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Abstract 

The propagation of pulses in ideal nonlinear optical fibers without loss is governed by the nonlinear Schrrdinger equa- 
tion (NLS). When considering realistic fibers one must examine perturbed NLS equations, with the particular perturbation 
depending on the physical situation that is being modeled. A common example is the complex Ginzburg-Landau equation 
(CGL), which is a dissipative perturbation. It is known that some of the stable bright solitons of the NLS survive a dissipative 
perturbation such as the CGL. Given that a wave persists, it is then important to determine its stability with respect to the 
perturbed NLS. A major difficulty in analyzing the stability of solitary waves upon adding dissipative terms is that eigenvalues 
may bifurcate out of the essential spectrum. Since the essential spectrum of the NLS is located on the imaginary axis, such 
eigenvalues may lead to an unstable wave. In fact, eigenvalues can pop out of the essential spectrum even if the unperturbed 
problem has no eigenvalue embedded in the essential spectrum. Here we present a technique which can be used to track these 
bifurcating eigenvalues. As a consequence, we are able to locate the spectrum for bright solitary-wave solutions to various 
perturbed nonlinear Schrrdinger equations, and determine precise conditions on parameters for which the waves are stable. In 
addition, we show that a particular perturbation, the parametrically forced NLS equation, supports stable multi-bump solitary 
waves, The technique for tracking eigenvalues which bifurcate from the essential spectrum is very general and should therefore 
be applicable to a larger class of problems than those presented here. © 1998 Elsevier Science B.V. 

1. Introduction 

The standard model  for the propagation of pulses in an ideal nonlinear fiber without loss is the cubic nonlinear 

Schr6dinger equation (NLS) 

irt + 6 xx  - o~49 + 414,12q~ = 0 (1.1) 

* Corresponding author. Tel,: +49 30 20377 588; fax: +49 30 2044975; e-mail: sandstede@wias-berlin.de 
/ URL: http://www.math.unm.edu/~kapitula 

0167-2789/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved 
PII: $0167-2789(98)00172-9 



T. Kapitula, B. Sandstede/Physica D 124 (1998) 58-103 59 

for x 6 R with co > 0. It is known to support stable pulses given by 

4)(x) = sech(v'w x). (1.2) 

If loss is present in the fiber, these pulses will cease to exist. Thus, amplifiers have to be used to compensate for the 
loss. The effects of linear loss in the fiber as well as other perturbations which account for amplifiers located along 
the fiber will then have to be incorporated into the model. The issue is whether pulses persist under the perturbation 
and what their stability might be. In this paper, we shall concentrate on the stability of pulses for two different 
perturbations of (1.1). 

The first equation is the cubic-quintic Schr6dinger equation (CQNLS) 

i4)t + 4)xx - co(~ + 41q~laq~ + 3{~1{bl4~ = 0, (1.3) 

where o~ < 0 is real and x 6 N. The CQNLS is the correct model to describe the propagation of pulses in dispersive 
materials with either a saturable or higher-order refraction index [8,10]. An optical fiber which satisfies this condition 
can be constructed, for example, by doping with two appropriate materials [5,29,30]. A physically realistic value for 
{~ is 3oe ~ -0 .1  [9,13,43], so the CQNLS cannot really be thought of as a small perturbation of the NLS. Eq. (1.3) 
describes an ideal fiber; therefore, it is natural to consider the perturbed CQNLS (PCQNLS) 

i4)t + qbxx - coo + 41q~12q~ q- 3~1{b144} = i { (dl  Oxx + d2q) -t- dBl{bl2~b q- d4l~bl4qS) (1.4) 

for x 6 N where e > 0 is small and the other parameters are real and of O(1). The nonnegative parameter dl 

describes spectral filtering, d2 describes the linear gain (d2 > 0) or loss (d2 < 0) due to the fiber, and d3 and d4 
describe the nonlinear gain or loss due to the fiber. 

The second equation is the parametrically forced Schr6dinger equation (PFNLS) 

iqSt + ~bxx - coq5 + 4lq~12q~ ÷ i{(y~b -/z~b*) = 0 (1.5) 

for x 6 N where ~ > 0 is not necessarily small, ?/ > 0 is the dissipation factor (linear loss), # > 0 is the parametric 
gain, and 209 > 0 is the phase-mismatch coefficient of the parametric gain. Eq. (1.5) models the effect of linear loss 
and its compensation by phase-sensitive amplification with nonzero phase-mismatch [11,26,28,31,33]. The PFNLS 
equation is valid when discussing optical fiber rings in which the length of the fiber loop is much less than the 
dispersion and loss lengths [33]. 

Existence of solitary waves is known for these equations; in fact, there is an analytic expression for the wave 
for each of the above equations [32,33,40,44]. We shall be interested in their stability. Since these equations are 

posed on the unbounded real line, the spectrum of the linearization about a solitary-wave solution contains essential 
spectrum corresponding to radiation modes. In addition, the spectrum will contain several isolated eigenvalues 
of finite multiplicity. In particular, zero is such an eigenvalue by translation invariance. The essential spectrum 
of the nonlinear Schr6dinger equations (1.1) and (1.3) is located on the imaginary axis since these equations are 
both infinite-dimensional Hamiltonian systems. Eqs. (1.4) and (1.5) are nonconservative perturbations of (1.3) and 
(1.1), respectively. In order to establish stability, it is necessary to compute the spectrum of the linearization about 
the solitary-wave solution upon adding dissipative terms. There are standard tools available in order to determine 
the fate of isolated eigenvalues. However, the essential spectrum is more difficult to handle. While the essential 
spectrum itself is readily computed upon perturbations [12, Appendix to Section 5], it is possible that eigenvalues 
may bifurcate from the essential spectrum. It is the problem of detecting such eigenvalues which is the primary issue 
of the present paper. We emphasize that eigenvalues may pop out of the essential spectrum even if the corresponding 
eigenfunctions in the unperturbed situation are not localized. Note also that the perturbations mentioned above are 
in general not bounded. 
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Fig. 1. The spectrum for the NLS. The point )~ = 0 is an isolated eigenvalue with algebraic multiplicity 4. The rest of the spectrum is 
continuous spectrum, which is the curves lira X[ > w. 

The spectrum for the NLS itself is completely understood. The point X = 0 is an isolated eigenvalue with 

geometric multiplicity 2 and algebraic multiplicity 4, and the rest of the spectrum is continuous spectrum, which 

is the curve IIm X[ > o9 (see Fig. 1). Furthermore, there are no eigenvalues embedded in the continuous spectrum 

[23,24]. Now consider the generalized perturbed NLS equation 

iOt4) + (02 - o9)(o + 41~b12q6 + Ef(IqSla)q5 = ie(dlO2x(o + R(49, (~*)), (1.6) 

where f ( t l )  is real-valued and smooth with f (0 )  = 0, ~ > 0, and R(/z, 7) is real-valued and smooth. This equation 

comprises the aforementioned perturbations. We suppose that for 0 < E < e0 there exists a bright solitary-wave 

solution, qO(x, e), which converges exponentially to zero as ixl --~ oc. The first result shows that if eigenvalues 

bifurcate from the essential spectrum for e > 0, they emanate at X = +io9. The specific form of the perturbation in 

(1.6) is actually not important for the conclusion of Theorem 1.1 to be true. 

Theorem 1.1. Consider the linearization of (1.6) about the solitary wave 4~ (x, e) for E > 0 sufficiently small. There 

are then four eigenvalues near zero. Any other isolated eigenvalue is close to X = +iog. In particular, if eigenvalues 

bifurcate from the essential spectrum, they do so only near X = +iog. 

Remark  1.2. See Section 4 for a clarification of  "close". 

This result greatly simplifies our task since it suffices to investigate the region near X = io9 in order to detect 

eigenvalues popping out of the essential spectrum. In particular, it is not possible for eigenvalues to bifurcate from 

infinity. 

For the PCQNLS, two of the eigenvalues near zero will leave the origin and be real and of O(~), while the other 

two will remain at the origin. Recently, Kapitula [19] was able to determine the location of the O(e) eigenvalues, 

and showed that in a certain region of the (dl, d2, d3, d4) parameter space they both move into the left-half of the 

complex plane. The continuous spectrum also moves into the left half-plane under perturbation provided dl > 0 

and d2 < 0. In this paper, we show that the eigenvalues do not bifurcate from the essential spectrum near X = +io9. 

Therefore, there exist stable pulses for the PCQNLS. 

Theorem 1.3. Suppose that d2, d4 < 0, d3 > dl > 0, and (d3 - dl) 2 > ~-d2d4. Let 

( ; 5 d3 - dl 4- (d3 - dl) 2 -- -~-d2d4 • o94- -- 4[d4[ (1.7) 
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Then, for any e > 0 sufficiently small and any oe _< 0 with loci sufficiently small, there exist solitary-wave solutions 

45± of  the PCQNLS for co = co± which are close to ~ sech (v/~-7 x). The solitary wave 4 _  existing for co = co_ 

is unstable, while the wave q~+ for co = co+ is orbitally exponentially stable, i.e., if limbo - q~+ I1 is sufficiently small, 
then there exists a b > 0 and constants r, 0 6 R such that [[q~(t, .) - 4 + ( .  + r)ei°ll < Ce -bt for t > 0. Here II • I[ 

denotes the L2-norm. 

l Remark  1.4. The theorem is also true when ~ > 0 with ~ = O(e ~) for some )/ > ~, and we refer to Section 6 for 

details. 

Remark  1.5. It is shown in Lemma 5.1 that an eigenvalue bifurcates out of  the continuous spectrum if ot > 0 and 

E = 0. The wave will be stable for 1 >> ot > O ( v ~  ) > 0 if it can be shown that this eigenvalue moves into the 

left half-plane for e > 0. Theorems 4.2 and 4.4 provide the framework for this calculation, which we leave to the 

interested reader. 

The assumptions of  the above result are reminiscent of  an energy balance. The constants d~ > 0 and d2 < 0 

correspond to dissipation of  energy, while d3 > 0 relates to a nonlinear gain of  energy. Note that co is related to 

the amplitude of  the solitary wave. The wave with smaller amplitude co_ is then always unstable, while the wave 

with larger amplitude co+ is stabilized due to nonlinear saturation (or loss) in the fiber represented by d4 < 0. The 

amplitude of  the stable pulse depends inversely on the strength of  the nonlinear fifth-order saturation in the fiber. 

Finally, Eq. (1.7) reveals that if d2 approaches 5(d3 - dl)2/24d4, then the two waves coalesce and disappear in a 

saddle-node bifurcation. 

If  an initial value is chosen near the family (1.2) of  solitary waves of  the NLS such that its amplitude is larger 

than co_, then it is expected that the associated solution of  the PCQNLS converges exponentially fast towards the 

stable pulse. It can be conjectured that the optical fiber therefore supports in a stable fashion only those pulses of  

the form e-i(~°+t+/~)qO (x), where co+ is given in (1.7) and/3 ~ E is arbitrary. 

We remark that the PCQNLS with ot = 0 has been investigated numerically. In [2], the region in the (dl, d2, d3, d4) 

parameter space inside which stable pulses exist has been explored numerically. The simulations presented in [2] 

are in good agreement with the theoretical results provided by Theorem 1.3. We refer to [2] for more details on the 

physical importance of  the existence of  stable pulses for the PCQNLS. 

Now consider the PFNLS 

i4)t + CPxx - coqb + 41q~12~p + ie(yq~ -/zq~*) = O. 

Its solitary-wave solution is given by 

~co sech(~/co + e/z sin 20 x) exp(iO),  (1.8) 
+ 6/Z sin 20 

45(x, co, ~) : 2 

where 

Y cos 20 = --.  
/z 

When considering the PFNLS, three of the eigenvalues will leave the origin and be of  O(e), and only one will 

remain. The reason that an extra eigenvalue leaves the origin is due to the fact that/~ > 0 breaks the rotational 

symmetry of  the NLS. The location of  the O(e) eigenvalues is known for all E > 0 [4,27]. I f / z  sin 20 < 0, then 

there will be a positive real eigenvalue, while i f /z  sin 20 > 0, there will be an eigenvalue located at )~ = -2EV 

and a complex conjugate pair located on the line Re )~ = -~Y-  When/z  sin 20 > 0, we will locate any eigenvalues 

which move out of  the continuous spectrum, at least for e > 0 sufficiently small. In particular, we will show that 
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Fig. 2. The spectrum for the PFNLS for/z sin 20 > 0. There are four eigenvalues e-close to the origin and two eigenvalues which are 
c2-close to the points - e y  Jr ico on the line Re )~ = -Ey. In fact, the spectrum is always symmetric with respect to the reflection across 
the line Re X = -~y.  

only one complex conjugate pair leaves the continuous spectrum for E > 0 sufficiently small. Due to the symmetries 

associated with PFNLS, we will then be able to conclude that these eigenvalues are located on the line Re X = - e y .  

We refer to Fig. 2 for the spectrum of the linearization of  the PFNLS about the solitary wave. 

When considering the PFNLS, having the spectrum located in the left half-plane is not sufficient to be able to 

conclude that the wave is stable. The PFNLS only generates a C°-semigroup, so that the Spectral Theorem does 

not in general hold. Therefore, besides locating the spectrum, additional resolvent estimates, which are presented 

in Section 7, are necessary to prove the following stability theorem. 

Theorem 1.6. Consider the PFNLS. If  E > 0 is sufficiently small and /z s in20  > 0, then the wave is orbitally 

exponentially stable, i.e., if ll4~0 - 45 II is sufficiently small, then there exists a b > 0 and a constant r c R such that 

limb(t, .) - q0(. +~)[[  < Ce -bt fo r t  _> 0. 

Physically, this result implies that an optical storage loop under phase-sensitive amplification supports stable 

pulses. In fact, the pulse is exponentially stable. We therefore expect that additional noise in the fiber will not 

greatly affect the pulse. In [35], the effects of  noise due to quantum fluctuations and guided acoustic-wave Brillouin 

scattering have been explored numerically for amplifiers with zero phase-mismatch, and the pulses were still found 

to be stable. 

Numerical simulations in [6] show that the stable pulse destabilizes for larger values of  E due to a Hopf bifurcation. 

This bifurcation is created in the following way. As mentioned before, there are four eigenvalues located on the line 

Re )~ = - E  g for e > 0 small (see Fig. 2). As ~ increases these eigenvalues coalesce, leave the line Re ;~ = -E) , ,  

and finally two of them cross the imaginary axis. Note that two of the eigenvalues located on the line have popped 
out of  the essential spectrum. 

It turns out that adding a quintic term (representing higher-order saturation in the optical fiber) actually inhibits 

these eigenvalues from bifurcating from the essential spectrum. Thus, consider the PFNLS with an added quintic 

term, henceforth known as the parametrically forced cubic-quintic nonlinear Schr6dinger equation (PFCQNLS): 

iqSt + qSxx - cog) + 4[qS12~b + 3~lqS[4q5 + ie(y~b -/zqS*) = 0. 
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This equation describes the periodic parametric (phase-sensitive) amplification of solitary waves for fibers with a 

saturable or higher-order refraction index. It can be thought of as encompassing the effects of both the CQNLS 
and the PFNLS. It turns out that a balancing of the quintic term o~ with the forcing amplitude E will control the 

number of eigenvalues which move out of the continuous spectrum. Specifically, as a consequence of Lemma 5.6, 

i f 0 <  [awl,6<< l a n d  

12# sin 20 
O~ < 0) 2 6, 

then no eigenvalues bifurcate out of the continuous spectrum. Otherwise, the picture is exactly as that given in 

Fig. 2. As far as we know, this balancing effect between the parametric forcing and possibly stabilizing effect of a 

negative c~ has not yet been documented in the literature. 
We have shown above that the PFNLS admits a stable solitary wave having a single hump. Of interest is then 

whether there are stable multiple solitary waves. These are pulses having several humps, i.e., are concatenated 

copies of the single-hump solitary wave. In order for stable multiple (or multi-hump) solitary waves to exist, the 
interaction between single-hump waves must be suppressed. We show that stable multiple pulses exist provided 

spectral filtering is added to the physical situation governed by the PFNLS. Under this scenario, the perturbed 

equation is given by 

iqbt + (axx - 0)0 + 41qSI2q 5 + i6(g~b -/z~b*) = i6(Oxx, (1.9) 

where 3 > 0. 
Multiple solitary-wave solutions to (1.9) are formally constructed by concatenating N widely spaced copies of 

45 or - ~ ,  where q5 = ~ is an 0(3) correction to the expression given in (1.8). Since q~ and -45 are concatenated, 

N-pulses can be obtained in a variety of ways. Denoting q~ and -q~ by "up" and "down", respectively, we may 

then consider arbitrary sequences of ups and downs corresponding to whether q5 or -45 is used. Based upon an 
application of the work of Sandstede et al. [42, Theorems 1, 2, and 4], we have the following theorem concerning 

existence and stability of multiple solitary waves of (1.9). 

Theorem 1 .Z  Fix 6 > 0 small and N > 1. Suppose that/z sin20 > 0. For any 0 < 3 < 3(6, N) << 1 small there 
exists a unique multiple solitary wave of up-down-up-down . . . .  type. These pulses are orbitally exponentially 

stable with respect to Eq. (1.9). Any other N-pulse consisting of copies of 4~ or -4~ is unstable. 

R e m a r k  1.8. In fact, multiple solitary waves of up-down-up- . . ,  type exist for all 0 < 6 < 0 ) / #  sin20 and for 

3 > 0 small, and they are stable as long as 4~ is stable when 3 = 0 (see Remark 7.7). 

By Theorem 1.6, the condition # sin 20 > 0 means that the primary pulse is stable. Therefore, if spectral filtering 
is used in the storage loop in addition to phase-sensitive amplification, the loop will also support stable multiple 

pulses. These pulses can be used for a more efficient data-encoding scheme replacing binary encoding (see [35]). 
Having discussed the main motivation and results of this paper, we now turn to an outline of our approach. 

As mentioned above, the primary issue is the detection of eigenvalues which are either embedded in the essential 

spectrum or which bifurcate from the essential spectrum upon adding perturbations. The major tool which we use to 
accomplish this task is the Evans function (sometimes referred to as a transmission coefficient). The Evans function 

E()v) is a complex-valued function depending on )v ~ C with the property that E0,)  = 0 whenever )~ is an isolated 
eigenvalue. The Evans function is a priori defined only away from the essential spectrum; thus, it is not immediately 

clear that it can be used to locate embedded eigenvalues. 
The issue of locating embedded eigenvalues is not new, and has been investigated by several authors. In doing a 

study of the stability of singular traveling waves to the FitzHugh-Nagumo equation, Jones [14] extended the Evans 
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function through the essential spectrum in an analytic fashion. Pego and Weinstein [36] applied Jones' idea to the 

KdV equation and other related systems. The interested reader can also consult Jones et al. [ 15], Kapitula [ 16-18], 
and Rubin [39] for other problems in which an extended Evans function has been used in stability calculations. 

In all these papers, an essential idea was to show that the extended Evans function had no zeros. Using continuity 

properties, it could then be concluded that the Evans functions stayed nonzero after adding perturbations, and 
therefore no eigenvalues bifurcated from the essential spectrum. The last is due to the fact that any isolated eigenvalue 

contributes a zero to the Evans function. 
It is instructive to take a moment to understand the scenario under which the Evans function has been extended 

across the continuous spectrum. Writing the eigenvalue equation under consideration as a first-order system, one 

obtains 

Y~ = M()~,x)Y,  Y t R n, 

where the matrix M0~, x) is analytic in )~. Since the solitary wave converges to a constant state as Ixl ~ ec, the 

matrix M000 = limlxl--,~ M()~, x) exists and is also analytic in )~. By Henry's result [12, Appendix to, Section 5], 
)~ is in the essential spectrum if, and only if, M0 ()0 has eigenvalues on the imaginary axis. The Evans function is 

a priori defined only if the eigenvalues of M000 have nonzero real part. Jones [14] was able to extend the Evans 

function across the essential spectrum under the condition that M0()~) has precisely one eigenvalue with positive 

real part when )~ is to the right of the essential spectrum (see [15-18,39] for an incremental generalization of the 

technique presented in [14]). If  there are several eigenvalues of M0()~) on the imaginary axis for L in the essential 
spectrum, and if these eigenvalues do not all move into the same half plane when )~ moves off the essential spectrum, 

this method fails. In particular, the method is not applicable to equations of Schr6dinger-type. 
The most theoretical part of this paper, namely Section 2, is concerned with constructing an extension of the 

Evans function for equations of Schr6dinger-type. The extension is carried out under very general assumptions and 

is therefore applicable to quite general equations. It is quite technical, and on a first reading the reader may only 
wish to study the introduction to the section and Section 2.5. In Section 3, we explicitly calculate the extended Evans 

function for the nonlinear Schr6dinger equation. An expansion of the Evans function near )~ = ±ico and expressions 

for possibly bifurcating eigenvalues for perturbations of the cubic NLS are given in Section 4. In Section 5, these 

results are used to calculate eigenvalues bifurcating from the essential spectrum near its end points )~ = +ic0 for 
the cubic-quintic and the parametrically forced Schr6dinger equation. Finally, we return to Eqs. (1.4) and (1.5) in 

Sections 6 and 7, respectively. The latter section also contains the proof of the existence of stable N-pulses for (1.9). 

Remark 1.9. After this paper was submitted, we learned that Gardner and Zumbrun [7] independently and simul- 
taneously obtained similar results on the extension of the Evans function. 

2. The extension of the Evans function 

In this section, the Evans function is extended across the essential spectrum. The extension is first developed for 

)~ in compact sets. We then consider the case of large )~ and show that the extended Evans function does not have 
any zeros for sufficiently large I)q. 

We shall first outline the basic ideas. Consider a linear equation 

Y' ----- A0~, x)Y = (A0(;~) + R()~, x))Y (2.1) 

which is assumed to be the linear eigenvalue problem written as a first-order system. The parameter )~ represents a 
prospective eigenvalue, and the n x n matrix R0~, x) is assumed to tend to zero exponentially fast as Ixl --+ c~. 
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If  )~ is not in the essential spectrum, the matrix Ao0Q has no imaginary eigenvalues. Assume that Ao()0 has k 
eigenvalues with positive real part and n - k eigenvalues with negative real part. It is then possible to define analytic 

solutions Yi ()~, x) such that 

lim [Yj()~, x)] --~ 0 and Yj()~, 0) are linearly independent for j = 1 . . . . .  k, 
X - +  --OQ 

lira IYz0~, x)l ~ 0 and Yl()~, 0) are linearly independent for 1 = k + 1 . . . . .  n. 
x--~ + o ~  

Therefore, it is possible to define the subspaces Eu(~k) = Span{Y1 @, 0) . . . . .  Yk(~, 0)} and ES(~) = Span{Y~+l 

(;~, 0) . . . . .  Yn ()~, 0) } of  initial values leading to solutions of  (2.1) which are exponentially decaying in backward or 

forward time, respectively. Hence, )~ is an eigenvalue if, and only if, the spaces Eu()Q and ES()0 have a nontrivial 
intersection, as this leads to a solution (the eigenfunction) of  (2.1) which decays in both time-directions. 

Following Alexander et al. [3], the Evans function is given by 

E(~) = Y10~, 0) A . . .  A Yn()~, 0), 

where the wedge product of  n vectors measures the n-dimensional volume of the cube spanned by these vectors. In 
other words, the Evans function is a measurement of  how far away the spaces E u ()~) and E s ()0 are from intersecting. 

Indeed, if there is any intersection, the vectors appearing in the above formula are no longer independent. The cube 
is then no longer n-dimensional, and hence its volume is zero. Therefore, the Evans function E ()Q is zero for )~ 

outside the essential spectrum if, and only if, )~ is an eigenvalue. 

If  )~ is in the essential spectrum, the matrix A0 ()Q has imaginary eigenvalues and the above construction breaks 

down. The idea is to then analytically extend the spaces E u ()Q and E s ()Q so that they include solutions of  (2.1) which 
either exponentially decay or which converge exponentially fast to eigenvectors corresponding to the imaginary 

eigenvalues of A000.  It is important to divide the set of  imaginary eigenvalues into two disjoint groups, one of 

which is used for EU()0 and the other which is used for ES()0. Also, in order to make this construction unique, the 

exponential convergence towards eigenvectors must be fast enough. In the next section, we construct these solutions. 

2.1. Rapidly decaying solutions of  linear equations 

In this section, we consider a linear system 

u' = ( B()~, Ix) + R(Ix, x) )u, (2.2) 

where u c C n, ()~, Ix) 6 S-2 x NP, and x 6 ~. Here, S-2 C C is open. Assume that the following condition is satisfied. 

Hypothesis 2.1. There exists a vector 0()~, IX) such that B()~, IX)O()~, IX) = 0 for all ()~, IX) and [tl()~, IX)I < M for 
some M. Moreover, there are numbers K1 _> 1, K2 > 0,/~ c R, and g > 0 with g > fl such that 

]leB(Z'/z)xl[ < K1 e~x, x E ~, IIR(IX, x)II < Kze yx, x < O. 

We then have the following result which characterizes solutions decaying with the exponential rate g to O()~, IX) 

as x -+ -(x) .  It is necessary for the proofs in the subsequent sections. 

Lemma 2.2. Assume that Hypothesis 2.1 is true. There exists a unique solution u()~, Ix)(x) of (2.2) defined for 

x < 0 such that there exists a constant C with 

lu(Z, Ix)(x) - 0(4, Ix)l _< Ce ×x 
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as x -+ --oo. In addition, we have 

2K1K2M 
lu(;~, # ) (x )  - ~(z,  #)1 _ 

z - 3  

uniformly for x c ( - o o ,  x0] with x0 < 0 such that 

K1K2Mezxo < 1 
y - f i  - 2  

Furthermore, u ()~,/z) is analytic in )~ if B and ~/are. Similarly, if B, r/, and R are C m in # for some m > 0 and 

dJ x) ---d-~j R(Iz, < Cje zx, x <<_ 0 

for j = 1 . . . . .  m, then u ()~, #)  is C ~ in #.  

Proof We seek the desired solution u()~,/z) in the form u()~,/z)(x) = ~()~,/z) + v(x). The function v will be 

sought as a solution of the integral equation 

x 
/ *  

v(x) = ] eB(~'~)(x-Y) R(Iz, y)(tl()~, #) + v(y)) dy (2.3) 

--00 

for x 6 ( - o o ,  x0] with x0 < 0, see also [36, Proposition 1.2]. Note that any solution v of  (2.3) satisfies (2.2) by 

Hypothesis 2.1. We have 

_ !  f K I K2 M eB(~'X)(x-Y)R(t z, Y)~7()~, t~) dy < KIK2 e~(X-y)eZYlrl()~,/z)[ dy < - - e  zx. 
_ _ ?,_fi 

Similarly, we obtain 

_ !  eB()~'~)(x-y) e(t-~, y)v(y) dy _< gl g2_~f e~(X-y)eZY lv(y)l dy _< ~ - flK1g2 ezX llvll' (2.4) 

where 

Ilvll : =  sup Iv(y)l. 
y<_xo 

Set 

V :=  C ° ( - ~ ,  x0). 

The integral equation (2.3) can be written in the function space V as 

v = F()~,/z)0/(~.,/z) + v), 

with 

K1 K2 K1K2M 
IIV(•, #)v[[ _< eyX°llv[[, [IF(,~, #)O(Z, Iz)ll 5_ - -  

(2.5) 
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Choose x0 _< 0 such that 

K1K2 e×XO < 1 
× - ~  - 2  

so that II F()~, ~)II -< ½ in the operator norm on V. Since F()~,/x) is then a uniform contraction, we can solve (2.5) 

and obtain the fixed point v: 

v = (id - F()~, ¢z))-lF()~,/z)r/()~,/z). 

In particular, we have 

2K1K2M 
[[v][ _< 2[IF(X,/z)~(k,/z)[[ _< 

The estimates appearing in the lemma follow now immediately using (2.4). Finally, the statements about the 

dependence of  the fixed point v on the parameters ()~,/~) are true since the operator F()~,/z) is analytic in Z and 

C m in/x. [] 

2.2. Extension for  Z in bounded sets 

We shall construct the stable and unstable subspaces EU()0 and ES()0 when )~ is in the essential spectrum. 

Consider the linear system 

V'  = A()~, x)Y, (2.6) 

where Y • C n, and the matrix A is analytic in ~ for each fixed x. Here, k • Y2 where Y2 will be specified later in 

(2.10). 

Hypothesis 2.3. Assume that there exists a constant K > 0 and matrices A±(Z) such that A(Z, x) - A+(k) is 

independent of  Z and 

lim [A()~, x) - Ai (Z) Ie  --SKx _< C, (2.7) 
x---~ 4-oo 

where C > 0 is a fixed constant. 

We begin with some hypotheses on the asymptotic matrices A+ (Z). 

Hypothesis 2.4. If  Re )~ > 0, then for some 1 _< k < n both A~=()~) have k eigenvalues of positive real part and 

n - k eigenvalues with negative real part. 

For Re )~ > 0, define 

a=~()~) = cr(A+(Z)) n {/z • C; Re/z  > 0}, (2.8) 
a~s ()~) = a (A+(Z))  A {/z • C; Re/z  < 0} 

to be the sets corresponding to the k (n - k) eigenvalues of  A± (Z) with positive (negative) real part. 

Hypothesis 2.5. Let 

N 

F = U ( i a j ,  ibj) C ia,  
j = l  
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where aj < bj < a]+ ~ for j = 1 . . . . .  N are real numbers, be such that if ;. 6 F ,  then the spectrum of A+ ()~) is the 

disjoint union of two sets which are again denoted by a~: ()0 and as '  ()~). Moreover, a ,  ~ ()~) and as '  (X) are the limits 
of a~(2)  and a s (2 ) ,  respectively, as 2 ---> )~ with Re 2 > 0. 

I f  X = ir  6 F ,  it therefore is required that the spectrum of A±()~) is the disjoint union of a~u (i t)  and a=~(ir). 

As a consequence, for fixed r ,  there are neighborhoods U, u and U s' of a~_(ir) and a~_(ir), respectively, in C such 

that any eigenvalue of A±(2)  is contained in either U u or U s for any 2 close to )~. Indeed, eigenvalues depend 

continuously on parameters [22]. Hypothesis 2.5 then states that for all 2 close to )~ with Re 2 > 0 any eigenvalue 

of A--(2) which lies in U u (U s) has positive (negative) real part. In other words, the sets a:  u 0~) and a~  s (3.), which 

were originally defined for Re )~ > 0, can be continued as disjoint sets for )~ in an open neighborhood of F ,  see 

Fig. 4. 

In particular, there are numbers 3j ()~) > 0, j = 1 . . . . .  n, such that for any )~ 6 Zj  defined by 

Z'J := {)~:aJ < I m ) ~  <bj ,  -3j(~.) < Re)~ 5 O} 

the spectrum of A-- ()~) is the disjoint union of two sets a:~ ()~) and a~ (;~) which are the continuation of a~: ( i t)  and 
a~S ( i t ) f o r  iv 6 (iaj, ibj). 

Set Zj  C Zj  to be such that if )~ ~ r j ,  then 

K K 
min{Re /z: /z 6 a~()0} > - - ,  max{Re # : /z  6 a~S ()0} < - .  (2.9) 

17 /'/ 

Finally, set S2 to be 

Note that £2 is open, simply connected, and F C ~ .  Some of the eigenvalues in the sets a~:(ir) and a~ ( i r )  might 

be contained in the imaginary axis and we will refer to these eigenvalues as those with small real part. Note that 

their number may depend on the interval (aj, bj) in which iv is contained. 

The goal of  this section is to construct an Evans function for )~ c S2 which is an analytic extension of that 

constructed by Alexander et al. [3]. Under the current setup, the Evans function is defined only for those )~ with 

positive real part. The following discussion mirrors much of the presentation of Alexander et al. [3]. 

By setting 

1 l n ( l + r  ~ 
x = 2 ~  \ l - r J '  

Eq. (2.6) becomes the autonomous system 

YI = A()~, r )Y,  r '  = ~c(1 - r2), (2.11) 

where i = d /d r .  By Alexander et al. [3] we have the following. 

Lemma 2.6. Assuming that Eq. (2.7) holds true, Eq. (2.11) is C ~ on C n x [ - 1 ,  ÷1].  

If  Y1 . . . . .  Yk are solutions of  (2.6), then YI A . . .  A Y~ is a solution of 

Y'  = A(k)()~, x)Y, 
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where A~k) ()~, x) is the linear derivation on A k C n induced by A ()~, x). As above, this equation can be compactified to 

y i  = A(k)(;~, r )Y,  r I = K ( 1  - -  / 7 2 ) ,  

which is C 1 on A~C n x [ - 1 ,  +1].  

Consider the asymptotic systems 

Y'  = A~ ) (Z)Y. 

The eigenvalues of A~)(;~) are the sums of any k-tuples of  eigenvalues of  A:~()~). For ;~ ~ I2, the spectral sets 

rr u (X) and rr~ ()~) are well-defined. The spectral projection of A_ (;~) associated with a_  u (;~) is denoted by p_u (;~). If  

Re L > 0, it is the spectral projection onto the sum of all generalized eigenspaces of eigenvalues with positive real 

part. Similarly, P~_(X) denotes the spectral pr~ect ion of A+()~) associated with rr~_(;~). Both projections depend 
analytically on )~ 6 ~ .  Set 

or_()0 = t r ace (A_00eU()0 ) ,  or+()0 = trace(A+()0P~_()0). 

In particular, ~_ ()0 and ot+(X) are analytic in )~. Then a _  ()0 equals the sum of the eigenvahies (counted with 
multiplicity) contained in rr_ u (;~). Similarly, cx+ (X) is the sum of the eigenvalues which lie in a~_ ()0. If  Re ;~ > 0, 

then el_ (;~) is the eigenvalue of A(_ k) (;~) with largest real part, and or+ ()~) is the eigenvahie of  A(+ k) (;~) with least real 

part. In addition, if Re L > 0, then ~x± (;~) are simple eigenvalues. 

Set 

Z()~, x) = e-~-(X)xY()~, x). (2.12) 

Then Z()~, x) satisfies the ODE 

Z ~ = [A (k) (X, x) - c~_ ()Qid]Z, 

which, as above, can be compactified to 

Z '  = [A(k)()~, r )  -- e~_(X)id]Z, r '  = to(1 - 2"2) .  (2.13) 

This again is a C t system on AkC n x [ -  1, + 1]. In the invariant plane {r = - 1 } this reduces to the autonomous system 

Z'  = [A~ ) (;() - cx_ (X)id]Z. 

The critical points are the eigenvectors, 0 -  00,  associated with o~_ (;~), that is, 

[A(_ k) ()~) - oL_ (X)id]t/_ (;~) = 0. 

Since a _  ()0 is a simple eigenvalue of A(k) (;~) for Re L > 0, the associated eigenvector 7/_ (;~) depends analytically 
on X. However, a _  (;~) is not necessarily simple if Re ;~ < 0. Still, there is an analytic continuation of rT- (X) 

k n for )~ ~ a"2. Indeed, we may choose ~1-(;~) as the A C -representative of the generalized eigenspace R(pu()~)) 

associated with the eigenvalues in cr u (X). 

To be more precise, choose analytic functions el (;~) . . . . .  ek (~) e R ( P  u_ (),)) for )~ 6 S2 such that these vectors 

are linearly independent for any )~ 6 12. This is clearly possible, since pu (;~) is analytic for X 6 Y2 and ~2 is simply 
connected. Then define 

rl_(,k) :=  el(X) A . . .  A ek(X) e A k C  n, 

and note that 0 -  (L) is analytic and an eigenvector of  A(_ k) (L) associated with the eigenvalue c¢_ (X). 
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Now linearize (2.13) at the critical point (~_ ()0, - 1). I f  Re )~ > 0, then there is exactly one unstable eigenvalue, 

2K, and the associated eigenvector lies in the r-direction. This is the key which has been used in [3] to define the 
• ( k ) ) ~  Evans function. Suppose now that )~ 6 27j for some j .  We claim that if ;~ 6 I2j, any eigenvalue of A_ ( ) -- a _  ()0 

(k) 
has real part strictly less than 2K. Indeed, let/3_ be the eigenvalue of A (3.) with largest real part. Then/3_ is the 

sum of the k eigenvalues of A_ ()~) with largest real part. We number the eigenvalues of A_ ()0 according to 

= . . . . .  = . . . . .  

and counted with multiplicity. Then/3_ can be estimated by 

k 
/3_ - Z R e ~ i - 0 0  < -K,  (2.14) Re 

n 
iEJ-()~) 

where J - ( ) , )  denotes the set of indices 1 < i < k which correspond to eigenvalues with positive real part. Indeed, 

for )~ c Ej ,  some of the a i - ( )0  with i < k may have crossed the imaginary axis. They are then possibly replaced 

by eigenvalues o- i- ()~) with i > k. However, the real part of each of these eigenvalues is less than K/n by the choice 
of  Zj ,  see (2.9). Therefore, their real parts adds up to at most (k/n)K, and (2.14) is proved. Let 

/3/- = / 3 _  - o~_()~). 

For )~ c Zj ,  using the estimate (2.14) and (2.9), we obtain 

k 
2k 

Re t ic  = Re t _  - Z R e  ai-()~) < --to. 
n 

i=1  

This proves our claim. 
Therefore, if  )~ c 27j, the unstable eigenvalue with largest real part is 2x, with the eigenvector still pointing in 

the r-direction. Thus, for )~ 6 g the point (~- ( )0 ,  - 1 )  has a one-dimensional strong unstable manifold. Since 

the tangent vector to this manifold points in the r-direction, the manifold can be written as a function of ~:, say 
Z_  ()~, r) ,  for - 1 _< r << 0. It follows from Lemma 2.2 that Z_  ()~, r )  is analytic in )~ for )~ 6 / 2 .  By applying the 

flow associated with (2.13), the solution Z_  ()~, r )  is well-defined and analytic in )~ for r ~ [ - 1 ,  +1).  By Eq. (2.12), 

this then defines a solution 

Y_()~, x) = Z-0~ ,  x)e ~-(x)x, 

which has the property that if Re ~ > 0, then IY_ 0~, x)[ -+ 0 exponentially fast as x ---> - ~ .  Note that Y_ ()~, x) 

is analytic in )~ for )~ 6 ~ .  

Now set 

Z = e-~+(~)xY()~, x), 

where Y e An-kc  n. Then Z()~, x) satisfies the ODE 

Z'  = [A (n-k) ()~, x) - a+(),) id]Z, 

and in a manner similar to that described above a solution, Z+ ()~, r) ,  can be constructed as the strong stable manifold 
of  the point (~+ ()0, +1) ,  where ~+ ()~) is an analytic eigenvector of  A~  -k) ()~) - c~+ ()0id constructed as before 
using P~ ()~) instead of p_u ()0- This in turn yields a solution 

Y+()~, x) = Z+0~, x)e ~+(~)x, 
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which has the property that if Re )~ > 0, then ]Y+ ()~, x)] ~ 0 exponentially fast as x --+ +oe .  Again, Y+ ()~, x) is 

analytic in )~ for )~ ~ £-2. 

Define the Evans function to be 

( J )  E(;.) = exp - trace A()~, s) ds Y_()~, x)/~ Y+(;. ,  x), (2.15) 

which for )~ E ~2 has values in AnC n ----- C. It follows that E()~) is analytic for )~ 6 ;2. We close with the following 

proposition. 

Proposition 2.7. Suppose that Hypotheses 2.3 - 2.5 are true. Then the Evans function as described by Eq. (2.15) is 

analytic for ;~ E £-2, where £2 is described by Eq. (2.10). If  )~ is such that Re )~ > 0, then E ()0 is the Evans function 

as constructed by Alexander et al. [3]. 

Corollary 2.8. Assume that the matrix A0~, bt, x) depends in addition on a parameter ft 6 NP. Suppose that 

Hypothesis 2.3 is met for any # and that Hypotheses 2.4 and 2.5 are satisfied for/.t = 0. In addition, suppose that 

A()~,/z, x) is C m in/z for some m _> 0 and 

d j 
-~#j  (a(;%/z, x) - a±0~, /z ) )  e ±SKx < Cj, x --+ 4-00, 

for j = 1 . . . . .  m. Take any open subset £) of  £2 with clos £) C £2. The Evans function E()~, ~) exists then for/x 

close to zero and )~ c £). Moreover, E(;%/z) is analytic in )~ and C m in ft. 

Proof  The statements follow easily from the above discussion and Lemma 2.2. [] 

2.3. Extension through branch points 

Thus far, we considered regions in the complex plane such that the spectrum of the matrices A±()0 was the 

disjoint union of  the sets o-,u ()0 and er~()0. In this section, we consider the case that the decomposition ceases to 

exist at an isolated point )~ E C. In other words, we study neighborhoods of  the points iaj and ibj appearing in the 

definition of the set F in Hypothesis 2.5. 
We do not strive for the most general result possible, but instead restrict ourselves to cases which will arise in 

the analysis of  perturbations of the cubic nonlinear Schr6dinger equation. Therefore, let n = 4. Consider the linear 

system 

Y'  = A(X, # ,  x)Y, 

where Y E C 4, and the matrix A is analytic in ;~ and smooth in bt E R p for each fixed x. We assume that 

Hypotheses 2.3 and 2.4 are met with k = 2 for any small ft. In addition, suppose that A±(; , , /z)  = A()~, bt). 

We start with the following assumption on the asymptotic matrix A(X, #).  Set 

K :---- {)~: I;~ - icol _ 8, Re ~ _> 0}, /(  :=  K \ {ico}. 

The point ico should be thought of  as a point aj = bj = co in Hypothesis 2.5. 

Hypothesis 2.9. For )~ E K and any/.t  close to zero, the eigenvalues of A(;% bt) can be written as continuous 

functions such that 

~rl(X, #),  O-2()~, ~) E o'U()~, /Z), a3()~, #), o-4()~, ]~) E o-S0 ~, ~) 
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are disjoint. Moreover, 

Re fi2(Z,/z) ~ ~ > 0, - R e  cr4(Z ,/z) ~ 6 > 0 

uniformly in )~ E K and/z. Suppose that fil (Z, 0), or3 (Z, 0) --~ 0 as Z ~ ico such that the kernel of A (ico, 0) is 
one-dimensional. Also, assume that 

Re fi~ (Z,/z) > 0, - R e  or3 (Z,/~) > 0 

for/z ¢ 0 and;~ E K. 

We can then extend the Evans function E()~, #) as a continuous function in Z E K and/z. 

Lemma 2.10. Assume that Hypothesis 2.9 is met. There exists then an extension of the Evans function E(Z, Ix) 

defined for Z E K and any # close to zero such that E(L,/z) is continuous in Z c K and #. 

Proof. The eigenvalues of the matrix A(Z, #) are simple for (Z, #) ~ (ico, 0) by Hypothesis 2.9. For (Z,/z) 5~ 
(ico, 0), denote the normalized eigenvectors of the matrix A(Z,/x) associated with fij (Z,/z) by vy()~,/x), where 
j = 1, 2. It is clear from Hypothesis 2.9 that the eigenvector v~(Z,/z) is continuous in (Z,/x) c K × ~P. 

The kernel of A(io), 0) is one-dimensional by Hypothesis 2.9 and therefore spanned by the normalized vector ~ .  
We have 

(A(Z, #)  - A(ico, 0))v~(Z, Ix) + A(ico, 0)v~(Z,/z) = A(Z,/~)v~(Z,/z) = al(Z, #)v~(X, #). 

Since fil(Z,/z) ~ 0 as (k ,# )  --+ (ko,0), Iv~(Z,#)l = 1, and A()~,#) is smooth in (Z,/z), we see that 
A(ico, 0)v~(Z, #) ~ 0 as (Z,/z) --+ (io), 0). Therefore, possibly after multiplying ~ with -1 ,  the limit 

lira v T ( Z , / z )  = ~ 
(~,U)-+ (iw,O) 

exists. Indeed, without loss of generality, the restriction of A (ico, 0) to its generalized kernel is given by 

0 0) (0 
and so the sign of (v~(Z,/x), ~ )  is not zero for/z small. 

Therefore, we can extend v~(Z,/x) continuously to (Z,/x) = (ko, 0) by setting v~(io), 0) = vl .^u We can then 
proceed as in Section 2.2 upon defining 

~_(k, ~) = v~(;~, ~) A v~(Z, ~). 

Continuity of the resulting Evans function follows from Lemma 2.2. [] 

Finally, we consider differentiable extensions of the Evans function. Set 

U : = { Z ;  [ Z - i a ) l < 6 } \ { Z ;  I m Z = i c o ,  R e Z < 0 } ,  U : = U \ [ i o J } .  

Hypothesis 2.11. For Z ~ U and any #, the eigenvalues of A(Z,/z) can be written as continuous functions such 

that 

fi] (Z, ]Z), fi2(,\, ~) E fit'(Z), fi3(Z, /Z), O-4(Z , ~) C fis(z) 
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are disjoint for X e U. Moreover, 

Re a2(X, #)  > 6 > 0, - R e  O-4()v , /,6) > 3 > 0 

uniformly in X e U, and al (X), or3 (X) are independent of #.  Suppose that al (X), a3 (X) -+ 0 as X --~ io) such that 

the kernel of  A(ioo, 0) is one-dimensional and spanned by the nonzero vector 73] (#). 

Lemma 2.12. Assume that Hypothesis 2.1 1 is met. There exists then an extension of the Evans function E (X, #)  

defined for X e U and/z  close to zero such that E(X,/*) is continuous in X E U and #. Moreover, E(Z, /z)  is 

different±able in #,  and its derivative is continuous in (X,/z). 

Proof Again, we want to extend the 2-form tl_(X,/*) = v~(X, #)  A v~(X,/,) in a smooth fashion to the point 

X = io). A priori, the above 2-form is defined for X e U and/z  E NP, and it is C 1 in/z  with its derivative being 

continuous in X. We can extend rl- (X,/x) to X = ±co by 

rl_(ico,/z) :=  ~l(/z) A v~(ico,/z). 

Note that ~](#) is smooth in #.  It suffices therefore to show that O_(X,/~) is C ] in /z  for any X E U with its 

derivative being continuous in (Z,/z). 

On account of  Hypothesis 2.11, we may assume that 

A(ioJ, #)  = 0 

for any small/~ with 01(#) = (1, 0) T. Writing v~()~, #)  = (1, 0) T + w(X, tx), we shall show that w(X, #)  can be 

chosen such that it is C ] in/z and continuous in X. Set 

B(X, #)  :=  A(£,/~) - A(ico, I~), 

and consider the following system: 

I( 0 ] ((1,0)T, w) = 0 ,  0 + B ( X , / z ) -  a](X)id w ---- (B(X,/z) +Crl(X)id)(1,0) T. 

Since al(X) is a simple eigenvalue of A(X,/z) for X 6 U and any/z,  we know that the above system has a unique 

solution. This solution can be easily obtained using the implicit function theorem and the claim follows. We omit 

the details. [] 

2.4. No large eigenvalues 

Consider the linear eigenvalue problem L P = X P,  where 

L = D(# )3  2 ÷ N ( # ,  x). 

The goal of  this section is to show that if[XI is large, then the Evans function can be constructed as in Section 2.2. Fur- 

thermore, it will be shown that the extended Evans function will be nonzero for I XI large uniformly in/x. We assume 

that the n x n matrix N(/z, x) is smooth in x, and that there exist asymptotic matrices N±(/z) and a K > 0 such that 

lim [N(/~, x) - N±(/z)le ±SKx < C. (2.16) 
x - + ± ~ c  

Assume that the matrices N ( # ,  x), Ni( /z) ,  and D(/~) are continuous in #.  
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Hypothesis 2.13. The eigenvalues VI(/Z) . . . . .  )'n(/z) of D(/z) are nonzero and satisfy 

[arg Vi(/~)I < re/2 

for all #. Furthermore, assume that D(/ , )  is diagonalizable for any/z. 

If Y = [P, Q]T, where Q = U ,  the eigenvalue problem can be rewritten as the system 

Y' = A()~, # ,  x)Y, 

where 

A(# ,  )~, x) = __ l . l z . ._ ._n  N ( # ,  X)) 

id~ ] 

0 ' 

(2.17) 

As a consequence of (2.16), the matrix A (/x,)~, x) satisfies Eq. (2.7); therefore, (2.17) can be compactified as 

y/___ A(/z, )~, r )Y,  r '  = he(1 - r2). (2.18) 

Set 

e, x () Q 
r = I )q  - 1 /  z = - ,  = r 

r 

Upon setting Y = [P, ~)]w, Eq. (2.18) becomes 

Y' -= A(#  )~, r, r )~  r, z '  = rx(1 - re), 

where now ~ = d / d z  and 

[ o l A(/z,)~, r, r )  ----- D -l(/z)(eiargxidn - r2N(Iz, r ) )  0 " (2.19) 

Note that A(/z, )~, r, r )  is smooth in the last three parameters. Letting vi(#) = 1/yi (#) ,  i = 1 . . . . .  n, denote the 
eigenvalues of D - 1 (#),  we have the following lemma. Note that arg vi ---- -arg gi, and that J vi I = 1/J gi ]. 

Lemma 2.14. Set 

A--(/z, )~, r) = lira A(/x, )~, r, r) .  
r - - + ± l  

The eigenvalues of A±(/z, )~, 0) are given by 

@- (tz,)~, O) = +lvj (/z) l V2 exp(i (arg vj (/*) + arg )~)/2), j ----- 1 . . . .  , n, 

aj-(t~, ;~, O) = - I v j ( tOI  1/2 exp(i (arg vj(Iz) + arg)~)/2), j ----- n + 1 . . . . .  2n, 

a ?  (/z,)~, 0) = a j - (# ,  L, 0). j = 1 . . . . .  2n. 

Furthermore, for j = 1 . . . .  , n 

o '?  (/.t,)~, r) = o-? (/.t, 2., 0) + O(r2). 

Proof The eigenvalues cr of A± (X, 0) satisfy the characteristic equation 

de + ( D - l ( # ) e  iargx - a2idn) = O, 

from which one immediately gets the first part of the proposition. The second part follows from [22, Theorem 
II.5.11], since by Hypothesis 2.13 the matrix D-1 (/x) is diagonalizable. [] 
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As a consequence of Lemma 2.14, if Re )~ > 0, then the eigenvalues a ?  (0,)~, 0) are ordered according to equation 

(2.8), that is, Re a ? ( 0 ,  )~, 0) > 0 for j = 1 . . . . .  n and Re a ? ( 0 ,  ;~, 0) < 0 for j = n + 1, . . . ,  2n. Following the 

previous argument, in order to extend the Evans function across the imaginary axis, we must have the following: 
there exists a smooth positive function O(r), with O(r) --+ 0 as r --* 0 +, such that if larg)q < rr/2 + O(r), then 

tc Re aj+ (/z)~, r) f - r  min Re a?(# ,  ;~, r) > -~-r,zn max < (2.20) 
j = l , . . . , n  j = n + l  ..... 2n 2n 

uniformly in/z. 

Lemma 2.15. There exists an ro > 0 such that for any )v with 

K 

larg)~l < -~ + 4nv. r 

and r < r0, Eq. (2.20) is satisfied. Here, 

v * =  max Ivj [1 /2= min lyjl 1/2. (2.21) 
j=l , . . .n  j=l , . . .n  

In other words, we may take 

/£ 
O(r) = r. 

4nv* 

Proof "Without loss of  generality, assume that 1 < j _< n. As a consequence of Lemma 2.14, 

Re 0-~(/,, )v, r) = [vjl 1/2 cos(~(arg vj -}- arg)v)) + O(r2), 

so that Eq. (2.20) will be satisfied if for 0 < r << 1, 

1 ) K (2.22) 
cos ~(argvj + a r g ) 0  > 4nlvjll/2 r. 

Eq. (2.22) will in turn be satisfied if 

( ) larg)q < 2cos  -1 41vjTT~n r - largvjl = Jr - largvjl + 21vj[1/2~r + O(r2). (2.23) 

Using the definition 

v * =  m a x  I1)jll/2= 1Tlin lyjl 1/2, 
j=I, . . .n  j=l , . . .n  " 

one can immediately see that if 

7t" K 

]arg)vl < ~- + 4nv---Tr, 

then (2.23) is satisfied. Thus, the function 0 (r) discussed previously can be written as 

K 
O(r)  ~ r, 

4nv* 

and the lemma is proved. [] 
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Remark 2.16. Note that the definition of arg )v yields that 

Re k zr 
< 0 ( r )  < > largXI < ~ + O ( r ) .  (2.24) 

Im;v 

With Lemma 2.15 in hand, the n-form Y_( / , ,  k, r, x) can now be constructed as in Section 2.2. In a similar 
manner, the n-form Y + ( # ,  )~, r, x) can be constructed. Thus, for 0 ___ r < r0 and larg)q < 7r/2 + O(r) the Evans 
function 

E(/z, L, r) = Y_(/z,  L, r, x) A Y + ( # ,  L, r, x) 

is well-defined. Since r ~ = 0 when r = 0, the n-forms Y±(L,  0, x) can be constructed for any k. As another 
consequence of Lemma 2.14, it is not difficult to see that if larg k[ < rr/2, then E ( # ,  k, 0) ¢ 0. We claim that the 
Evans function is nonzero for all r sufficiently small and ]arg k l < 7r/2 + 0 (r). 

To prove this claim, we proceed as in Section 2.2 and consider the equation 

Z ~ = [A(n)(/~t, )v, r, r )  - c~_(k)id]Z, r '  = rtc(1 - r2). (2.25) 

Here A(n)(#, k, r, r )  is induced by the matrix A(# ,  k, r, r )  given in C2.19). When r = 0 the vector field (2.25) is 

autonomous and a solution is given by (~_(k),  r )  for r E [ - 1 ,  1]. As in Section 2.2, for r ¢ 0 the eigenvector 
- C/z, k, r)  extends. We seek the strong unstable manifold of the point (~ -  (/x,)~, r) ,  - 1) and claim that it is a small 

perturbation of {(~_(L), r);  r E [--1, 0]}. 

Going back to the time variable z, we obtain the system 

Z'  = [~(n)(IZ, k, r, rz) - ce_ (#, k, r ) id]Z 

on A2nO n, where 

[ 0 
A(Iz, L, r, rz) = D - I  (#)(eiargZidn - r2 N(l  z, rz)) 

idn ] 
0 " 

(2.26) 

Let A~) C/z, )~, r) be the limit of A(~) (/z, ;~, r, rz) as z --+ - o c .  It is a consequence of the definition of the derivation 
A (n) and Eq. (2.16) that 

IIA(~)(#, k, r, rz) - A('~)(#, )~, r)ll _< Cr2e 5r~z 

as z ~ - e c ,  where the constant C can be chosen independently of  (/~,)~, r).  In other words, we may write (2.26) 
according to 

Z '  = [B(#,  2, r) + R(/z, )~, r, z)]Z, 

with 

B(tz,,k,r) ----.A(n)(#,k,r) - c~_(#, k, r)id, IlRC~,)~,r,z)ll < Cr2e 5rKz. 

For larg)q < 7r/2 ÷ OCr), any eigenvalue of the matrix BCtz, )~, r) has real part less than rz ;  therefore, 

IeB(~')~'r)z[ ~ Ce rKz. 

Also, zero is an eigenvalue of B(/z, )~, r) with eigenvector ~ (/z,)~, r). 
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We may therefore apply Lemma 2.2 with K1 = C, K2 = Cr 2, fl = rK, and y = 5r~c. As the result, the strong 

unstable manifold of  77_ (/z, Z, r) is given by 

~_(# ,  Z, r) + O(r) 

on ( - o o ,  0], since with the above choices we have 

K1K2 _ C 2 r Z  
Z - ~ 4K 

and t/ (/z, Z, r) is bounded uniformly in (#, Z, r). 

Thus, since Y_ = e~-ZZ_, we have that 

Y_(/z, Z, r, 0) = ~/_ (/z, Z, r) + O(r).  

In a similar manner, one can show that 

Y+(# ,  4, r, 0) = ~+(/z, ;~, r) + O(r).  

Therefore, from the definition of  the Evans function we have that 

E ( # ,  Z, r) = (Y_ A Y+) (# ,  Z, r, 0) = (7-  A ~+)(#,  Z, 0) -4- O(r) # 0 

for r sufficiently small (a consequence of Lemma 2.14). 

Note that the above approach is still valid if the initial estimate on R is weakened to 

[[R(/z, 4, r, z)[[ < Cre 5r~z, 

for in this case a unique solution is initially guaranteed for z < z0 = O ( ( l n r ) / r )  << 0, and can be continued for 

z > z0 by applying the flow. However, the error term in the above identity of  E ( # ,  Z, r) is then O(1) instead of 

O(r);  hence, it is not clear that E(/z, Z, r) ~ 0 for small r. 

Upon going back to the original variables, we can close the discussion in this section with the following proposition 

which is a consequence of Lemma 2.15, (2.24) and the above discussion. 

Proposition 2.17. Suppose that Hypothesis 2.13 and Eq. (2.16) are met. There then exists an L > 0 such that if 

Re Z a: [)v[_l/2, 
[ Z [ > L ,  I m Z  < 4nv ~ 

where v* is defined in (2.21), then the extended Evans function is well-defined and nonzero. 

Remark 2.18. In particular, the Evans function can then be extended in a nonzero fashion into the strip 

qK 
0 > R e Z > - - -  [ImZ[ > L 

- - 4 n v *  ' - 

for some q = q(L)  < 1. 

2.5. Example: Perturbed nonlinear Schrddinger equations 

Finally, we apply the results of  the previous sections to the generalized perturbed nonlinear Schr6dinger equation 

i0t49 + (0 2 - o;)49 + f(14912, c~)49 = iEd]0249 + iER(49, 49*). (2.27) 
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Here f ( o ,  ce) is real-valued and smooth function with f ( 0 ,  ~) = 0, E is nonnegative, and R(/z, ~7) is real-valued 

and smooth. L e t / z  = (or, e). Note that this equation encompasses both the perturbed cubic-quintic NLS and the 

parametrically forced NLS. 

Hypothesis 2.19. There exists a smooth function 45(x,/z) which is a steady-state solution to (2.27) and satisfies 

the condition that 145(x,/z)l --+ 0 at rate O(e -5KIxl) as [x[ -+  oc. The same estimate is true for the derivative of 

45 (x , /z)  with respect to/x.  Furthermore, 450(x) = 45 (x, 0) is real-valued. 

Remark  2.20. In order for the wave to decay exponentially fast, it must be true that when e is small, then co > 0. 

The goal of  this section is to prove the following two theorems. 

Theorem 2.21. Assume that e = 0. Let 

x~' 1 =-  {)4: Re )~ > 0}, S2 = {)~: IIm )~l < co}, 

Z 3 = { X : l I m X [ > c o ,  - L < R e X < 0 } ,  

where L > 0 is a constant which will be determined later, and set 

£2 = 271 U 272 U 273 (2.28) 

(see Fig. 3). The Evans function E(X, o~) is defined and analytic for )~ ~ £2, and is an analytic extension of  that 

constructed by Alexander et al. [3]. It is nonzero for sufficiently large I)~l, and has a continuous limit at )~ = +ico. 

Finally, it is C 1 in oe for )~ 6 £2 U {±ico}, and the derivative with respect to ol is continuous in X. 

Now suppose that e > 0 is small. 

Theorem 2.22. Choose l )  C £2 such that clos ~ C £2, where £2 is given in (2.28). There then exists an E0 > 0 

such that the Evans function E(X, ~, e) is defined for 0 < E < E0 and for )~ c ~ .  It is analytic for )~ 6 X), smooth 

in E, and is an extension of that constructed by Alexander et al. [3]. Furthermore, it is nonzero for sufficiently large 
I)q. 

Now suppose that the Evans function can be shown to be nonzero if  E = 0 and [Im X[ > co. Then it will 

necessarily be true that for 0 < ~ < Eo there exists a 8 = 8(s) > 0 such that the extended Evans function will 

be nonzero for Jim X] > co + 3. Under this scenario it will only be possible for eigenvalues to bifurcate out of the 

continuous spectrum near X = ::kico. It turns out that the Evans function can be extended up to X = +ico such that it 

is differentiable in e. A local bifurcation analysis near X = -_kico will then reveal whether and how many eigenvalues 

bifurcate out of  the essential spectrum. This idea will  be exploited in the upcoming sections. 

In the remaining part of this section, we prove the theorems. By setting ~b = u + iv, where u and v are real, 

Eq. (2.27) can be rewritten as the system 

Oiu + (a 2 - co)v + f (u 2 + v 2, ot)v = edl O2 U + e Rt  (u, v), 
OtV -- (02 -- co)u -- f (u 2 + V 2, ot)u = ~dlO2v + eR2(u ,  v), (2.29) 

where 

R l ( u , v ) = R e R ( u + i v ,  u - i v ) ,  R 2 ( u , v ) = I m R ( u + i v ,  u - i v ) .  
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Fig. 3. The Evans function for the perturbed cubic NLS is defined for ~ ~ £2 C C. 

It will be assumed that d l >  0, so that (2.29) will have a well-posed initial-value problem. Upon setting P = [u, v] r 

and linearizing, we get the eigenvalue problem 

,KP = D(e)O2x P + (No(x,  ol) q - e N l ( x ) ) P ,  

where 

_1) 
Edl ' 

( 0 
No(x ,o~)=  - c o + f ( 4 5  g , c l ) + 2 ¢  2 +  J , o, J f f  ( ~)2 0l. ~ 

and Nl(x)  is uniformly bounded and approaches an asymptotic matrix N o exponentially fast as Ixl --+ oc. In 

addition, 

(0 
No(x, ~) -+ Ixl ~ ~ ,  

--co 0 

and the limiting matrix is independent of  c~. When e = 0, the continuous spectrum is given by 

Zess = {X; Re X = 0, [Im )q > co}. 

We are now ready to prove the following lemma. 

Lemma 2.23. Assume that d l >  0. There exist c~0 > 0 and ~0 > 0 (not necessarily small), and positive constants 
L 1 and L2 which are independent of  c~ and E, such that in the region 

I ,~]>La,  R e ) ~ > - L 2 ,  0 < E  < e 0 ,  I~l <c¢0, 

the Evans function E()~, oe, e) for Eq. (2.27) is defined and nonzero. 

Proof  It is a simple matter to check that the eigenvalues of  D(e) satisfy Hypothesis 2.13. The extension of  the 

Evans function and the fact that it will be nonzero for large I X I then follows immediately from Proposition 2.17. [] 

Remark 2.24. Since the zeros of the Evans function locate those eigenvalues with localized eigenfunctions, we 

know that there will be no large eigenvalues, even if there is no diffusion present. 
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- - - ~ I  

+ 

z +  
+ '  ~. 

Fig. 4. Here, the location of the eigenvalues ~j= (0, 2) of A0(0, )~) with j = l, 2 is indicated for )~ in various regions of the complex plane. 
Eigenvalues inside the dotted ellipsoids belong to the unstable spectral set ~u ()0. The point ~. = ice corresponds to a branch point where 
the spectral decomposition ceases to exist. The dashed line emanating from the branch point indicates the cut defined in (2.30). 

Following the procedure of the previous section, the matrix A(/z, ;~, x) is given by 

( 0 i d 2 )  
A( l~ ,X ,x )  = D _ l ( ~ ) ( L i d 2 _  No(x, o O _ e N l ( x )  ) 0 ' 

where # = (c< e). As before, set 

A0(• ,L)  = lim A(lx, L ,x ) ,  
I.<~eo 

and note that A0(e, )0 does not depend on c~. 

For the moment, assume that c = 0. A routine calculation shows that the eigenvalues of A0(0, L) are given 

O'li (O, )~ ) =- -I- ~ e ( i / 2 ) a r g (  w-i)O, 

by 

o-?(0, L) = i ~ e  (i/2)arg(c°+i~'), 

3rr r e )  
arg(co-i;~) c - ~ - ,  ~- , 

[-,-) arg(co + i~.) 6 - ~ - ,  ~ -  

(see Fig. 4). A simple observation reveals that if Re )~ > 0, then for i = 1, 2 

Re a +  (0,)0 > 0, Re ai-(0,  )~) < 0, 

and ai=(0, )0 are analytic across Zess. As 
lemma. 

(2.30) 

a consequence of  Proposition 2.7, we now have the following 

Lemma 2.25. Assume that ¢ = 0. Then the Evans function E()~, or) can be extended across I2ess onto the strip 

co<  IIm)~] < L 1 ,  - L 3  < R E X < 0 ,  

for some L3 > 0. 

Corollary 2.26. Assume that • = 0, and set 

L = min{L2, L3}, 



T. Kapitula, B. Sandstede/Physica D 124 (1998) 58-103 81 

where L2 is given in Lemma 2.23. Then the Evans function can be extended across Zess onto the strip 

co<  IImZI, - L  < R e L < 0 .  

Furthermore, the extended Evans function will be nonzero for [)~[ > L l. 

Remark 2.27. As it will be seen in Section 3, if f07 ,  or) = 47, i.e., if one looks at the cubic NLS, then L = e~. 

When E = 0, it is straightforward to prove that Hypotheses 2.9 and 2.11 are met with respect to the parameter ee. 

Indeed, the limiting matrix does not depend on ot at all. Applying Lemmas 2.10 and 2.12 then shows that the Evans 

function E()~, a)  is differentiable in a and can be extended to )~ = ico. Combining the results obtained so far, we 

have proved Theorem 2.21. Theorem 2.22 is true as a consequence of  Corollary 2.8 and Lemma 2.23. 

3. The Evans function for the cubic NLS 

The goal in this section is to explicitly construct the extended Evans function for the cubic NLS. Once this is 

accomplished, we will then be able to locate its zeros, and hence be able to determine the location of the eigenvalues 

which may bifurcate out of  the continuous spectrum. The calculation of  the Evans function is possible since a 

complete set of eigenfunctions to the NLS has been given by Kaup [23] and Kaup et al. [24] using Inverse Scattering 

Theory. 

Instead of  using the formulation in Eq. (2.29), we will write the cubic NLS as the system 

iq5 t + (0x 2 -- co)~b + 4~b2~ = 0, - i ~ t  + (02 - co)~ + 4~b~ 2 = 0, 

where ~ is defined by ~p = ~b*. The system is written in this way so that the results in [23,24] can be more easily 

exploited. 

The bright solitary-wave solution is given by 

q~ (x, co) = ~ sech(~/w x). 

Linearization yields the system 

iPt + L P = 0 ,  

where 

L = (32 - o9)o'3 + 4q~2(2~r3 + icr2). 

Here o-2 and o-3 are the Pauli spin matrices 

or2= i 0 ' or3---- 0 - " 

Setting P(x ,  t) --+ P ( x ) e  pt, one then gets the linear eigenvalue problem 

(L + i p )  P = 0. 

Upon setting 

p = i X ,  
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we then get the more conventional eigenvalue problem 

(L - )OP = O. (3.1) 

R e m a r k  3.1. The wave will be unstable if there exists an eigenvalue with Im )~ < 0, that is, Re p > 0. 

Since the wave is unstable for Im )~ < 0, we define the Evans function for Im X < 0, and extend it across 

Im)~ = 0. 
Let Y = [P, Q]T, where Q = pf. Then Y satisfies the equation 

Y'  = M@, x)Y, (3.2) 

w h ~ e  

M(~.,  x )  = 

o o 

0 0 0 

co + )~ - g ( x )  - h ( x )  0 ' 

- h ( x )  co - )~ - g ( x )  0 

(3.3) 

and 

g ( x )  = 8¢2(x ,  co), h ( x )  = 4q~Z(x, co). 

Set 

Mo(£) = lim M ( X , x ) .  
IxF+oc 

The eigenvalues of  M0()0 are given by -4-yf ()0 and ZEys(;~), where 

yf ()~) =- ~ - -~e ( i /2 )a rg (c°+)0 ,  

Ys @) = ~ e(i/2)mg(°9-)0 , 

arg(co + )0 ¢ 2 ' ' 

arg(co - ) 0  e 2 '  2 

and the associated eigenvectors are [1, 0, :tzgf (X), 0] T and [0, 1, 0, -4-ys 0~)] T. The branch cuts of the above functions 

are being taken so that >'sO0 > 0 for L E ( - o e ,  co), while Yf()0 > 0 for L ~ (-co, co). Note that 

R e ) ~ > 0  =:> Reyf (L)  > R e y s ( L ) ,  R e ) ~ < 0  =~ Reyf(X) < R e y s ( ) 0 ,  

and that the functions are analytic if Im )~ < 0. 
As a consequence of  Theorem 2.21, we have the following lemma. 

L e m m a  3.2. Let 

Z1 = {)c Im )~ < 0}, I72 = {)u IRe )~1 < co}, 

173 = {)u IRe )~l > co, 0 < Im )~ < L}, 

and set 

~2 = ~ I U Z ' 2 U Z 3 .  
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There is an L > 0 such that the Evans function is defined and analytic for 3- ~ S-2, and is an analytic extension of that 

constructed by Alexander et al. [3]. Furthermore, it is nonzero for sufficiently large I)~l- Finally, it has a continuous 
limit at 3. = ±co. 

Before continuing, we need a couple of  preliminary results. 

Lemma 3.3. Let Y(3-, x) = [P(3-, x),  Q(3-, x)] T be a solution to (3.2). Another solution to (3.2) is then Y(3-, x) = 
[P (3-, - x ) ,  - Q (3-, - x ) ]  x. A solution to 

y I  = M(3-*, x )Y  

is given by Y*(3-, x). Finally, if3- ~ E, then a solution to the adjoint problem 

Z / = --MT(3-, x ) Z  

is given by Z(3-, x) = [ -Q(3- ,  x), P(3-, x)] T. 

Proof  The first part follows immediately from the fact that both g(x)  and h(x)  are even functions. The second part 

follows as soon as one notices that 

M(3-*, x)* = M(3-, x). 

The third part is a simple calculation, and is left to the interested reader. [] 

Lemma 3.4 (Kaup [23], Kaup et al. [24]). When Re 3- > 0, a solution to (3.1) is given by 

e-Ys(~.)x 

When Re 3- < 0, a solution to (3.1) is given by 

e-yf(X)x 

Furthermore, besides the functions P + ( w  + k 2, x) and P - ( - ( c o  + k2), x), where k ~ R +, along with the eigen- 

functions of  L at 3- = 0, there are no other bounded eigenfunctions of  L. 

Since 3- is an eigenvalue if, and only if, -3- is, it suffices to calculate the Evans function only for Re 3- > 0. For 

the rest of  this discussion assume therefore that Re 3- > 0. The following arguments can easily be modified for the 
case Re 3- < 0. 

First set 

- Q + ( 3 - ,  - x )  ' Q + ( 3 - , x )  ' (3.4)  

where P+(3-, x) is defined in the above lemma. Note that 

lira YsT(3-, x)e  ~:ys(z)x = [0, 1, 0, ±ys(3-)], 
x-+T~ 

lim Y~(3-, x )e  ~=yS(~)x 3. - 2o9 - 2v/-~ Ys(3-) (3.5) 
x ~ + ~  = 3- - 2~o + 2 ~ / ~  ×s(3-) [0, 1, o, ±ys (3 - ) ] .  



84 T. Kapitula, B. Sandstede/Physica D 124 (1998) 58-103 

There exists a unique solution Y~- to (3.2) such that 

This is due to the fact that yf(k) is the positive eigenvalue of Mo00 with largest real part. Similarly, there exists a 
unique solution Z + (L, z) to the adjoint problem with the asymptotics 

yf()~) 

lira Z+(k,  x ) e  y~(z)x = 0 
x ---~ oO 1 

0 

Define the reduced Evans function 

El(Z) = Yf(Z, x). Z+(Z, x). 

Before continuing, we need the following information regarding the reduced Evans function. 

L e m m a  3.5. Ef()0 is analytic and nonzero for Re ~ > 0. 

P r o o f  The analyticity follows from the fact that the eigenvalue Vf()0 is simple and thus analytic for Re k > 0 (see 
Lemma 2.2). In the following, it is important to note that if Ef()0 = 0, then 

lim IYf(k,  x)e-×f(X)x[ = 0. 
x - + o o  

First suppose that)~ 6 (co, ~ ) .  If Ef (L) = 0, then Y f  is a uniformly bounded function which decays exponentially 
fast as x ---> -cx~. However, Lemma 3.4 precludes the existence of such a solution. 

Now suppose that )~ = co. If Ef (co) ----= 0, then 

lira [Yf(co, x)e-×f(~°)x I ---- 0. 
x---> ~ 

Consider the 3-form Y f  A Ys  A Y+. This 3-form induces a solution to the adjoint equation, Z. Since Y~-(k, x) = 
- x ) ]  for some nonzero constant #,  where Y f  (L, x) = [ P f  ()~, x), Q f  ()~, x)] T, the adjoint /~[Pf- ()~, - x ) ,  - Q f  (~., T 

solution then satisfies 

lim [Z(co, x)[ = 0. 
]xl~eo 

By Lemma 3.3, this then implies that there exists a solution to (3.2) which decays as Ixl ~ oo. However, this 
contradicts Lemma 3.4. 

Now suppose that ~ c {)~ E C: Im )~ > 0, )~ ¢ [co, co)}.  It is known that there are no eigenvalues to L, which 
implies by the result of Alexander et al. [3] that 

xlimc Y f  (k, x) A Ys  ()~, x)e -(yf(z)+ys(x))x = /z [1 ,  0, yf()~), 0] T A [0, 1, 0, ys()~)] T (3.7) 

for some nonzero constant #. By Eq. (3.5) we have 

lim Ys (k ,  x ) e  -×~(z)x = 2 - 2o) - 2,¢/~ ~,s(k) [0, 1, 0, ys(X)] T. 
x--*~ )~ - 2o) + 2 ~  Vs(k ) 
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If  Ef()0 = 0, then 

lim IYf-(o), x)e-Zf(~°)xl = 0. 
y --~ o o  

Thus, in this case 

lim IY~-()~, x) A Y s ( £ ,  x)e-@f(~)+zsfZ))x I = O, 
x---> ~ 

which violates (3.7). 
It is now known that Ef(k)  ¢ 0 for Im k > 0. By Lemma 3.3 

Ef(.~*) = Yf(~.*, x)-Zf+()~ *, x) = (Vf()~, x))*.  (Z~-()~, x))* = Ef()~)*. 

Thus, Ef (k) # 0 for Im k _> 0 necessarily implies that the same holds true for Im L < 0. [] 

Remark 3.6. The function Ef(£)  can be extended to include the imaginary axis. 

Remark3.7.  Ef(£)  --+ 0 a s k  -+ 0 +. 

Using the definition of Ef (~.) it is easy to check that 

lim Y f ( k ,  x)e -zf(z)x Ef(~.) [1, x->~  - 2 z ~  0, z f 0 0 ,  0] T 

Since El()0  # 0, the solution 

Y~-(k, x) = 2f f  (k)[Pf-  (£, - x ) ,  - Q f  (k, - x ) ]  T, 

where Y~-(£, x) = [ P ( ( £ ,  x), Q~-(k, x)] T, is well-defined for Re k > 0. Note that 

lim Y~(k ,  x)e ×f(z)x = Ef(£)[1,  0, - y f ( k ) ,  0] T. (3.8) 
X---> - - O O  

For Re k > 0 the Evans function is given by 

E(k)  = ( Y f  A Y [  A Y+ A Ys+)(£, x). 

Based upon the above discussion, the Evans function can be explicitly calculated. 

Proposition 3.8. For Re k > 0 the Evans function is given by 

)~ - 2o )  - 2 4 ~  y s ( z )  
E @) = 4Ef  (X) yf (£) Vs (£) 

,k - 20) + 2~#~ ys(k) ' 

The analytic function Ef(k)  is nonzero for Re )~ > 0, and can be scaled such that Ef(o)) = 1. 

Proof  By Eqs. (3.5), (3.6), and (3.8), the behavior as x --+ - ~  is well-understood for all the functions comprising 

E (£). The result then follows immediately after evaluating 

lim (Y~- A Y  s A Y  + A Y + ) ( k , x ) ,  
X---~ - - O G  

and rescaling Zf+(o), x) such that El(o)) = 1. [] 

Theorem 1.1 is a consequence of Proposition 3.8 and the discussion following Theorem 2.22. Indeed, the expres- 
sion for the Evans function of the cubic NLS vanishes only at k = 0 and £ = -t-o) which correspond to eigenvalues 

at zero and p = -t-io), respectively, by Remark 3.1. 
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4. The  Evans  funct ion for the cubic NLS nea r  ;~ = co 

As a consequence of Proposition 3.8, we now know that an eigenvalue may bifurcate out of  the continuous 

spectrum only at )~ = q-co for perturbations of the cubic NLS. In this section, an expression for the derivative 
O~E(co, 0) of the Evans function at the edge ;~ = co of the essential spectrum is derived. Using a Taylor expansion 

of the Evans function, we are then able to state precise conditions under which an eigenvalue bifurcates out of the 
essential spectrum. The results are applied in Section 5 to concrete perturbations. 

Remark 4.1. We restrict ourselves to perturbations of  the cubic NLS only for the sake of clarity. The results can be 
easily generalized to other equations. 

We write the perturbed eigenvalue equation as 

Y'  = M(;~, x, ~)Y, (4.1) 

where M()~, x, 0) is the matrix given in Eq. (3.3). Assume that 

M00~, g) = lim M()~, x, ~) 

exists with exponential convergence. Furthermore, we assume that Hypothesis 2.11 is met. In particular, the matrix 

M0(co, g) has eigenvalues o-1 (~), 0-4(~) with modulus bigger than zero and 0-2 = a3 = 0, while the kernel of  
M0(co, ~) is one-dimensional. Lernma 2.12 shows that the Evans function E()~, ~) is then differentiable in ~ for 
£ = co. The first result gives a formula for the derivative O~E(co, 0). 

Theorem 4.2. Consider (4.1) and assume that Hypothesis 2.11 is met. The derivative of  the Evans function with 
respect to g at ()~, g) = (co, 0) is then given by 

OO 

0~E(co, 0) = f Zs(co, x, 0) - O~M(co, x, 0)Ys(co, x, 0) dx, 

Oo 

where 

and 

Y:(co, x,0  = [ ,+(co, x) ] 
Zs(cO, X,0) = 2 ~ L  P+(co, x) J '  OxP+(co, x) ' 

has been defined in Lemma 3.4. 

Proof Postponed until Section 4.1. [] 

Remark 4.3. The interested reader should consult Kapitula [20] for a related result in the circumstance that the zero 
of the Evans function is not located in the essential spectrum. 

Next, we exploit differentiability of  the Evans function and expand it into a Taylor series. Let 

U := {)~: 1)~ - cot _< ~} \ {)~: Re )~ = co, Im )~ > 0}. 
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For A 6 U, we can write 

E(L, ~) = E()~, 0) + OgE()~, 0)~ + o(~) = E(L, O) + (OgE(co, 0) + gl(£, ~))g, 

where gl is continuous and gl (co, 0) = 0. Using the expression for the Evans function for g = 0 given in 
Proposition 3.8, we then see that for )~ 6 U the Evans function is given by 

E0, ,  g) = 4~/2~m gs()0(1 + gs(A)) + (O~E(co, O) + gl()~, ~))~, 

where g2@) is continuous and g2(co) = 0. 
Due to the branch cut taken for Ys 00, we then see that 

1 -~rc  < arg(0~E(co, 0)~) < ]-Jr > E(A, ~) ¢ 0 

for A ~ U, and hence no eigenvalue bifurcates out of the continuous spectrum. Otherwise, a single eigenvalue 
bifurcates out of the continuous spectrum, and E(A*(~), ~) = 0, where 

£* = c o ( 1  (0~E@'O))2~ 2) -]- O(~2). 

We summarize the above discussion in the following theorem. 

Theorem 4.4. Assume that Hypothesis 2.11 is satisfied. 

(i) If -7r /4  < arg(0~ E (co, 0)~) < 3~r/4, then no eigenvalue bifurcates out of the essential spectrum. 
(ii) If 3:r/4 < arg(0~E(co, 0)g) < 7rc/4, then a single eigenvalue bifurcates out of the essential spectrum, and its 

location given by 

(O~E(co, 0))2 2~ 
)~* = co 1 3-~-2- / + o(~2). 

Remark 4.5. Any bifurcating eigenvalue is O(~ 2) close to A = co. 

Remark 4.6. In particular, if O~ E (co, O)g > O, no eigenvalue pops out of the essential spectrum, while for O~ E (co, O)g 
< 0 a single eigenvalue bifurcates. 

4.1. Proof of Theorem 4.2 

Eq. (4.1) above induces the perturbed solutions yf i (£ ,  x, ~) and Y~(A, x, g), where Y~(A, x, 0) and Y~ ()~, x, 0) 
are those given in Section 3. Since Ys (co, x, 0) = Y+ (co, x, 0), a routine calculation shows that 

0~E(co, 0) = -a~(Y~- - Y~)(co, x, 0)/ ,  ( Y f / ,  Y~- A v~+)(co, x, 0). 

The 3-form (Yf  A Y+ A Y+)(co, x, 0) is uniformly bounded as Ix[ - +  ec ,  with 

lira (Yf A Y~- A g+)(co, x, 0) = 2Zf(co ) e123, (4.2) 
X - - ->  - -  O ~  

where ei jk  -= ei A ej  A ek. Writing 

- ( Y f  A Y+ A Y+)(co, x, 0) ---- al (x)e123 + a2(x)e124 + a3 (x)e134 + a4(x)e234, 
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this 3-form induces a solution to the adjoint equation, Zs(co, x, 0), which is given by 

Zs(co, x, 0) = [a4(x), - a3 (x ) ,  a2(x), - -a l  (x)] y 

[20,41]. In other words, 

O~E(co, 0) = O~(Y s - Y+)(co, x, 0) • Zs(co, x, 0). (4.3) 

Using (4.2) and Lemma 3.3, one can compute explicitly that 

I-OxP+(co, x) l 
Zs(co, x, O) = 2gf(co) P+(co, x) ' 

where P+  (co, x) is defined in Lemma 3.4. Unfortunately, the evaluation of O~ (Ys - Ys )  is not as straightforward. 
We compute O~Y+(co, x, 0). Consider 

yr  = M(co, x, g)Y, 

and let Mo(co, g) = limlxl-~oc M(co, x, ~). Using the definition (3.4) of Y+(co, x, 0) and Lemma 3.4, we have 

Ys(co, x, 0) = 7o + Vs(X) 

where Mo(co, 0)tlo = 0 and vs(x) decays exponentially. We employ the ansatz 

Y+(co, x, ~) = ~(~) + v~(x) + w+(x, ~), 

where M0 (co, ~) ~/(~) = 0 for all g and ~ (8) is smooth in 8. Such a choice is clearly possible due to Hypothesis 2.11. 
We denote the evolution operator of (4.1) by ~ (x ,  y). Moreover, let pu be a projection with kernel given by + 
Y+ (co, 0, 0). It is then straightforward to show that 

0 

0) 1~= 0 = / P~_c1,(O, x)(O~m(co, x, O~w+ (O, 0) Vs(X) 

+ (m(co, x, 0) - Mo(co, 0))O~(0)  + 8~(M(co, x, 0) - Mo(co, 0))~7o) dx, 

see, for instance, [20,41] for similar calculations. Note that the integral converges since p_~q5(0, x) grows only 
linearly, while vs (x) and M(co, x, 0) - Mo (co, 0) decays exponentially. Therefore, 

o 

O) = OuI(O) + / P~_q)(O, x)(OsM (co, x, O~Y+(co, 0, 0)Vs(X) 

+ (M(co, x, 0) - M0(co, 0))O~tl(0) + O~ (m(co, x, 0) - mo(co, 0))rlo) dx, 

and similarly 

o 

O~Ys(co, 0, 0) = 0~77(0) + / P_S q~(0, x)(O~M(co, x, 
g l  

0) Vs(X) 

o c  

+ (M(co, x, 0) - Mo(co, 0))88~(0) + 8~(m(co, x, O) - mo(co, 0))~70) dx, 

where 

Ys(co, x, O) = r/o + v~(x). 
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Using (4.3) and the definition of P~ and p_s, we conclude that 

DO 

agE(m,  O) = f Zs(  x,0) (OgM((o, x ,  0)Vs(X) 
- -0<3 

+ (M(w, x, 0) - M0(o), 0))OCT](0) + 8g (M(o), x, 0) - M0(co, 0))t/0) dx. (4.4) 

In the final step, we bring this expression into the form shown in Theorem 4.2. The key is to use the identity 

DO 

f Zs(cO, x, 0) • (M(w, x, 0) - M0(co, 0))8g~7(0) dx 
- - (X)  

OO 

= f Zs( ,x, o, OgMo(o), 0)70 dx,  

- - D O  

(4.5) 

which shows that the integral on the right-hand side converges and proves the expression in Theorem 4.2. The 
identity (4.5) follows by transposing (M(co, x, 0) - 3,/o(o), 0)), using that Zs(o), x, 0) satisfies the adjoint equation 
and integrating once by parts. During this process, it can be easily checked that the integrals still converge. We omit 
the details. 

5. Bifurcations f rom the essential spec trum near )~ = w for concrete  perturbat ions  of  the cubic NLS 

The approach summarized in Theorems 4.2 and 4.4 allows us to determine whether eigenvalues bifurcate from 
the essential spectrum of the cubic NLS under perturbations. Here, we exploit these results and apply them to several 
concrete perturbations of the NLS. 

Note that the upcoming eigenvalue problems are formulated as in Section 3, so that a wave is unstable if Im Z < 0, 
see Remark 3.1. 

5.1. Evaluat ion at Z = o) : C Q N L S  

For the CQNLS, 

i q~ t + qS x x -- o9(o + 4l~bl2~b + 30el~b[44~ = 0, 

the solitary-wave solution is given by 

O)  
~ 2 ( x ,  co, oe) = 

1 + ~ g  + o~o9 cosh(2v/-~x) 

(see [37]). 
Following the formulation in Section 3, for the eigenvalue problem we get the matrix 

M ( Z ,  x ,  or) = 

I 0 0 1 0 
0 0 0 1 

o ) + Z - g ( x , o  0 - h ( x ,  oe) 0 0 

- h ( x ,  ot) c o - Z - g ( x , c ~ )  0 0 

(5 . l )  
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where 

g(x, c~) = 805 2 q- 9ot05 4, h(x, ~) = 405 2 -k- 6o~05 4. 

Here, the wave is unstable if Im )v < 0, see Remark 3.1. Theorem 2.21 shows that the Evans function is differentiable 
at ;~ = 0). By Theorem 4.2, we therefore know that 

with 

and 

0<3 

O~E(o), O) = f atoM(0), x)Y+(0), x) - Zs(0), x) dx 

--O<3 

P+(0), x) ' 

1 2 2 x 0,[11 
Using the fact that 

0c~052 = 1 0 5 2 ( 0 )  __ 052), 

[ P+(0),x) 1 
Y + ( w , x ,  O ) =  kaxP+(0) , x ) j ,  

which can be readily verified using the representation given in (5.1), it is easy to show that 

O~g = - 4 0 0 5  2 + 1305 4, O~h = -2o)05 2 + 805 4. 

Since 

O~M(0), x) = - 

(5.2) 

o o 
0 0 0 

O~g(x) Oe~h(x) 0 ' 
O~h(x) O~g(x) 0 

(5.3) 

(5.4) 

a tedious calculation then shows that 

O,~MY +. Zs = - 2 v / ~  ( 168 q~8 132 ~6 _1_ 37~4 _ 40)~2)  
\ 7  - o, 

Thus, upon using (5.2) and integrating, 

2,/~ 
OozE(0), 0)  - -  0) 2. ( 5 . 5 )  

3 

Now set fl = oe0). Eq. (5,5) can then be rewritten as 

2v/2 
O/~E(0), 0) - ~ - 0 ) .  

As a consequence of Theorem 4.4, it can be seen that if fi < 0, then E()v, fi) ~ 0 for ~ 6 U, while if fi > 0, then 
E()~*, r )  = 0, where 

)v* = 0 ) ( 1 -  ~-6fl2)q-o(f12 ) E[~. (5.6) 



T. Kapitula, B. Sandstede/Physica D 124 (1998) 58-103 91 

Thus, if/3 > 0, an eigenvalue moves out of  the continuous spectrum. Note that )v* ~ N due to the symmetries of 

the eigenvalue problem. Indeed, )v is an eigenvalue if, and only if, - )v is, see Section 3. Since we are in the region 

where the Evans function has not been extended artificially, any eigenvalue corresponds to a zero of E 0  v, or). Thus, 
since there is precisely one eigenvalue bifurcating, it must be real. The following lemma has now been proved. 

L e m m a  5.1. Let/~ = o~co. I f 0  < /~  << 1, then one and only one eigenvalue moves out of the continuous spectrum, 
with that eigenvalue being real and its location given by (5.6). Furthermore, )v* is the only zero of the Evans function 

in the half-plane Re )v > 0. I f  0 < - /3  << 1, then the Evans function is nonzero for all ), such that Re )~ > 0. 

Remark  5.2. Eq. (5.6) agrees with the results of  Afanasjev et al. [1] and Pelinovsky et al. [37] in the case that cz = 1. 

5.2. Evaluat ion at )v = co : P F N L S  

The PFNLS is given by 

iq5 t q- (02 - co)~b q- 41q~12qb q- i~()/~b -/zqS*) -=-- 0, (5.7) 

where e > 0 is not necessarily small. By setting ~b ~ qSe -i°,  where 

g 
cos 20 = -- ,  

/z 

Eq. (5.7) can be rewritten as 

i~bt + (02 - co)q~ + 4lq~lZq5 -q- iE(?/~b -/zqS*e -i20) = 0. (5.8) 

The solitary-wave solution is given by 

~co  sech(v/c ° + e/z sin 20 x). 
+ sin E# 2O 

¢~(x, co, E) = 2 

It is known that i f /z  sin 20 < 0, then the wave is unstable [6]. 
As a system, Eq. (5.8) can be written as 

i~bt -}- (02 - co)q~ -}- 4q~2~ q- i~(?/q~ - # ~ e  -i20) = 0, 

- i C t  q- (02 - co)~t + 4 ~  2 -- i E ( y ~  - - / z ~ e  +i20) = 0, 

where ~ = 4~*. Linearization yields the system 

iPt + L P  + i e y P  = O, 

where 

L = (02 - co)a3 + 4qb2(2a3 + ia2) - i¢/z cos 20 al  + i¢/z sin 20 a2. 

Here the cri are the Pauli spin matrices, i.e., 

' i o i l  , ~3 [~ 01 • 

By setting P ( x ,  t) --~ P ( x ) e  pt, one then gets the linear eigenvalue problem 

(L + i(p + e? , ) )P = O. 
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Setting 

p =iX-ey, 
we then get the eigenvalue problem 

(L - X)P = 0. (5.9) 

Remark 5.3. The eigenvalue problem admits a symmetry: X is an eigenvalue if, and only if, -)~ is. 

Letting Y = [P, Q]T, where Q = U,  the eigenvalue equation can be rewritten as the first-order system 

Y' = M()~, x, e)Y, 

where 

0 0 1 0 \  

J M(X x, e) = 0 0 0 1 
' ~o+)~ -8 ,~  2 -4q~ 2 + E # s i n 2 0 + i E Y  0 0 ' 

- 4 q 5 2 + e / z s i n 2 0 - i e y  c o - X - 8 4 5 2  0 0 

We want to apply Theorem 4.2 and calculate the derivative of the Evans function E (X, e) with respect to E. In order 
to verify Hypothesis 2.11 in Section 2.3, we have to show that the eigenvalues of the limiting matrix 

M0(Z, E) = 
/ oO o11/ 

(9+X ¢#sin20 + i c y  0 
\ e/x sin 20 - i E  g o ) - X  0 

are independent of s. It is easy to check that they are independent of e after replacing X by 

). = ~/~2 _ E2(/Z2 sin 2 20 + y2) (5.10) 

for 2 ~ U. This transformations accounts for the fact that the essential spectrum, which is located on the real axis, 
moves towards zero as ~ increases. Note that we have 

/~(X, ~ )=  E(~/~ 2 -E2(/~2 sin2 20 + Y2), E) 

for the new Evans function E(X, e), and that E(X, e) is differentiable in e. 
By Theorem 4.2 we have that 

O~ 

0~/~(o), O) = [ 3eM(o), x)Ys+(W, x)" Zs(w, x) dx. 

Upon substituting Y+ and Zs from (5.3) and (5.4), a routine, yet tedious, calculation shows that 

3eMY+'Zs:16w/~ (-1-t-6452- 12454~3e(~2)+8~2(-1-t-2q52)# 2 / 

Since 

3 e ( ~ 2 ) -  /~ sin20 w ( ~ 2  -]- ~XOx(~2)) ' 
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and 

(DO dO dO 

f lfxox(~2<l+~(x))dx- lf~z~+k~(x)dx, x ~ Z k ( X ) O x ( C r A Z ( x ) )  d x  - -  k "Jr" 1 k + 1 

- o o  - oo -(Do 

upon integrating we see that 

0e/~(co, 0) = - 8 ~ / z  sin 20. 

As a consequence of Theorem 4.4, we see that if # sin 20 < 0, then/~(X, e) ~ 0 for X near co, while if /z sin 20 > 0, 
then/~(X*, E) = 0, where 

~ * = c o ( 1 - ~ 2 / z 2 s i n 2 ( 2 0 ) E 2 ) q - o ( ~ 2  ). 

Going back to the original variable )~ given in (5.10), we have E0~*, E) = 0, where 

17/x 2 - 16y2E2~ 
)~* = co l ~ j "~'- O(62). (5 .11)  

In the above equation, the relation/z sin 20 = -4-V/~ - V 2 was used. Note that)~* 6 R on account of the symmetries 
of  (5.9) mentioned in Remark 5.3. Summarizing the above discussion, we have the following lemma. 

L e m m a  5.4. Let0  < ~ << 1.If/~ sin20 < 0, then the Evans function is nonzero for all )~ suchthatRe )~ > O(E) > 0. 

I f /z  sin 20 > 0, then one and only one eigenvalue moves out of  the continuous spectrum. This eigenvalue is real and 
given by (5.11). Furthermore, )~* is the only zero of the extended Evans function in the half-plane Re X > O(E) > 0. 

R e m a r k  5.5. The  Evans function will have four discrete zeros which are of  O(E) (see Section 7). 

5.3. Evaluation at )~ = co : P F C Q N L S  

Consider the PFCQNLS 

i(ot + 49xx - coo + 414~lzq ~ + 3~[q~14~ b q- iE(Fq~ --/z~b*) = 0. 

The Evans function will be given by E()~,/3, e), where/3 = otco. As a consequence of the results of  the previous 
sections, we know that after changing variables according to (5.10) 

2~/2 
O~ E (o9, 0, 0) - - - ~  co, 3E E (co, 0, 0) = - S V ~ #  sin 20. 

Therefore, as a result of  Theorem 4.4, we get the following lemma. 

L e m m a  5.6. Let 0 < e, I~co] << 1. If  

12# sin 20 
O/ < 092 E, 

then the Evans function is nonzero for all )~ such that Re )~ > O(~) > 0, and hence no eigenvalues bifurcate out of  
the continuous spectrum. Otherwise, one eigenvalue bifurcates out of  the continuous spectrum. 
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From a physical viewpoint, this means that a nonlinearly saturated refraction index (represented by a negative 

o~) prevents an eigenvalue from popping out of  the essential spectrum. As explained in Section 1, this may stabilize 

the pulse for larger values of e, since Hopf bifurcations are inhibited. 

6. The cubie-quintic nonlinear SchriJdinger equation 

The PCQNLS is given by 

i ~b t 4- (9 x x - -  co ~ 4- 4[~b[z~b 4- 3o~kb[4~b = i E ( d l ~b x x 4- d 2 ~b 4- d3 kbl2~b 4- d4kb[4~b), 

where ~ > 0 is small and the other parameters are real and of O(1). In this section, we will investigate the stability 

of the solitary wave q~(x, co, ~), where 

co 
~2(x,  co, 0) = 

1 + ~/1 + o~co cosh(2v'-~x ) ' 

The wave tO(x, co, ~) is a smooth perturbation of ~ (x ,  co, 0) [44]. In [19], it is shown that in order for the wave to 

persist, it must be true that d3 = d~, where 

d~ = d l  - Cd2d2 --  Cd4(d4 - ~ d l )  + O ( ~ ) ,  

and the constants are given by 

3(19 _2_ (9,  Cd2 = - -  1 4- 4- , Cd4 = ~co -- /3 4- , 
09 

where/3 = otco. For small/3 and ~, one can rewrite the existence condition to get that the wave persists for co = co±, 

where 

co± - 41d41 - -~- 2 4~.  

In the above expression it is assumed that d2 and d4 are negative, d3 > dl > 0, and (d3 - d l )  2 > ~d2d4. 
When locating the eigenvalues, it is first necessary to locate those eigenvalues near the origin. This study was 

undertaken in [19], and the following result was derived. 

Lemma 6.1. Consider the PCQNLS. Set/3 = aco, and assume that 0 < e, [fl ] << 1. When co ----- co_ there is one posi- 

tive real eigenvahie, and one negative real eigenvalue, both of  which are O(e). If co = co+, then there are two negative 

real eigenvalues which are O(E). Except for the double eigenvalue at zero, there are no other eigenvalues of  O(~). 

Remark  6.2. The condition d l >  0 means that the PCQNLS is a well-posed PDE. The condition d2 < 0 means that 

the solution ~b = 0 is stable for the PCQNLS. 

Remark  6.3. A more detailed discussion is given in [19] for the circumstance that - 1 < fl _< 0 is not necessarily 

small. 

Remark  6.4. One should consult Kodama et al. [25] for a formal calculation when oe = O(e). 

Proo f  o f  Theorem 1.3. For the rest of the discussion, assume that co = co+, so that there are no unstable eigenvalues 
near zero. In order to determine the stability of  the wave, it is then only necessary to locate all eigenvalues which 
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are close to the edge of  the essential spectrum. We will again formulate the eigenvahie problem as in Section 3, so 

that unstable eigenvalues have Im )~ < 0 (see Remark 3.1). 

Since dl > 0 and d2 < 0, when E > 0 the continuous spectrum is contained in the left half-plane and bounded 

away from the imaginary axis. It is then straightforward to verify Hypothesis 2.11 in Section 2.3 after using the 
transformation 

)~ = (1 + iEdl)2 -- i~d2 - iEdlco, (6.1) 

as in Section 5.2. On account of  Lemmas 2.10 and 2.12, the Evans function can then be extended continuously for 
_> 0 and all X with Re )~ _> 0, and it is differentiable in ~ at )~ = co. 

First, we evaluate the Evans function E(2,  a, e) along lines (a, e) = (or, - S a )  for small 8 _> 0 and negative 

ee < 0. Along that curve, the relevant term is then given by 

(Eot(co, O, O) + 8E~(co, O, 0))or. (6.2) 

Eigenvahies cannot bifurcate from the essential spectrum whenever this expression is in the sector of  the complex 

plane given in Theorem 4.4(i). On account of the discussion in Section 5.1, we see that otE,~(co, 0, 0) is in the 

aforementioned sector. Therefore, expression (6.2) is also in the sector provided S < 60 for some sufficiently small 

80 > 0. Thus, for a < 0 and 0 < e < ½ 8o I oe I no eigenvalues pop out of  the essential spectrum, and the pulse is stable. 

Second, let a be such that loci _< Ke y for some y > ½, where K > 0 is some fixed constant and e > 0. If an 

eigenvalue 2 .  pops out of-the essential spectrum, it satisfies the estimate 

I~ ,  - col -< C(Io~l 2 + E2) ~ C( E2y .-4;- 62) 

for some possibly different constants C > 0. Indeed, this is a consequence of Theorem 4.4 and Remark 4.5. 

Therefore, upon inspecting (6.1), we see that the eigenvahie satisfies 

X, = (1 + iEdl)2,  - ifd2 - i~dlco = co - i~d2 q- O(E 2Y -~- E2). 

Since 2y > 1 and d2 < 0, we have Im )v, > 0, which corresponds to a stable eigenvalue (see Remark 3.1). Hence, 

even if an eigenvalue pops out, it will not induce an instability. Theorem 1.3 as well as Remark 1.4 have now been 

proved. [] 

Now that the primary pulse for the PCQNLS has been shown to be stable, it is natural to inquire as to the 

existence and stability of  multiple-pulse solutions. The existence question has been partially answered in [21 ]. There 

the existence of N-pulses which are evenly spaced has been shown; see also [34]. Sandstede [41] has developed a 

program to study the stability of  the N-pulse solutions in the case that 0k E(0) ~ 0. In order to determine the stability 

of the multiple-pulse solutions for the PCQNLS, these ideas must be extended to cover the case that OzE(O) = 0, 
but 02E(O) ¢ O. This extension is possible and will be the focus of  a future paper. 

7. The parametrically forced nonlinear Schr6dinger equation 

In this section, we study the parametrically forced nonlinear Schrtdinger equation (PFNLS) given by 

iq~t + (02 - co)q~ + 41q~12q~ + ie(yq~ -/z~b*) = 0, (7.1) 

where co > 0 and ~ > 0. Initially, no size restriction on the size of E will be made. By setting ~b -+ ~be -i0 , where 

Y cos 20 = --,  (7.2) 
/z 
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Eq. (7.1) can be rewritten as 

i~bt + (32 - co)~b + 4l~b[Zq~ + iE(yq5 -/z~b*e -i2°) = 0. (7.3) 

The solitary-wave solution is given by 

4~ (x, co, ~) = ~ sech(~ffix),  (7.4) 

where 

/3 = co + E/z sin 20. (7.5) 

Note that if 0 satisfies (7.2), so does 0 + ~r. Thus the sign of the sine term in (7.5) can be chosen positive or negative 

as we wish. 
It is known that if /~ sin 20 < 0, then the wave 45 is unstable [6]. We will show that the wave is stable for all 

> 0 sufficiently small if # sin 20 > 0. Of  interest is then the existence of multiple pulses resembling N copies of 

the stable primary wave 45, Using results from Sandstede et al. [42], we prove that stable N-pulses exist provided 

a small dissipative term is added to the (7.1): 

iqSt + (02 - co)¢ + 41¢12¢ + iE(y¢ - #¢*)  = i~02¢, (7.6) 

0 < 8 << e. The dissipative term models spectral filtering of the signals in the optical fiber. 

7.1. S tabi l i ty  o f  ¢ 

We consider equation (7.3) 

i4~t + q~xx - co~ + 4lq~12q5 + ie(gq~ - #~b*e -i20) = 0 

and investigate the stability of  the primary solitary-wave 

q~(x, co, e) = ~ s e c h ( x / ~ x )  

with/3 = o) + e/* sin 20 and tx sin 20 > 0. 

Theorem Z1.  Let g > 0,/* 5k 0, and co > 0. Assume that 0 is chosen such that/* sin20 > 0. The solitary wave 
45 given in (7.4) is then orbitally exponentially stable with respect to Eq. (7.3) for all e > 0 sufficiently small. 

P r o o f  First, we determine the spectrum of the linearization of (7.3) around the wave 4~ for small ~ > 0. It is 
convenient to write Eq. (7.3) as a system by writing down the equations for the real and imaginary part of ~b. Setting 
~b = u + iv, we obtain 

ut = --(Vxx -- (2co -- f l ) v  + 4(u 2 + v2)v)  
vt = Uxx -- flU + 4(u 2 + V2)U -- 2 e y v .  (7.7) 

The eigenvalue problem of the linearization of (7.7) about the wave q~ reads 

L P  = p P ,  



where 

( 0  - L _ )  
L = L+ - 2 •  V ' 

and 
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L_ = 0 2 ÷ 4 q 0 2 - ( 2 0 ) - f l ) ,  L+ = 02÷124~ 2 - f t .  

This eigenvalue problem has been considered in Section 5.2. By Lemma 5.4, the spectrum outside a small neigh- 

borhood of zero is contained in the line Re p = - e y .  Therefore, it suffices to consider eigenvalues near zero. 

For that purpose, we rescale y := v/fix and denote the resulting operators again by L--. We then have the 

equivalent eigenvalue problem 

( 0 - L _ )  (p1) 1 (p1) 
L+ 2•v = ~ ;  (7.8) 

¢~ ,°2 P2 

with 

and 

2 2 L_ =Oy + 2 s e c h 2 y - q  2, L+ -~Oy + 6 s e c h 2 y - 1 ,  

q2 20) -- 13 0) -- E# sin 20 
- -  - -  - -  < 1 .  ( 7 . 9 )  

13 0) + E/z sin 20 

Note that this transformation is actually meaningful as long as co > •/x sin 20. The eigenvalue problem (7.8) can be 
written as the fourth-order equation 

p(p + 2eg) 
L _ L+ P1 -- /32 P1. (7.10) 

In passing, we note that the spectrum is symmetric with respect to the axis Re p = - • g ,  i.e., p - 2•y  is an 

eigenvalue whenever p is. 

It has been shown by Kutz and Kath [27] (see also [4]) that zero and v,(•)  = O(•) > 0 are all of the eigenvalues 

of the equation 

L_L+P1 = vP1 (7.11) 

inside a small neighborhood of zero for • > 0 small. Therefore, the eigenvalues of (7.10) near zero are simple and 
given by 

Pl = 0, P2 = - 2 • g ,  /93,4 = - - 6 y  -l- ~ / • 2 y 2  _ f l2V,@)" 

In particular, since v,(e) > c• for some c > 0, the eigenvalues P3,4 have nonzero imaginary part with Re P3,4 < 0 
(see Fig. 2). 

Summarizing the above discussion, the spectrum of the operator L is contained in the left half-plane with the 

exception of a simple eigenvalue at zero. Unfortunately, however, L will generate only a C°-semigroup. For these 
groups, the Spectral Theorem does not hold in general and therefore we cannot conclude asymptotic stability from 

the knowledge of the spectrum of L alone. However, it follows from a result by Prtig [38, Corollary 4] that if the 
resolvent (L - p ) -  1 is bounded uniformly in the right half-plane outside any small neighborhood of zero as an 
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operator in L 2 (~), then the Spectral Theorem holds. In particular, the wave 45 and its translates form an exponentially 

attracting set in L2(~). 

For the rest of the discussion in this section we will be making the necessary resolvent estimates. Let p be such 

that Re p > 0. Set 

D P 
P 

In the following, we will omit the tilde. In order to estimate the resolvent, we must solve 

( - i o  - t _  ) ( P l )  __~ ( G 1 )  
L+ - ( p  + 2 e V )  P2 G2 ' 

that is, (L - p)P ---= G, where Gi E L2(R). Since 0 < q2 < 1, the operator L_  is invertible [4, Section 2]; therefore, 

we can solve the first equation for P2 to get 

P2 -= -L - I (PP1  + G1), 

and substitute this result into the second equation to get 

(L+ + vL-1)p1 = G2 - (p + 2~y)L-1G1. 

(7.12) 

In solving Eqs. (7.12) and (7.13) it is sufficient to consider the case that [Pl is large, since the resolvent is bounded 

in bounded sets. Define the fourth-order operator 

A = L+L_, 

and note that A* = L_L+. We know from the results above that the fourth-order operators A + v and A* + v are 

invertible for any large [Pl with Re p > 0. Therefore, we can solve Eqs. (7.12) and (7.13) to get 

P1 = - ( P  -t- 2~y)(A* q- v ) - l G l  + L_(A ÷ v) - I  G2, 

P2 = -L+(A* -t- v) 1G 1 - p(A + v)-~G2. 
(7.14) 

We shall obtain estimates for P = (PI , / ' 2 )  in terms of G = (G1, G2) when Ipl is large. We claim that for ]P[ 

large 

II(A + v)-l l l  ~ M/Ip[ ,  ][L_(A q- v)-l[I  ___ M, (7.15) 

with analogous estimates for the adjoint operators. The constant M > 0 may depend on e but not on p. Assume for 

a moment that the claim is true. We then have from Eqs. (7.14) and (7.15) that 

(Iell + IP21) ~ (M + 1)([611 q-1621) 

for all p with Re p > 0 and [Pl large. 

It remains therefore to prove the above claim, which means that we must estimate the norm of the operator 
(A + v) - I .  The operators A and A* are sectorial, so that their resolvent can be estimated in a sector. However, 

v = p(p + 2e?,) is not contained in any sector near the positive axis, but instead forms a parabola. A priori, it is 

then not obvious why the estimates (7.15) should be true. 

(7.13) 
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The key is that the operator A is self-adjoint up to terms involving only first-order derivatives. Indeed, it is easy 
to check that 

Au = (02 + 6 sech2y - 1)(02 + 2 sech2y - q2)u 

9 2 02y(4U sech2y) (1 q2)O2yU = 04u + 4 sech- y Oy u + - + 

÷ 2(sech2y)yUy ÷ (2(sechZy)yy ÷ (2 sechZy - q2)(6 sech2y - 1))u. 

In other words, we have 

Au = Bu + Ru, 

where 

Bu = 04u + 4 sech2yO2u + 02(4u sech2y) - (1 + q2)O2u 

+ (2(sech2y)yy + (2 sech2y - q2)(6 sech2y - 1))u 

is self-adjoint and 

Ru = 2(sech2y)yUy. 

Note that RB -1/4 is a bounded operator. 

Using the spectral family associated with B, we see that 

I[(B + v) -111 -- M/IPl, [[B1/4( B + v) -111 -< M/Ip[ a /2 ,  IIB~/2( B + v) -1 II -- M (7.16) 

uniformly for Re p _> 0 and I P I large. We obtain 

(A + v ) - lu  = (B + R + v ) - lu  

= (B + v ) -a ( id  + R(B + v ) - l )  -1 

= (B ÷ v ) - l ( i d  ÷ RB-1/4B1/4(B ÷ 1))-1) -5 . 

It follows from (7.16) and the boundedness of  RB -1/4 that the terms appearing in the above equation are well- 

defined for all IPl sufficiently large. Note that it is crucial that R is only of first order. Otherwise, it would not be 
clear whether the operator (id ÷ R(B + v) -1)  is invertible; for instance, for R = B 1/2 the operator R(B + v) -1 can 

only be estimated by a constant. The estimates (7.15) are now an immediate consequence of (7.16), and the proof 
of  Theorem 7.1 is complete. [] 

Remark 7.2. Since v = 0 is a simple eigenvalue of (7.11) for all • > 0 (see [4]) and the eigenvalues p of  (7.8) 

satisfy v = p(p + 2ey) ,  we know that if the wave is to become unstable as e increases, it must do so through a 
Hopf  bifurcation. 

Remark 7.3. I f /x  sin20 < 0, it follows from [27] that the eigenvalue v.(E) is negative and hence the pulse q~ is 

unstable for all small e. Thus, one gets another proof of  the local instability result presented in [6]. From [4], one 
can conclude that the wave will never stabilize. 

7.2. Existence and stability of multiple pulses 

Consider Eq. (7.6) 

i~bt + (0x 2 - co)~b + 41~b12q~ + iE(y~b - #q~*) = i~0x2q~ 
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for 8 > 0 small. The associated steady-state equation reads 

Cxx - 0)4) + 41¢12¢ + iE(g~b -- /x¢*)  = iSCxx. (7.17) 

Note that (7.17) is reversible, that is, ¢ (x) satisfies (7.17) if, and only if, ¢ ( - x )  does. Since zero is simple eigenvalue 

of the linearization of (7.1) around 45, it follows from the results of Vanderbauwhede et ai. [45] that the pulse 

persists for 3 > 0. Moreover, since the linearization of (7.6) around the perturbed wave is sectorial, the pulse will 

be stable for 8 > 0 small. Therefore, we have the following corollary of Theorem 7.1. 

Corollary 7.4. Eq. (7.6) has a stable solitary-wave solution for all 8 > 0 sufficiently small which approaches 45 as 

8 - + 0 .  

Consider the steady-state equation (7.17) 

~bxx - coqb q- 41¢12¢ -q- ie(g  ¢ - / z ¢ * )  = iSCxx 

of Eq. (7.6) for 8 > 0. By Theorem 7.1, Eq. (7.6) admits the stable solitary-wave solution 45 for ~ > 0, which by 

Corollary 7.4 persists for 0 < 8 << E. Note that Eq. (7.17) is reversible (¢(x)  is a solution if, and only if, q5 ( - x )  is) 

and admits the 772-symmetry ¢ .+  - ¢  (¢ is a solution if, and only if, - ¢  is). 

We are interested in the existence and stability of  multiple solitary waves. These are solutions of  (7.17) resembling 
N widely spaced copies of 45 or -45.  There are several ways to obtain N-pulses of different shapes, since 45 and 

-45 are concatenated. Denoting 45 and -45 by "up" and "down", respectively, we may then consider arbitrary 

sequences of  ups and downs corresponding to whether 45 or -45 is used. 
It has recently been proved in [42] that stable multiple pulses are expected to occur near so-called orbit-flip 

bifurcations. This bifurcation is characterized by the property that when 8 = 0, the wave 45 is contained in the 

strong stable manifold of  the equilibrium ¢ = 0, with this no longer being true for 8 7~ 0. Now, the eigenvalues of  

the linearization of (7.17) at ¢ = 0 for 8 = 0 are given by -4-~/co ± ~/z sin 20 with 0 given by cos 20 = y / # .  Since 

we are interested in stable pulses, we assume tx sin 20 > 0. The equilibrium q~ = 0 of  (7.17) is hyperbolic as long as 
0 < e < co//z sin 20. The stable primary pulse 45 (x) satisfies (7.17) for 8 = 0 and converges to zero exponentially 

with rate ~/co + E/z sin20 for sin0 > 0 as Ixl .+  oc. Thus, it converges with the largest exponential rate possible. 

Since 45 is contained in the strong stable manifold when 8 -- 0, an orbit-flip bifurcation is possible. 

We have the following theorem concerning existence and stability of  multiple solitary waves of (7.17). It is based 

on an application of Sandstede et al. [42, Theorems 1, 2, and 4]. 

Theorem 7.5. Fix E > 0 small and N > 1, then for any 0 < 8 < 6(E, N) small, there exists a unique multiple 

solitary wave of up -down-up-down  . . . .  type. These pulses are stable with respect to Eq. (7.6). Any other N-pulse 

consisting of copies of 45 or -45 is unstable. 

Remark 7.6. There exist many other N-pulses besides the ones of  up -down-up-down  . . . .  type, and we refer to 

[42] for the details. 

Proof  o f  Theorem 7.5. As mentioned above, the theorem is an application of results proved in [42]. In particular, 

we shall verify the hypotheses of Theorems 1 and 2 in that paper. Most of the hypotheses are concerned with the 
linearization of (7.17) for 8 = 0 around the wave 45. However, this equation can be written as the fourth-order 
equation studied in [42, Section 4] (see (7.10) with p = 0 and [42, (4.9)]). Thus, it turns out that most of these 
hypotheses have already been verified in [42, Theorem 4]. The only assumption which we have to consider here is 
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Hypothesis (H4)(ii) in [42]. Assumption [42, (H4)(ii)] is used to compute the sign of  a certain constant J2 which 

determines the bifurcation direction. In fact, -/2 > 0 corresponds to the pulses bifurcating for S > 0. 

The constant J2 arises as follows. Recall that the steady-state equation of  (7.6) written as a system for real and 

imaginary part is given by 

8Uxx = - ( V x x  - (20) - f l )v  + 4(u 2 -1- V2)V), 
8Vxx = Uxx - f lu + 4(u 2 + v2)u - 2Egv .  

Let 45~ denote the stable primary pulse of  (7.6), with 45o = 45. We need to calculate the first-order expansion of  45~. 

Since 45~ is smooth, we can substitute 45~ into the above equation and take the derivative with respect to 8 at ~ = 0. 

The function (u, v) = (d/dS)45~]~=0 satisfies 

45xx = - ( V x x  - (2o9 - f i )v  + 4452v), 0 = Uxx - ~u  ÷ 1245u - 2~gv .  

Solving the second equation for v and substituting the resulting expression into the first equation, we get 

(0 2 + 445 2 -- (20) -- fi))(O 2 + 1245 2 -- f i )v  = - 2 ~ y 4 5 x x ,  

i.e., L _ L + v  = - 2 e g 4 5 x x .  It is now clear that the fourth-order equation investigated in [42], that is, the left-hand 

side of  the above equation, and the parametrically forced NLS are related. 

Substituting the expression for 45 and rescaling y = ~ x ,  we obtain 

(02 + 2 sechay - qZ)(0xa + 6 sech2y - 1)v = - Ey(sechy -- 2 sech3y) = :  G ( y ) ,  

where q < 1 has been defined in (7.9). The crucial point is that the constant J2 is given by 

CQ 

J2 = / G(y)eqY(q  - tanh y) dy 

- - O O  

= - ey  (sechy - 2 sech3y)e  qy (q - tanh y) dy 

- - O O  

(see [42, Section 4.1]). A straightforward calculation following [42] yields 

2 
J2 = 4 ~g e y/q sech3y tanh y dy > 0, 

- -OO 

which is positive since q > 0. This coincides with the sign computed in [42], and hence the multiple pulses bifurcate 

for 8 > 0. The conclusion of  the theorem follows now from [42, Theorem 4]. [] 

R e m a r k  7. 7. In fact, we have not used the assumption that ~ > 0 is small for the existence part of  Theorem 7.5. 

This condition is needed only so that the stability of  the multi-bump solutions can be ascertained. In order to have 

a stable multi-bump solution the primary pulse must be stable, and this has been shown in Theorem 7.1 only for 

> 0 small. The assumption that 0 < ~ < co//z sin 20 is needed to guarantee that the equilibrium q~ = 0 of  (7.17) 

is hyperbolic. Therefore, for all 0 < ~ < co//z sin 20, multiple solitary waves of  up-down-up . . . .  type exist for 

8 > 0 small, and they are stable as long as the primary pulse 45 is stable. 
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