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What are vortices?

Homemade vortex in colored fluid, 
found online at  

http://www.flickr.com/photos/ 
bagrat/collections/72157626374676307/

Atmospheric vortices, visualized via  
clouds above Alaska, acquired by  

Landsat 7 (NASA, USGS)

http://www.flickr.com/photos/


What are vortices?

Leonardo da Vinci, in what is believed to be the first study of 
turbulence (“turbolenza”) more than 500 years ago, made a sketch 

of the vortices he saw in his experiments. 

“…moving water strives to maintain the 
course pursuant to the power which 

occasions it and, if it finds an obstacle 
in its path, completes the span of the 

course it has commenced by a circular 
and revolving movement.” 

“…the smallest eddies are almost numberless,  
and large things are rotated only by large eddies  

and not by small ones, and small things are 
turned by small eddies and large…” 

(Translated by Ugo Piomelli, University of Maryland.) 



• Models fluid dynamics in the ocean, atmosphere, climate, etc 
• Formulated by Navier and Stokes in the 1800’s. 
• Partial differential equation: describes changes in both space 

and time 

What is the Navier-Stokes equation?

Vortices: key feature of both the model and real life!



Why is the Navier-Stokes equation famous?
• Fluid dynamics are important for many applications, and 

fluids move in very complicated ways. 
• It is very difficult to solve! 

Reasonable requirements for any mathematical model:
(1) Solutions should exist (because reality exists). 
(2) Solutions should be unique (only one version of reality). 
(3) Related physical quantities - velocity, acceleration, etc - 

should remain finite (not “blow-up”).

We do not completely understand 1, 2, or 3!

• $1 million Clay Millennium Prize: (dis)prove 1, 2, or 3.  
• What use is a model we don’t know how to solve? 



Why use mathematical models?

• Incorporate physical principles 
• Provide insight without experiments or field 

studies 
• Yield predictions to help focus future research

How do we analyze the models?

• Identify mathematical structures within the model 
that control the behavior of solutions 

• Determine corresponding physical properties that 
produce these structures, and hence the behavior 

• Results can suggest how to produce/prevent 
these behaviors in the real world systems



Goal of Talk: use mathematics and the Navier-Stokes 
equation to understand why vortices play a key role in 

the behavior of fluids



What do you mean by “Understanding solutions of 
equations that we can’t actually solve”?

Example: Some equations we can solve.

x

2 � 4 = 0 ) x = 2 or � 2

x

2 � 3x+ 2 = 0 ) x = 1 or 2

Graphically visualize solutions:
f(x)

x

f(x)

x

�2 2 21

f(x) = x

2 � 4 f(x) = x

2 � 3x+ 2



What do you mean by “Understanding solutions of 
equations that we can’t actually solve”?

Example: We can solve any quadratic equation.
ax

2 + bx+ c = 0

x =
�b±

p
b

2 � 4ac

2

Formula for solutions:

Example: An equation we can’t solve.

x

5 � x+ 1 = 0

• No (simple) formula for solutions 
• Can we obtain any information about solutions?



Example: An equation we can’t solve.

f(x) = x

5 � x+ 1 = 0

What can we do?

f(0) = 1

x

�1
f(x)

• Notice:  
• As       approaches         ,          also approaches                                             �1

x = �10,�100,�1000, . . .

x

5 = �100000,�10000000000,�1000000000000000, . . .

What do you mean by “Understanding solutions of 
equations that we can’t actually solve”?



f(x) = x

5 � x+ 1 = 0

What can we do?

f(0) = 1

x

�1
f(x)

• Notice:  
• As       approaches                                

�1also approaches
• There must be at least 

one negative solution!

1

f(x)

x

?

Example: An equation we can’t solve.

What do you mean by “Understanding solutions of 
equations that we can’t actually solve”?



Try some more things:
• Also:  

f(�1) = 1 > 0

f(�2) = �29 < 0

• So there is a solution 
between -1 and -2!

f(x)

x

?

-1-2

-29

1
?

f(x) = x

5 � x+ 1 = 0

Example: An equation we can’t solve.

What do you mean by “Understanding solutions of 
equations that we can’t actually solve”?



• Computers can help, but that’s not the point 
• We’ve understood, mathematically, why there must be a 

solution between -2 and -1. 
• Properties of the function force such a solution to exist.

f(x) = x

5 � x+ 1 = 0

Example: An equation we can’t solve.

What do you mean by “Understanding solutions of 
equations that we can’t actually solve”?



Example: Differential equation.
               

• Solution is a function 

• Its derivative is     

• We’re given information about the derivative only. 

• So what is a derivative? 

What do you mean by “Understanding solutions of 
equations that we can’t actually solve”?

du

dt
= f(u)

u(t)

du

dt



Example: Differential equation.
               

u

t

u(t)

increasing decreasing increasing

What do you mean by “Understanding solutions of 
equations that we can’t actually solve”?



u

t

u(t)

increasing decreasing increasing

t

positive negative positive

du

dt
du

dt
(t)

What is a derivative? 

The derivative tells us 
when the original function 

is increasing or decreasing, 
and by how much.

If the derivative is positive,  
the original function is 

increasing. The larger the  
derivative, the faster the  
function is increasing.



Example: Differential equation.
               

What do you mean by “Understanding solutions of 
equations that we can’t actually solve”?

u

f(u)

0

0

u increasingu decreasingu increasing u decreasing

5010

10 50

du

dt
= f(u) = u(10� u)(u� 50)



du

dt
= f(u)

Suppose u(t) is the 
population, as a function 
of time, of wolves in a 
given region. 

• If                  then the population decreases 

• If                  then the population increases 

• If                  then the population doesn’t change

du

dt
> 0

du

dt
< 0

du

dt
= 0

u

f(u)

0

0

5010

10 50

du

dt
< 0

du

dt
> 0

du

dt
< 0



Example: Differential equation

•             population decreases 

•             population increases 

•             population doesn’t change

du

dt
> 0

du

dt
< 0

du

dt
= 0

Equilibrium solution: solution that is independent of time

du

dt
= f(u)

u(t) = 0, u(t) = 10, u(t) = 50

u

f(u)

0

0

u increasingu decreasing u decreasing

5010

5010



Example: Differential equation

Equilibrium solutions:

Stable equilibrium: start near it, converge to it

Unstable equilibrium: start near it, move away from it

u(t) = 0

u(t) = 0

u(t) = 10

u(t) = 50

u(t) = 10

u(t) = 50

u

f(u)

0

0

u increasingu decreasing u decreasing

5010

5010



Example: Differential equation

Physical interpretation: 10 acts like a threshold. If the 
population is too small (less than 10), the wolves will die 
out (converge to 0). If the population is large enough 
(greater than 10), they will be able to sustain themselves 
at the level of 50 individuals. 

Stability is important: stable states govern long-time 
behavior. Finding the stable states in a model tells you 
what behaviors you can expect to see in the system. 

0

u increasingu decreasing u decreasing

5010



Example: Differential equation

Question: Mathematically, why are 0 and 50 stable, while 
10 is unstable? How can we predict stability?

• f is decreasing at 0, 50

• f is increasing at 10

df

du
(0) < 0,

df

du
(50) < 0

u

f(u)

0

0

u increasingu decreasingu increasing u decreasing

f decreasing f increasing f decreasing

5010

5010

df

du
(10) > 0



du

dt
= f(u)

Summary:
• Equilibrium: value of u such that  
• Stable equilibrium: need   
• Unstable equilibrium: need  
• Determined without a formula for the solution.

df

du
> 0

df

du
< 0

f(u) = 0

u

f(u)

0

0

u increasingu decreasingu increasing u decreasing

f decreasing f increasing f decreasing

5010

5010

Example: Differential equation.
               

What do you mean by “Understanding solutions of 
equations that we can’t actually solve”?



What do you mean by “Understanding solutions of 
equations that we can’t actually solve”?

Strategy for predicting the behavior of solutions to 
differential equations:

• Identify any equilibrium solutions 
• Determine if they are stable or unstable 
• Solutions will converge to stable equilibria

du

dt
= f(u)

Moral: stable equilibria of mathematical models determine 
the behaviors we expect to see in the real world



Can we apply this strategy to the Navier-Stokes 
equations? YES!

Main ideas:
• Vortices can be viewed as equilibria 
• Vortices are stable equilibria 
• Therefore, we see vortices everywhere!

Hurricane Gladys, 1968, seen from Apollo 7Jupiter’s Great Red Spot, seen from Voyager 1



Vortices and the Navier-Stokes equations

@u

@t
= F(u)

The Navier-Stokes equation is a type of differential equation:

The unknown function u(x,y,t) is the velocity of the fluid 
at a given point in space, (x,y), and time, t.



Vortices and the Navier-Stokes equations

At each point in space, u is like an arrow, that points in the 
direction that the fluid is moving. This arrow depends on where 
we look at the vortex in space (x,y) and at what time t we look 

at it. 



• Velocity u depends on where you measure it (x, y) and 
when you measure it (t) 

• Velocity has two components, the first tells you how fast 
the fluid moves left/right, and the second tells you how 
fast it moves up/down.  

• Partial differential equation: derivatives in x, y, and t

u(x, y, t) = (u1(x, y, t), u2(x, y, t))

@u

@t
= F(u)

Vortices and the Navier-Stokes equations



@u1

@t

=
@

2
u1

@x

2
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2
u1

@y

2
� u1

@u1

@x

� u2
@u1

@y

� @p

@x

@u2

@t

=
@

2
u2

@x
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Vortices and the Navier-Stokes equations

u(x, y, t) = (u1(x, y, t), u2(x, y, t))

@u

@t
= F(u)

Newton’s Law: Force = mass ⇥ acceleration

Incompressibility:

@u1
@x

+

@u2
@y

= 0



Vortices and the Navier-Stokes equations

Vortices aren’t stationary. So how can we view them as 
equilibria?

Instead of studying the velocity, u, we’ll study the vorticity, w, 
which is essentially the “shell” of the vortex.

w



Vortices and the Navier-Stokes equations

w

•               : fluid spins counterclockwise 
•               : fluid spins clockwise 
• The larger w is, the faster the fluid is spinning       

w > 0
w < 0



Vorticity: 

•               : fluid spins counterclockwise 
•               : fluid spins clockwise       

Vortices appear to 
organize the dynamics 
of fluids: why?

Movie: from fluid dynamics lab at the 
University of Technology in Eindhoven 

Vortices and the Navier-Stokes equations

w =
@u2

@x

� @u1

@y

w < 0
w > 0



Behavior of a vortex:
• Stir a fluid at rest, then let it evolve 
• Observe a single vortex 
• Vortex shell is “Gaussian”: like a symmetric hill 
• Vortex will spread out and become weaker as 

time evolves

Vortices and the Navier-Stokes equations



For the vortex to be an equilibrium

• rescale space to prevent it from spreading out 
• rescale the height to prevent it from decaying 

Vortex no longer  
changes as 

time evolves: 

Equilibrium 
Vortex

Vortices and the Navier-Stokes equations



Rewrite the Navier-Stokes equation in these new variables:

• Equilibrium vortex solution: 

• Equilibrium vortex is stable:

Intuitively, the Navier-Stokes equation is similar 
to the previous example of a basic differential  
equation. We can’t solve it, but we’ve found a  

stable equilibrium solution: a vortex.

@!

@⌧
= G(!)

G(!
vortex

) = 0

@G
@!

(!
vortex

) < 0

Vortices and the Navier-Stokes equations



Vortices are stable, and attract anything “nearby”. Wherever there 
is any rotation in the fluid, we can zoom in to that location and see 
a little vortex. Hence, we are locally “near” a vortex, and so the 
fluid will become more vortex-like in that location, until outside 
influences break the local vortex structure.  

Result: we see vortices everywhere!

Vortices and the Navier-Stokes equations



Other physical phenomena that can be viewed as stable 
equilibria of mathematical models:

John Scott Russell, on solitary waves, or solitons: 
`I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat 

suddenly stopped - not so the mass of water in the channel which it had put in motion; … assuming the form of a large 
solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel 

apparently without change of form or diminution of speed. I followed it on horseback, and … after a chase of one or two 
miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that 

singular and beautiful phenomenon which I have called the Wave of Translation''.

KdV Equation:
@u

@t

= �@

3
u

@x

3
� u

@u

@x

u is the height of the wave in a  
one-dimensional channel

Recreation near Heriot-Watt University in 1995 

u(x)

x



Other physical phenomena that can be viewed as stable 
equilibria of mathematical models:

Electrical impulse moving along the axon in a nerve cell:

"Neuron Hand-tuned" by Quasar Jarosz

FitzHugh-Nagumo equation: 

@v

@t

=
@

2
v

@x

2
+ f(v)� w

@w

@t

= ✏(u� �w)

v is the voltage, and w is a recovery variable modeling negative feedback



Thanks for your 
attention!


