave solution for the 3D problem can be expressed in the form of
X̄ = (x̄, ȳ, z) = (x̄(α, t), ȳ(α, t), β) by extending along the z direction (see
Figure 9).
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Figure 10: Eigenvalue distribution for the mixed-order problem with 3D
perturbations. The computational domain size is L = 20, discretization
h = ∆σ = 0.1, the junction angle is θ = 1.82 (m=0.5) and wave number
ω = 1. The right picture is a closer look of the left picture near origin.

We now repeat the procedure we did for the 2D spectral stability analysis.
We consider a small perturbation to the steady state solution in the moving
frame

X = X̄ + εeλteiωβ(x̂(α), ŷ(α), 0)

Although the expressions above are complicated, they can be linearized and
approximated by finite differences in the same way as the model problem was
handled in §4.1 and lead to a generalized eigenvalue problem. However, due
the the complexity of the process, the linearized system was not derived an-
alytically. Instead, the equations were linearized around the travelling wave
solution using MATLAB’s symbolic toolbox. Example eigenvalue results for
ω = 1 are shown in Figure 10. A single, leading order point eigenvalue is
found. The other discrete eigenvalues fill in an absolute spectra as L →∞.

One can see from Figure 10 that all eigenvalues are contained in the left
half plane for wave number ω = 1. As the wave number is increased, the
leading eigenvalue is pushed further to the left. We tested different wave
numbers varying from ω = 0.1 to ω = 5 and the plot of associated leading
eigenvalues is shown in Figure 11. Figure 12 plots the leading eigenvalue
(the eigenvalue with largest real part) as a function of the angle θ with wave
number ω = 1.
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Figure 11: Plot of the leading eigenvalues as a function of wave number for
ω ∈ [0.1, 5].
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Figure 12: Plot of the leading eigenvalue (the eigenvalue with largest real
part) as a function of the angle θ between the grain boundary and the free
surface with wave number ω = 1.
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The conclusion on the spectral stability is similar to the 2D case. There
is only one point eigenvalue for each ω 6= 0 and it is in the left half plane.
There is strong evidence that the mixed order travelling waves are stable to
3D perturbations.

6 Conclusions

Using a combination of theoretical and numerical methods, strong evidence
is given of stability of a well studied, 2D mixed-order travelling wave to
both 2D and 3D perturbations. The wave is of interest in material science
and describes free surface interactions of crystal grains competing during an
annealing process. It should be said that this stability is an expected result
from physical considerations, but the evidence we provide fills a long standing
gap in the study of this process. The novel approach developed in this paper
can be used to investigate phenomena in other free surface problems with
junctions.
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