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We study a type of 'eigenvalue' problem for systems of linear ordinary differential 
equations with asymptotically constant coefficients by using the analytic function 
D(A) introduced by J. W. Evans (1975) in his study of the stability of nerve impulses. 
We develop a general theory of D(A) that clarifies the role of the essential spectrum 
in applications. New formulae for derivatives of D(A) are used to study linear 
exponential instabilities of solitary waves for generalizations of: (1) the Korteweg-de 
Vries equation (KdV); (2) the Benjamin-Bona-Mahoney equation (BBM); and (3) 
the regularized Boussinesq equation. 

A pair of real eigenvalues exists, indicating a non-oscillatory instability, when the 
'momentum' of the wave (a time-invariant functional associated with the 
hamiltonian structure of the equation) is a decreasing function of wave speed. Also 
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we explain the mechanism of the transition to instability. Unexpectedly, these 
transitions are unlike typical transitions to instability in finite-dimensional 
hamiltonian systems. Instead they can be understood in terms of the motion of poles 
of the resolvent formula extended to a multi-sheeted Riemann surface. Finally, for 
a generalization of the KdV-Burgers equation (a model for bores), we show that a 
conjectured transition to instability does not involve real eigenvalues emerging from 
the origin, suggesting an oscillatory type of instability. 

0. Introduction and outline 

When studying the linear stability properties of nonlinear waves with inhomogeneous 
spatial structure, one usually encounters non-self-adjoint eigenvalue problems for 
variable coefficient operators. Rather few systematic techniques are available to 
study such problems. This stands in contrast to spectral problems derived from 
linearization about constant states, plane waves or other solutions with very special 
structure, which can be handled by standard eigenfunction expansion methods (e.g. 
Fourier transform or other classical eigenfunction expansions). 

Here, we develop a method which can yield linear instability criteria in a certain 
general class of eigenvalue problems for systems of ordinary differential equations 
with asymptotically constant coefficients. We apply the method to study instabilities 
of some nonlinear evolution equations that model long-wave propagation in 
dispersive media. The hamiltonian structures of these equations share many 
features, and the instability criteria turn out to share a common form. 

In particular, we establish criteria for the linear exponential instability of solitary 
wave solutions of generalized KdV, BBM, and regularized Boussinesq equations. 
These equations respectively have the forms: 

I (generalized) Korteweg-de Vries equation (Korteweg & de Vries 1895; Whitham 

1974) a u + xJf(u) + u = 0; (gKdV) 
II (generalized) Benjamin-Bona-Mahoney equation (Peregrine 1966; Benjamin 
et al. 1972; Whitham 1974) 

u + a u + 8f(u) - at u = 0; (gBBM) 
III (generalized, regularized) Boussinesq equation (Whitham 1974) 

at - un-df(u)- u = 0. (gBou) 
We assume throughout that f is a C1 and convex for u > 0, with f(0) = 0 = f'(O), 

and f(u)/u-> oo as u increases. (These hypotheses on f can be relaxed considerably. 
What is used below is the existence of a family of solitary waves for a range of 
speeds, c.) 

Each of the equations above admits solitary wave solutions of the form u(x, t) = 
uc(x-ct) (for c > 0, c > 1 and c2 > 1 respectively), where u(x)->0 as xl - co, at an 
exponential rate. For example, when the nonlinearity is homogeneous, with f(u) = 
uP+1/(p+ 1) for some p > 1, u, has the form 

Uc(x) = C sech2IP (yx), (0.1) 
for appropriate constants a, y depending on c, p. We consider the evolution of small 
perturbations of the solitary wave, writing u(x, t) = u(x -ct) +v(x-ct, t). Neglecting 
terms nonlinear in the perturbation v, we seek a solution of the linearized evolution 
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equation for the perturbation v(x,t) in the form v = eAtY(x), where A e and Y 
satisfies the equation below, corresponding to the gKdV, gBBM and gBou equations 
respectively: (A-Cax) Y+dX(f'(uc) Y)+ a Y = 0, (0.2a) 

(A-ce,) (I-2) y+ x Y+Y ax(f'(uc)) = 0, (0.2b) 

(A-caX)2 (I- 2) -_ 2 
Y-_2l(f(uC) Y) = 0. (0.2c) 

If this equation admits a square integrable solution for some A with Re A # 0, we call 
A an unstable eigenvalue for (0.1) and Y the associated eigenfunction. (By reflection, 
-A is an eigenvalue if A is.) 

Previous work (Laedke & Spatschek 1984; Weinstein 1985, 1986a, b; Bona et al. 
1987; Souganidis & Strauss 1990; see also Grillakis et al. 1987, 1990) has shown that 
for a class bf equations including the gKdV and gBBM equations, but not gBou, uc 
is nonlinearty stable in H1 (modulo spatial translations) if 

d X[uc] > 0, (0.3) dc 

dc 

where the functional X[u] is a generalized momentum or impulse functional 
associated with the translation-invariant hamiltonian structure of the equation, and 
is independent of time for solutions. For example, for gKdV, 

i rx 
XJ[u] = u2 dx, 

and (0.3) holds if and only if p < 4. The stability proofs rely on establishing that uc 
is a local minimizer of a conserved energy functional, subject to the constraint of 
fixed momentum. 

In this paper we show that for all three equations (0.2) above, when the instability 
condition (0.4) holds, a real unstable eigenvalue exists with A > 0. This gives rise to a 

non-oscillatory and exponentially growing solution of the linearized evolution equation. 
For the gKdV and gBBM equation, we also show that there is at most one eigenvalue with 
Re A > 0. These results clarify the mechanisms for the instability proved for gKdV 
and gBBM in Bona et al. (1987) and Souganidis & Strauss (1990); see Laedke & 
Spatschek (1984) for an alternative approach to studying linear exponential 
instability. Our result concerning gBou seems to be the first regarding the stability 
or instability of the solitary waves of this equation. The methods used in the works 
mentioned above rely on being able to characterize the solitary wave as a critical 

point of a modified hamiltonian functional, whose second variation has a finite- 
dimensional negative subspace. But for gBou (Smereka 1992), and many other 
problems of physical and mathematical interest, the solitary wave (or other 
nonlinear mode of interest) does not appear to have such a characterization, and the 
second variation of the appropriate functional is highly indefinite. The method used 
in the present paper does not require such a characterization. 

The conditions (0.3) and (0.4) can be expressed in terms of other functionals which 
arise in the hamiltonian formalism of I, II, and III. We have 

d d2 i d 
[= - ( c#u] - c'Vu]c) = [u dc dC2 c dc 
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Here, J denotes the hamiltonian energy functional of the system (see ?2). These 
expressions arise in some of the cited articles. 

When the nonlinearity has the special form f(u) = uP+1/(p + 1), the results of this 
paper together with previous works may be summarized as follows. 

gKdV. If p > 4, then u, is linearly exponentially unstable for all c > 0. For 
1 < p < 4, uc is H1-orbitally stable (Benjamin 1972; Bona 1975; Weinstein 1986a, b; 
Bona et al. 1987). 

gBBM. For each p > 4, there exists a positive number co(p), such that solitary 
waves uc with 1 < c < co(p) are linearly exponentially unstable. Furthermore, for 
eachp > 4 there is a threshold dX0(p) > 0 such that for any XJ > Xo (p), gBBM has two 
solitary wave profiles ucl and uC with 1 < c1 < c(p) < c2. uc is exponentially 
unstable, while uC is H1-orbitally stable (Weinstein 1987; Souganidis & Strauss 
1990). Here, 

co(p) = (p/(4+2p)) [ + V/(2 + 2)]. 

gBou. For each p > 4, uc is linearly exponentially unstable if 1 < c2 < c2(p), where 

c2(p) = 3p/(4+2p). 

In analogy with gBBM there is a threshold o0(p) such that for any X > o0(p), gBou 
has two solitary wave profiles ucl and uC of speeds c1 and c2 with 1 < c < co(p) < c2. 
The question of stability of u2 is open. (Numerical calculations of Smereka (1992) 
suggest that it is stable, however.) 

The method we use to study the existence of eigenvalues for (0.2) is related to the 
study of eigenvalues in boundary value problems for ordinary differential operators. 
As xli-> oo, the coefficients in equations (0.2) converge rapidly to those of the 
following equations, respectively: 

(A-cax) Y+8a Y = 0, (0.5a) 

(A-caX) (I- 2) Y+ x Y = 0, (0.5b) 

(A - caX)2 (_I-_a2) _a2 y = . (0.5 c) 
For Re A > 0, we will see that these equations have solutions Y(x) = eAjx for j = 1 

to m (m = 3 or 4), where the Uj, which depend on A, satisfy 

Re,1l(A) < 0 < Reuj(A) for j > 1. (0.6) 

Correspondingly, for each equation (0.2) there is a one-dimensional subspace of 
solutions which decay as x -oo, and an (m-1)-dimensional subspace of solutions 
which decay to zero as x - - oo : A is an eigenvalue when these subspaces meet non- 
trivially. The angle between these subspaces may be measured by a wronskian-like 
analytic function D(A), named Evans's function by Alexander, Gardner & Jones 
(Alexander et al. 1990), after J. W. Evans, who pioneered its use in the study of 
stability of nerve impulses (Evans 1972 a-c, 1975). One interpretation of the function 
D(A), much exploited by Yanagida (1985), is that it is like a transmission coefficient, 
in the sense that for the solution of (0.2) satisfying 

Y(x) e1l X as x -coo, 

we have Y(x) - D(A)e/1x as x --oo. 

In each equation (0.2), for Re A > 0, if D(A) vanishes, then A is an eigenvalue, and 
conversely. 
Phil. Trans. R. Soc. Lond. A (1992) 
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It usually happens naturally that D(0) = 0 when linearizing about a travelling 
wave: for A = 0 the function Y(x) = aO uc satisfies (0.2). This follows from translation 
invariance in x. In the normalization we choose, we find D(A) - 1 as AI -> oo with 
Re A > 0, and D(A) is real for real A. The crux of our method is that we have new 

integral formulae for derivatives of D(A) (Theorem 1.11), which we can evaluate at 
A = 0 and show that 

D'(0) = 0, sgnD"(0) = sgndX[ul]/dc. 

Thus, if dJ[uc]/dc < 0, we find that D(A) < 0 for small A > 0, hence D(A) vanishes for 
some positive A, yielding the existence of an unstable eigenvalue for (0.2). 

A snag which arises in carrying out this program is that the description of decaying 
solutions of (0.2) changes as A crosses the imaginary axis. This happens because the 
essential spectrum of the differential operator in (0.2) is the imaginary axis: for 
Re A = 0, it happens that Re/ u = 0 (for some j ~ 1), and (0.2) has solutions with 
neutral growth as Ixl -> oo. To study the neighbourhood of A = 0 and the possibility 
of eigenvalues embedded in the essential spectrum, we need D(A) to be well defined 
in a neighbourhood of the imaginary axis. For this purpose, we will find it useful from 
the beginning to define D(A) in the broader way described below, so its domain is not 
restricted by the inequalities in (0.6). The domain of definition will be determined by 
the requirement that 

Re/a1(A) < Rea,j(A) for j > 1, (0.7) 

and in each application, we find that D(A) is naturally defined at least for Re A > -e 
for some e > 0. (But we warn that under the expanded definition, zeros of D(A) need 

only correspond to eigenvalues when the inequalities (0.6) hold, which means in our 

applications that Re A > 0.) 
In its simplest form, Evans's function D(A), for an m-dimensional system of 

ordinary differential equations with asymptotically constant coefficients, detects the 
intersections of a one-dimensional subspace of solutions decaying as x -> oo, and an 

(m- 1)-dimensional subspace of solutions decaying as x -- oo. Evans (1975) defined 

D(A) for eigenvalue problems associated with travelling waves of a class of nerve 

impulse models, consisting of a single reaction diffusion equation coupled to a set of 
ODES. Among other results, he obtained an instability criterion by relating the sign 
of D'(0) to the geometry of the travelling wave construction: the direction in which 
stable and unstable manifolds of the rest state cross as the wave speed is varied in 
the construction. (In our problems, this crossing is degenerate: the wave exists for a 

range of wave speeds c. Correspondingly D'(0) = 0.) Jones (1984) showed how zeros 
of D(A) in the right half-plane could be proved absent by geometric and dynamical 
systems techniques in a singularly perturbed FitzHugh-Nagumo system. Yanagida 
(1985) redid this result from a somewhat more analytical point of view. Alexander 
et al. (1990), in studying the stability of travelling waves of fully parabolic systems, 
gave topological and analytic generalizations of Evans's function for systems with 
k-dimensional and (m-k)-dimensional subspaces of solutions decaying as x- + oo 

respectively. An extension to a higher-order scalar equation was given by Gardner & 
Jones (1990). 

One aspect of Jones's (1984) analysis was that in order for D(A) to be defined in a 
fixed neighbourhood of the origin, he had to analytically continue D(A) to a region 
that crosses the essential spectrum (where the dimension of the subspace of decaying 
solutions changes), by considering a solution decaying at the maximal exponential 
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rate. A similar construction is made by Alexander et al. (1990) in their application to 
a fully parabolic FitzHugh-Nagumo system. The point of view taken in the present 
paper is to expand on Jones's construction, and make the basic definition of D(A) 
designed to detect the intersection of a one-dimensional subspace of solutions with 
maximal decay rate as x->+oo, and an (m-1)-dimensional subspace with 
submaximal growth rate as x - -oo. This has the advantage that the domain of 
definition of D is restricted only by (0.7), and zeros of D have a natural interpretation 
when they satisfy Re A < 0 in our applications. 

The plan of this paper is as follows. In ? 1 we have thought it useful to develop a 
general existence theory for Evans's function in the context of a type of 'eigenvalue' 
problem, for first-order linear m x m systems with continuous coefficients that decay 
to constant values in an integrable fashion as Ixl -> oo. Aside from assuming analytic 
dependence on the parameter A, our basic hypotheses are common in the classical 
theory of asymptotic behaviour in such systems of ordinary differential equations 
(see Coddington & Levinson 1955; Coppel 1965). (In particular, these hypotheses are 
much weaker than the assumptions of smoothness and exponential decay of 
coefficients that have been exploited in the applications of Evans's function to date 
(cf. Evans 1975; Jones 1984; Alexander et al. 1990). Among other results, we 
establish new integral formulae for the derivatives of D(A), and specialize the results 
to systems obtained via the standard reduction of a higher-order scalar ordinary 
differential equation. We remark that one can study intersections of k-dimensional 
and (m - k)-dimensional subspaces as well, in a manner similar to that developed by 
Alexander et al. (1990) for travelling waves of reaction-diffusion systems; see also 
Swinton (1992). But the case k = 1 is considerably simpler, and suffices to treat the 
present applications. 

(Note added in proof: It has been pointed out to us by X.-B. Lin that our integral 
formula for D'() can be regarded as an application of Melnikov's method for 
analysing the intersection of stable and unstable manifolds (cf. Melnikov 1964; 
Palmer 1984). 

In ?2 we apply the theory of Evans's function to establish the criterion (0.4) for 
the existence of unstable eigenvalues in the equations (0.2). This suggests that when 
(0.4) is satisfied, the corresponding solitary wave is exponentially unstable. We 
recognize that our results do not fully establish nonlinear instability in its proper 
sense for travelling waves: modulo translations, but regard this issue as one outside 
the scope of this paper. See Grillakis et al. (1990), who treat this issue in a manner 
appropriate to nonlinear Schr6dinger or Klein-Gordon equations. Note that even 
when (0.3) holds and the solitary wave for gKdV is nonlinearly stable modulo 
translations, the linearized evolution equation, for the perturbation v(x, t), admits 
solutions that grow linearly in time, associated with perturbations that change 
the wave speed. (Such a solution is v(x,t) = t cUc.) The eigenfunctions we find 
corresponding to positive eigenvalues are always (trivially) independent of the 
eigenfunctions associated with spatial translation and changes in wave speed, so we 
anticipate that (0.4) does suffice to guarantee exponential instability modulo 
translations. 

In ?3 we prove some additional results concerning the spectral analysis of the 
gKdV, gBBM and gBou solitary waves. We show that any zero of D(A) on the 
imaginary axis must be an eigenvalue embedded in the essential spectrum of 
the differential operator associated with (0.2), with corresponding eigenfunction Y(x) 
that decays exponentially as xl - oo. This result depends on a particular symmetry 
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Figure 1. Spectrum of JL when (0.4) holds. Wavy line refers to essential spectrum covering the 
imaginary axis. The crosses refer to point eigenvalues. 

of the eigenvalue equation in these examples, and is not implied by the general 
theory of Evans's function. We conjecture that no such embedded eigenvalues exist 
apart from A == 0. 

Also, we bound the number of unstable eigenvalues for a class of eigenvalue 
problems in the form 

JLu = Au, (0.8) 

where L is a self-adjoint operator with a finite number of negative eigenvalues and 
J is skew-symmetric. (This result improves a lemma of Grillakis et al. (1990).) For the 
solitary waves of the gKdV and gBBM equations, it follows from this that there is 
at most one unstable eigenvalue with Re A > 0. When the instability condition (0.4) 
holds, then the full spectrum of JL is as pictured in figure 1. (When condition (0.4) 
does not hold, the full spectrum of JL is the imaginary axis.) 

In ?4 we study the emergence of the unstable eigenvalue whenf(u) = uP+l/(p+ 1) 
as p and c pass through values at which dX[uc]/dc = 0. Contrary to expectations 
generated from typical transitions to instability in finite-dimensional hamiltonian 
systems (cf. Arnold & Avez 1968; Arnold 1978; MacKay 1987), the unstable 
eigenvalue does not arise from the collision of pure imaginary eigenvalues at the 
origin. Instead, a zero of D(A) crosses from the left to the right half-plane along the 
real axis. 

Some care in interpretation is required here: Zeros of D in the left half-plane need 
not be eigenvalues of (0.2), and eigenvalues in the left half-plane need not be zeros 
of D. Zeros of D in the left half-plane may be interpreted in terms of the analytic 
continuation of a restricted resolvent formula. They are poles of this resolvent on a 
second sheet of a Riemann surface that is analytically continued from the right half- 
plane across the essential spectrum. See ?4 for a discussion. This phenomenon is 
related to the concepts of resonance poles in quantum scattering theory, and Landau 
damping in the Vlasov-Poisson system (see Reed & Simon 1978; Crawford & Hislop 
1989a, b). 

Finally, in ?5 we consider a problem for which Evans's function yields the 
information that any transition to instability is not associated with eigenvalues 
emerging from the origin. Such information is obtained by showing that the order of 
A = 0 as a zero of D(A) remains constant as parameters vary. As a consequence, any 
instabilities which arise are likely to be associated with a pair of complex conjugate 
eigenvalues crossing the imaginary axis into the right half-plane. Therefore this is 
likely to be an oscillatory type of exponential instability. 
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In particular, we study the stability of travelling waves of the generalized 
KdV-Burgers equation = . (gKdVB) at u + 8f(u)+ u = Su. (gKdVB) 
As a varies, this equation admits a family of travelling waves moving with the same 
speed c, which are monotone decreasing for large c, and for small a > 0 may be 
roughly described as looking like a solitary wave for gKdV followed by an oscillatory 
tail which slowly decays to a non-zero constant state (Jeffrey & Kakutani 1972; 
Canosa & Gazdag 1977; Bona & Schonbek 1985; Khodja 1989). The monotone waves 
are known to be stable (Pego 1985), and stability persists for nearly monotone waves 
(Khodja 1989). It seems reasonable to conjecture that if the solitary wave for gKdV 
is exponentially unstable, then so is the corresponding travelling wave for gKdVB for 
a sufficiently small. While D(0) = 0, we prove in ?5 that D'(O) # 0 independent of a 
for travelling waves of gKdVB. Thus the order of A = 0 as a zero of D(A) remains 
constant. We can conclude that if there is a transition from stability to instability as 

->0 +, it cannot occur simply by the emergence of a zero of D(A) from A = 0. The 
actual mechanism of such a transition must be more complicated, and remains 
unknown. It could very likely involve a complex conjugate pair of eigenvalues 
crossing the imaginary axis. This could lead to a Hopf bifurcation to time periodic 
solutions. 

1. A class of eigenvalue problems on /l 

We shall study a type of 'eigenvalue' problem for linear systems of the following 
form, together with their associated transposed systems: 

dy/dx =A(x, A)y, (1.1) 

dz/dx = -zA(x,A). (1.2) 
Here y(x) is considered to be a column vector with m complex components, and z(x) 
is a row vector. A is a complex parameter. 

(a) Hypotheses 
Assume Q2 c C is a simply connected domain. We make the following hypotheses 

on the matrix-valued function A: 

H1 (Domain and smoothness). We assume A: Rx 2-> Cxm is continuous, and 
analytic in A for each fixed x. 

H2 (Limits at infinity). We assume limx+ O A(x, A) = A -+(A) exists for A EQ, and 
that the limit is attained uniformly on compact subsets of Q. 

Below, we frequently suppress the + indication, while recognizing that the limits 
at + oo may be different. A statement made concerning A? (A) or related quantities 
will represent two similar statements concerning A+%(A) and A-?(A). For example, 
H2 implies that A? is (i.e. both A+? and A-~ are) analytic on 2. 

H3 (Lowest asymptotic eigenvalue is simple). We assume that for A E ?2, Ao(A) has a 
unique eigenvalue of smallest real part, which is simple. We denote it by ,u = #(A). We 
denote by ,*(A) the smallest real part of any other eigenvalue of A??(A). Thus 

Re,c(A) < ,*(A) - min{RevI v $ It and ve o(A?(A))}. 

Corresponding to the eigenvalue ,a(A), we require an analytic choice of normalized 
right and left eigenvectors of A (A), satisfying 

(Ah-i,)v(A) = O, w(A)(A-u) = O, wAv = 1. (1.3) 
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Such eigenvectors can always be chosen, by a result of Kato (1982). For later 
reference, we describe the strategy of the proof. Since ,u(A) is always simple, the 
spectral projection 

P(A) = f (A - vI)dv (1.4) 

exists and has one-dimensional range, where F is any contour enclosing a(A) and 

excluding the other eigenvalues of A?(A). P is analytic in Q. Fix Ah0eQ2 and choose 
v0, w0, so (1.3) holds for A = A. 

Now Kato proves: 

Lemma 1.1. There exists a ' transformation function' U: Q -Q> Cmxm which is analytic, 
such that for A g 2, (i) U(A) is invertible, (ii) U(A)P(Ao) = P(A) U(A). 

The transformation function is obtained by solving 

U' = [P',P] U, U(Ao) = I, 

where [A,B] = AB-BA. The desired eigenvectors are now given by 

v(A) = U(A)v0, w(A) = wO U(A)-1. 

We also require that A(x, A) approach its asymptotic values sufficiently rapidly as 
x -+ oo . The precise rate of approach required will sometimes vary, so we define the 
deviator 

R(x,A) {A(x,)-A+-(A), x<O. (1.5) {^^ 
\A(x,A)-A-+(A), x<> O 

H4. We assume that the integral 
o00 

IIR(x, A) dx 
J -co 

converges for all A e , uniformly on compact subsets. 

(b) Asymptotic behaviour of solutions 

It is well known that if the deviator R decays sufficiently rapidly as x -+ ? o, then 
solutions of (1.1), (1.2) behave like solutions of the constant coefficient systems 

dy/dx =A(A)y, (1.6) 

dz/dx = -zA- (A). (1.7) 

A particular solution of (1.6) for A? = A+I is y = veGx, where v = v+, u = Iu+. In 

general, we shall see that (1.1) has a one-dimensional subspace of solutions which are 

O(e/x) as x - + oo (with , = ,u+), and an (m- 1)-dimensional subspace of solutions 
which are o(e/tx) as x - - oo (with u = ,-). The 'eigenvalue' problem we shall consider 
is to characterize those values of A such that these subspaces intersect non-trivially, 
so that some non-zero solution of (1.1) has 'maximal decay' O(e/X) as x- + oo, but 
'submaximal growth' as x -- oo. Roughly speaking, to specify such a solution, one 
should impose one 'boundary condition' as x - oo, and m- 1 'boundary conditions' 
as x -> o. 

To proceed, we study when solutions of (1.1) behave like the solution y = v eX of 

(1.6), and similarly when solutions of (1.2) behave like the solution z = we-/x of (1.7). 
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Proposition 1.2. There exist unique solutions +(x, A) of (1.1) and -(x, A) of (1.2) 
which satisfy 

e- +x+(x,A)-v+(A) as x--+oo, (1.8) 
e/ X-(x, A)->w-(A) as x-- co, (1.9) 

and y- are analytic in A for A S, and the limits above occur uniformly on compact 
subsets of Q. Any solution of (1.1) with y(x) = 0(e +x) as x-> + oo is a constant multiple 
of +. Any solution of (1.2) with z(x) = O(e-+ x) as x -> - o is a constant multiple of r-. 

Proof. The method of proof is standard (see Coppel 1965; Coddington & Levinson 
1955), but there are some nuances in obtaining the global analytic dependence 
on A from our hypotheses. We consider the existence of r+(x,A), the treatment 
of -(x, A) is similar. Let B(A) = A+?(A)-?+a(A)I. Under the change of variable 
v(x) = exp (- u+x) y(x), solutions of (1.1) correspond to solution of 

dv/dx = [B(A) +R(x,A)]v. (1.10) 

By H3, B(A) has one simple eigenvalue v = 0 and m- 1 eigenvalues with positive real 
part. Hence leBx I < Cl(A) for all x < 0, where C1 is bounded on compact subsets of 
Q. 

Given x0, we may now define a linear operator F = F(A) on the space C([x0, oo]) 
of bounded continuous functions on [x0, oo) by 

fx 
v(x) = - (x-s B(A)R(s, A) v(s) ds. 

By H4, if Q1 is a compact subset of Q, there exists x0 sufficiently large so that 

= sup C1(A) JI R(s, A) 1 ds < 1. 
Aeg21 X 

It follows that 

sup Ilv(x)l < 0 sup Iv(x)l, 
x > x x> xo 

i.e. Y is a contraction on C([xo, oo)), uniformly for Ah 21. As Coppel (1965) argues, 
given any bounded continuous function v(x), the integral equation 

v = v+ v (l.l) 
has a unique bounded continuous solution, and one has 

d(v -v)/dx = B(A) (v -v) +R(x, A) v. 

In particular, if v is chosen to be a bounded solution of dv/dx = Bv, v given by (1.11) 
is a C' solution of (1.10). Conversely, to any bounded C1 solution of (1.10) the 
function v defined by 

v = v - ,v 

is a bounded solution of dv/dx = Bv. To summarize, there is a bicontinuous cor- 
respondence between bounded solutions of (1.10) and bounded solutions of dv/dx = 
B(A) v. Clearly, any bounded solution of the latter has the form 

v(x) = cv+(A) 
for some c e C. 
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To obtain +', put v(x, A) = v+(A), then 

(x, A) = e Atx v(x, ) = e-(I )-1vA) 

for x > x0. For x < x0, +(x, ) is extended as a solution of (1.1). It is clear that 
+(x, A) is independent of xo, so it is defined for all A e Q. Since v(x, A) can be obtained 
by iterations which yield a sequence of analytic functions of A that converge 
uniformly for A e Q, analyticity follows. That the limit in (1.8) is uniform on compact 
sets follows also, from the fact that 0 = o(1) as x,0- oo above. 

The use of the transposed equation (1.2) in what follows relies on the following 
fundamental facts. 

Lemma 1.3. If y(x) satisfies (1.1) and z(x) satisfies (1,2), then z y is independent 
of x. 

Proof. d/dx(z y) = (-zA) y + z(Ay) 0. 

Proposition 1.4. If y(x) satisfies (1.1), and z(x) satisfies (1.2), then we have 

lim e--xy(x) (V-y)v-, lim eA+ z(x) (z? + )w+ (1.12) 

Moreover, if y(x, A) and z(x, A) are solutions of (1.1) and (1,2) which are analytic on f2 
in A for each x, then the limits above are achieved uniformly in A on compact subsets 
of . 

Proof. We establish the first limit, the second is similar. Fix A, let B 
A- (A) -~-(A)I, and R(x) R(x, A). Make the changes of variables v(x) - e-"~y(x), 
w(x) = eX {-(x). Then y 'y = w v and 

dv dw d 
(B+R(x))v, d -w (B +R(x)) (13) 

We know that iim~_ w(x) = w- by Proposition 1.2. B has a simple eigenvalue v = 0 
with eigenvector v-, and the other eigenvalues have positive real part. It follows that 
every solution of dv/dx = Bvi is bounded as x-> - oo and satisfies limx,_- v(x) - cv 
for some c. Because of H4, there is a 1-1 correspondence between bounded solutions 
v(x) in (1.19) and v(x), see (Coppel 1965); the proof is similar to that of Proposition 1.2 
and v(x) satisfies an equation of the form (1.11). One has v(x) - v(x) -0 as x - - 0o. 
It follows that for some c, limx_>_, v(x) = cv-. But y- y = w v -cw- v-= c, con- 
cluding the proof. 

To prove the assertion that the limit is achieved uniformly on compact sets for an 
analytic family of solutions y(x,A), we argue as follows. For this family the 
corresponding limit v = (w v) v-(A) is analytic, hence bounded on compact subsets 
of Q. From the 1-1 correspondence between v and v it is easy to show that v(x, A) = 
e-x y(x, A) is uniformly bounded in A on compact sets, uniformly for x sufficiently 
negative. Uniform convergence as x - co now follows. [1 

To characterize precisely the growth rate for solutions of (1.1) which grow at a 
submaximal rate as x - + oo, consider that such solutions of the constant coefficient 

system dy/dx = Ax{(A)y must satisfy y(x) = O(e/0*XlIr) as x- co for some integer 
r >O. 

Definition. We define r = r(A) as the minimal such integer. It is the smallest 

integer such that ker (A - v)r = ker (A' -v)r+l for any eigenvalue v of A?(A) with 
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Rev = ,u*(A). (Typically A??(A) will have a unique simple eigenvalue of second 
smallest real part; in that case r(A) = 0.) 

Proposition 1.5. There exist rank (m-1) matrices -(x,A) and /+(x,A), of size 
m x (m- 1) and (m- 1) x m respectively, which are analytic in A E ?Q for each x, whose 
columns (resp. rows) satisfy (1.1) (resp. (1.2)) and which satisfy, for each AeQ2, 

-(x,A) = O(a(x) e*x) as x--oo, 

q+(x,A)= O(a(x)e-/*+) as x-+oo, 

where we may take either 
(i) a(x) = elIxl for any 6 E (0,/, - Re I), or 

(ii) a(x) = lxlr(), provided we assume that 
r?o 

f lx lr R(x, A) dx converges. (1.14) 
-00 

Moreover, any solution of (1.1) with y(x)= O(a(x) e*x) as x--oo has the form 
y(x) = -(x, A)c for some constant column vector c c C-1. Any solution of (1.2) with 
z(x) = O(a(x)e-/*x) as x-+ oo has the form z(x) = c]+(x,A), for some constant row 
vector c Cm-1. 

Proof. It suffices to prove the existence of {-(x, A); the treatment of y+ is similar. 
From classical results (see Dunkel 1902; Coddington & Levinson 1955; Coppel 1965) 
it is straightforward to show that for any fixed A ?e2, (1.1) has m-1 linearly 
independent solutions satisfying 

y(x) = O(a(x)e/*x) as x---co (1.15) 
for a(x) as in the statement of the Proposition. Our goal is to show that a basis of such 
solutions can be chosen which is globally analytic in A on Q. 

First, observe that if a solution of (1.1) satisfies (1.15), then -y- y 0, as a 
consequence of Proposition 1.4, and the fact that e-8 x e* x a(x) - 0 as x -oo. The 
converse also holds: If - -y = 0, then y satisfies (1.15). This is because the set of 
solutions y satisfying y- y = 0 is exactly m-1 dimensional. 

Now fix x0. To prove the Proposition, it suffices to construct an m x (m- 1) matrix 
V(A), analytic on 2, whose columns span the space orthogonal to q-(xo, A), so that 
f-(x0, A) V(A) = 0. We will then let {-(x, A) be the solution of 

d-/dx = A(x, A) -, -(x0, A) = V(A). 
This {-(x, A) will yield the desired conclusions. 

To prove that a globally analytic V(A) exists as above, we use the idea of Kato's 
transformation. Recall that -(x0, A) is analytic in A on 2, by Proposition 1.2. For 
A e ?Q we may define an analytic projection onto the space orthogonal to y = V- by 

P(A) = I-- 1t]/]t 

(recall - is a row vector). For A0 E2 given, choose a basis of m-1 vectors for the 
space orthogonal to /-(x0, A0), and form an m x (m- 1) matrix V0 with these vectors 
as columns. As in Lemma 1.1, there exists an analytic transformation function 
U:2 Q-- xm such that U(A) is invertible and U(A)P(Ao) = P(A)U(A), for all A SQ. 
Put V(A) = U(A) V0. Then 

V(A) = U(A)P(Ao) V = P(A) U(A) Vo 
so /-(x0, A) V(A) = 0 as desired. This proves the Proposition. Q 
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We remark that the proof implies that 

- 
--(A)=0 and y+ +(A) O. (1.16) 

We summarize the various characterizations of the asymptotic behaviour of 
solutions of (1.1), (1.2) in the following result 

Proposition 1.6. Let A 2 Q and suppose that y(x) is a solution of (1.1) and z(x) is a 
solution of (1.2). Then in parts 1-4 below, statements (a)-(d) are equivalent. 
1. (a) y(x) = o(ex) as x- o ; 

(b) r- y=O; 
(c) y(x) = -(x, A) c for some constant vector cE Cm-i; 

(d) y(x) = O(a(x) et*x) as x->- oo, where we may take either 
(i) a(x) e= elI for 0 < e < I*-Re,u, or 

(ii) a(x) = Ixr, r = r(A) as defined previously, provided we assume (1.14) holds. 
2. (a) y(x) = O(e/x) as x- + oo; 

(b) +y y=0; 
(c) y(x) = c+(x, A) for some constant c; 
(d) y(x) = o(b(x) e#*z) as x-> + oo, where we may take either 

(i) b(x) = 1/a(x), a(x) from part 1, or 
(ii) b(x) 1= , provided we assume (1.14) holds. 

3. (a) z(x) = O(e-~) as x-> o ; 
(b) z-= =0; 
(c () ( x) = c(x, A) for some constant c; 
(d) z(x) = o(b(x) e-,*x), where b(x) is as in part 2. 

4. (a) z(x)= O(e-x) as x-+o o; 
(b) z'+= 0; 
(c) z(x) = c^{+(x, A) for some constant vector ce Cm-1; 
(d) z(x) = O(a(x) e- *x), where a(x) is as in part 1. 

Proof of Proposition 1.6. We prove parts 1 and 2; parts 3 and 4 are similar. 
Consider part 1. Proposition 1.4 implies that l(a) is equivalent to 1(b). Since 

-'- = 0 and the m-1 columns of - are independent, it is clear that 1(b) is 
equivalent to (c). (c) implies 1(d) by Proposition 1.5, and 1(d) implies (a). 
Thus all statements in part 1 are equivalent. 

Now consider part 2. By Proposition 1.2, 2 (c) and 2 (a) are equivalent. Since the 
m-1 rows of y+ are independent and +' + = 0, it follows that 2(b) and 2 (c) are 
equivalent. 2(a) implies 2(d). We claim that 2(d) implies 2(b), which will finish 
the proof. Consider case (i), and assume b(x) = l/a(x). By Proposition 1.5 we have 

'+.y = O(a(x)e- /*x) o(e/*X/a(x)), hence y+ 'y = 0. 
Finally, consider case (ii), b(x) = 1. Let r, be the sum of the multiplicities of 

eigenvalues of A+"(A) with real parts equal to /,. By standard methods (Coppel 
1965; Coddington & Levinson 1955), one can show that for e > 0 sufficiently small, 
any solution of (1.1) with y(x) = O(e*XI ecx) as x -+ oo must lie in a unique subspace 
of solutions of dimension r* + 1. Consider now the constant coefficient system (1.6) at 
+ oo. For this system, one can find a set of solutions y (x), ..., yr(x) such that for each 

j = , ..., r,, there is an integer kj, a vector cj and an eigenvalue Vj of A+0(A) with 
Re vj = ,* with yj(x) = xki e"j(c + 0(1/x)) as x ->+ oo, and such that the functions 
xkj ex cj, j = 1,..., r,, are linearly independent. 
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Now we invoke a result originally proved by Dunkel (1902) (see Theorem 4 on p. 
92 of Coppel (1965)): If (1.14) holds, then (1.1) has solutions py(x), ..., (x) such that 

yj(x)-gj(x) = o(xkJ et*x) as x-> o. 

It follows that yl(x), ...,y,(x) are linearly independent, and also that no linear 
combination y(x) of these solutions can satisfy y(x)= o(e/*x). But any solution for 
which y = o(e*, ) must be a linear combination of the r, + 1 independent solutions 

+(x, A), (x) ... y,(). So such a solution must be a multiple of +, hence +'y = 0. 
This finishes the proof. E 

(e) Definition of 'eigenvalues' and D(A) 
We can now state precisely what is the 'eigenvalue' problem we are considering. 

We seek those values of A such that (. 1) admits a nontrivial solution y(x) satisfying: 

y(x)=o(e1(x) as x---oo, y(x)=O(ex) as x-oo, (1.17) 

By Proposition 1.6, these conditions are equivalent to requiring 

-'y=O0 and V'y=0. (1.18) 

These conditions may be interpreted as boundary conditions on R: the condition 

*- y = 0 represents one constraint asymptotically as x-- oo, and ]+ 'y = 0 rep- 
resents m- 1 constraints asymptotically as x -> + o . If Re 0 < 0 < ,, as in the case 
when Re A > 0 for the applications we consider in ?2, then (1.17) is equivalent to 
the requirement that y(x) is exponentially decaying (or merely bounded) as lx -> oo 

Definition 1.7. If Ae 2 is such that a non-zero solution y(x) exists satisfying both 

(1.1) and (1.17), we say that A is an 'eigenvalue' for the problem (1.1), (1.17). 

We place quotes around the term 'eigenvalue' to emphasize, when it comes to the 

applications, the slight difference between the notion described here and the more 
usual notion. By Proposition 1.6, A is an 'eigenvalue' if and only if the m solutions 
of (1.1) represented by ~+(x,A) and the m- 1 columns of -(x,A) are linearly 
dependent, i.e. if and only if the wronskian det [C, C+] = 0. For our purposes, a more 
useful characterization of 'eigenvalues' is the following, due to J. W. Evans (1975) 

Definition 1.8. We define Evans' function D(A) for A e by 

D(A) = -(x, A) +(x, A). 
Theorem 1.9. 
(a) D(A) is analytic for A Q. 
(b) A is an 'eigenvalue' of problem (1.1), (1.17) if and only if D(A) = 0. 
We remark also that A is an 'eigenvalue' of (1.1), (1.17) if and only if equation (1.2) 

admits a non-zero solution z(x) such that 

z(x) = O(e-x) as x- oo,z(x) = o(e-x) as x->+oo, (1.19) 

or equivalently, z- = 0 and z'+ = 0. (1.20) 

Proof of Theorem 1.9. We study under what condition +(x, A) is an eigenfunction. 
By construction, (+(x) = O(elx) as x - + oo. Choosing y = Y+ in part 1 of Proposition 
1.6, we get +(x) = o(eXx) as x>- oo if and only if D(A) = - -+ = 0. O 

When A(x, A) is real for real A, one may expect that D(A) is real for real A. Recalling 
that the domain Q is simply connected, it is easy to establish the following. 
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Proposition 1.10. Suppose that whenever A E Q is real, A(x, A) is real for all x. Then 
whenever A and A lie in Q2, we have A(x,A) =A(x, ), -(x,A) = -+(x,A), r+(x,A) = 

?(x, A), and D(A) =D(A). 

It follows that if A and A lie in Q2, A is an 'eigenvalue' for (1.1), (1.17) if and only 
if A is. 

(d) Derivatives of D(A) 
The following new formulae for the derivatives of D(A) are the basis for the main 

results of the paper. 

Theorem 1.11. Put 

(,A) = 
-(A) for x <O, 

~- X C[/t{+(A) for x>O. 
Then for all A Q, 

D'(A) =-J 8-(x, A) [A (x, A) - A(x, A)I](x,A) dx 

+D(A) [dw-/dA v-+w+ dv+/dA]. (1.21) 

In particular, the integral exists as an improper integral. Also, higher derivatives aA D(A) 
are given by formal differentiation of (1.21). 

The formula (1.21) simplifies in important special cases. Namely, if D(Ao) = 0, then 

D'(Ao) = - -(X, AA) o+(, Ao) dx. (1.22) 
j-oo 

Alternatively, if A- (A) = A+?(A), then since w- = w+, v- = v+ and w+ 'v+ = 1, the 
second term in (1.21) vanishes. 

Proof. Let ( )A = a/OA denote differentiation with respect to A. With a = ,u(x, A), 
define 

w(x, A) = ex ^-(x, A) and v(x, A) = e- +(x, A). 

ThenD(A) = w v andD'(A) = w v+wv, are independent ofx. Since dv/dx = (A-,) v, 
and dw/dx =--w(A-,u), we have 

dv,/dx = (A-,)vA +(AA - A)v, (1.23) 

dw/dx = -wA(A -1 ) - w(A - ). (1.24) 

It is easy to verify that 

d d 
dx(wvA) = w(AA-,a) v =- (-wAv) (1.25) 

hence for any R, S > 0 we have 

s 
wv(O, A) = wvA(S, A)- w(AA-/A)v dx, 

o 

WA v(O, A) = wA v(-R, A)- w (AA-A) v dx, 
-R 

hence D'(A) = w(A-AA-/A) vdx + w v(-R, A) + wv(S, A). (1.26) 
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From Propositions 1.2 and 1.5 follows 

v(x, ) - v+(A), w(x, )- >D(A)w+(A) (1.27) 
as x+ oo, and 

v(x, )- D(A) v-(A), w(x,A) - w-(A) (1.28) 

as x -o- o. These limits are attained uniformly for A in compact subsets of Q, hence 
the limit of derivatives with respect to A converge to derivatives of the limits. In 

particular we have 

wA(x, A)-> w(A) as x >-co, vA(x, A)- v (A) as x - + o. 

The formula (1.21). now follows by taking R,S- oo in (1.26), since w(AIA-tA)v = 

#-(AA -uA) C+. Formulae for higher derivatives follow by differentiating (1.26)-(1.28) 
with respect to A and again taking R, S - oo. D 

Remark 1.12. Several complex parameters 
In our applications, it is sometimes useful to consider problem (1.1) as depending 

on several parameters. It will be convenient to assume analytic dependence in each 
of these. To extend the above results to this case, let s > 1 be an integer, and suppose 
Q = Ql x ... x Q2 c Cs where Q2 c C is a simply connected domain for j = 1,...,s. 
Write A = (A1, ..., As) for A Q2. If we make the hypotheses H1-H4, then all the results 
1.1-1.9 and 1.11 are valid, mutatis mutandi. In Theorem 1.11, derivatives with 
respect to A refer to gradients with respect to (A1, ..., As). 

(e) Higher-order scalar equations 
An important special case of the foregoing is the case when A(x, A) arises in the 

standard reduction of an mth order ordinary differential equation to a first-order 
system. Let dx denote differentiation with respect to x, and suppose our ordinary 
differential equation is 

m-l 

4(x,A) Y = Y+ E a,(x,A) Y = 0. (1.29) 
j=o 

Put yj = a-' Y, j =1, ..., m. Then (1.29) is equivalent to (1.1), dy/dx = A(x, A) Y, 
where 

0 1 0 ... 0 
0 1 ... 0 

A(x, A)= . (1.30) 
0 0 ... 1 

-ao -al ... -a _ 

The associated transposed system (1.2), dz/dx =-zA(x, A), may be related to the 
transposed equation 

m-1 

t(x, A)Z = (- ax)m z + E (-ax)j(j(x, A) Z) = 0 (1.31) 
j=0 

by the relations 

zm = Z, =-axzj+1+aZ, j =m-1,...,1. (1.32) 

Computing the zj amounts to computing sltZ in (1.31) by considering it as 
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a polynomial in - x and applying Horner's rule for nested multiplication of 

polynomials: We have 

dt(x, A)Z = z, where z0 =-x Z + a Z. (1.33) 

Making the hypotheses H1-H4, write a+j- (A) = limx+,, aj(x, A). The eigenvalue I/(A) 
of A (A) must satisfy m-l 

g(U) nm+ E aj (A)j = 0. 
j=o 

The components of any right eigenvector v with (A' -/u)v = 0 satisfy vj = /j-lv1, 
j = 2, ..., m, where v1 # 0 is arbitrary. The components of any left eigenvector w with 

w(A-/,) )= 0satisfy wj_ =,wj+aj wm, j = m,...,2. 

Computing the wj when wm = 1 amounts to computing (/,u) by using Horner's rule. 
We have 0 = (Iu) = tw1 + aO wm; in fact 

k=j 
Wj= (Oa i Wm, 

where am = 1. One may verify easily that w v = A'(/u)wmvl; since ,u is a simple 
eigenvalue, '(,a) # 0. We assume that a normalization of v and w is chosen so that 
wv = 1. 

To obtain expressions for Evans's function D(A) in this context, suppose that 

+(x, A), q-(x,A) are given by Proposition 1.2 and put 

Y+(x, A) = gl+(x, A), Z-(x, A) = m(x, A). 
Then D(A) = - + can be written as 

m-l 

D(A) = E (,j(x, A) Z-) ( Y+), (1.34) 
j=0 

where the operators sj are given by 

= 1, j =- ax' j+l+ a for j = m-l,...,0. 

Equation (1.21) may be written as 

D(A)= Z-(x A) Y+ (x, A) +a(x A)D(A)]dx 

+D(A) [(dw-/dA)v- + w+ dv+/dA], (1.35) 
m-1 aa. where r - (x, A) Y(x,). --A ^ Aj=o 

For systems arising from higher-order scalar equations of the form (1.29), the 
criteria in (1.17) describing when A is an 'eigenvalue' require bounds on the 
derivatives ad Y for j = 0, ..., m- i. Such bounds are automatically equivalent to the 
bound on Y itself (see Coppel 1965). From the result in Coppel (1965) it is easy to 

prove the following. 

Proposition 1.13. Suppose Y(x) satisfies (1.29) and yj = a-1 Y, j = 1, ..., m. Then 

for any real number v we have 

Y(x) = O(e"x) if and only if y(x) = O(ex) as x- oo (or - o) 

and Y(x) = o(ex) if and only if y(x) = o(e") as x-> o (or -oo). 
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Therefore, the criteria (1.17) for A to be an 'eigenvalue' are equivalent to the 

requirements 

Y(x) = o(e/'x) as x- -oo, Y(x) = O(e/) as x ->+co. (1.36) 

By using Propositions 1.6 and 1.13, these requirements are also respectively 
equivalent to requiring that 

Y(x)= O(a(x)e/*x) as x--oo, Y(x) =o(b(x) e/*) as x->+oo, (1.37) 

where a(x) = eell for 0 < e < u,-Re/u, and b(x) = 1 or 1/a(x) as in part 2 of 
Proposition 1.6. 

(f) Equivalent forms of D(A) and the resolvent formula 
Recall that Proposition 1.6 implies that A is an 'eigenvalue' for (1.1), (1.17) if and 

only if there exists ce Cm- such that g+(x, A) = -(x, A) c. By using Proposition 1.6 it 
is then easy to show the following. 

Proposition 1.14. For A eQ the following are equivalent: 

(a) D(A) = 0, (b) det [, -+ 0, (c) det [C+ = 0, (d) det[ -I 0. 

From this result, we see that any of the four quantities in parts (a-d) can be used 
to detect 'eigenvalues'. A stronger result is in fact true: At an eigenvalue A, the order 
of vanishing of these four quantities is the same. 

Proposition 1.15. There exist analytic functions /fl(A), /2(A), and /3(A) defined on 
Q, which have no zeros in Q, such that 

D(A) = r - det [ ] de [ ] Adet [ + 

Proof. First, we claim there exists a solution ~(x,h) of (1.1), and ~(x,h) of (1.2), 
which are analytic for A e Q and have the property that 

det[ -] 0, det vL # 0. 

To construct , we may simply fix x0 and solve the initial value problem consisting 
of (1.1) with g(xo, A) given by the cross product of the m-1 columns of -(xo, A). 
] is constructed in a similar way. 

Now we claim that - =# 0, and + =A 0, for all A e 2. This follows from Proposition 
1.6. Namely, if y- = 0 then C = -c, for some ce n-1, a contradiction. Now we 
may write 

H+ [ DC-] = [D(A) i- 

Taking determinants, the Proposition may now be easily established. a 
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Next, we develop a resolvent formula for (1.1)-(1.17). Let f: ?- Cm be continuous 
with compact support. We seek y which satisfies 

(d/dx-A(x, )) y =f(x) -oo < x < oo (1.38) 

together with the asymptotic boundary conditions in (1.17). It is straightforward to 

verify that if A is not an 'eigenvalue' for (1.1)-(1.17), then there is a unique solution 

given by the resolvent formula 

y(x) = - (A)f(x) = +(x, A) D(A)-1 (s, A) )f(s) ds 
00 

+ --(X, A) (+4--)-1 f +(s, A)f(s) ds. (1.39) 
+00o 

Alternatively, we may write 

W(A)f(x) = D(A)-' K(x, s, A)f(s) ds, (1.40) 

Kwhere K= +(, )=- -((X, )s,) x > ,i10041) 
w e, ( , ') {-D(A) (1+ -)- () -(x, A) q+(s, A) x < s. 

As a corollary of Proposition 1.15, for each real x, s, K is analytic in 2 with only 
removable singularities. Thus we see that Evans's function D(A) accounts for any 
singularities of the resolvent in (1.39)-(1.40): 

Proposition 1.16. Suppose f is continuous with compact support. Then for any real 
x, the function A -D(A) (A)f(x) is analytic in Q with only removable singularities at 
most. 

The resolvent formula (1.39) can be used to define a bounded operator in a variety 
of function spaces, but we will not pursue this issue in this paper. 

(g) Behaviour for large A of D(A) 
Assume it is possible to take AIl - oo in Q. We wish to study the behaviour of D(A) 

as IAl oo. Our results here are of limited generality, but suffices to cover the 

examples we discuss in this paper. The basic approach we take is to diagonalize A?(A) 
and use perturbation arguments. 

Proposition 1.17. Assume that A?(A) is diagonalizable for large A, and that V(A) (V+ 
or V_ as appropriate) is a matrix of right eigenvectors whose first column is v+(A). Let 
W = V- and let 

F(x, A W+R(x,A) V+ for x > 0, 
W_ R(x, A) V for x < 0. 

Suppose that as IAl - oo in Q we have: 

F(x, A)l dx < C independent of A, (1.42) 
J-o00 

IF(x, A)dx-0 as x0---o uniformly in A, (1.43) 
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and IF(x, A) e1 idx 0, (1.44) 
oo 

where el = (1,0, ..., 0)t. Then it follows that as A\-> o in Q we have 

W+(A) ,+(0, A) = W+ v +o(1 ) = e1 + o(t) (1.45) 

and r-(O, A) V_(A) is bounded, with 

,A-(O, A) V(A) el = 1 + o(l). (1.46) 

Corollary 1.18. Suppose A+? = A- and the hypotheses of Proposition 1.17 are 

satisfied with V+ = V. Then 

D(A) 1 as IAI->co in Q2. 

Proof. D(A) = -(0, A)(0,A)= y-(0, (, A) V(A) W(A) +(0, A) = I+o(1) as IA -> co in 
Q2. D 

Remark. It is not universally true that D(A) - 1 as A - oo, even for equations not 
unlike our applications. For example consider 

u + 2a(x) u + (a(x)2- A)u = 0, 

where a(x) = c for 0 < x < 1,0 otherwise. It is straightforward to compute explicitly 
that 

D(A) = e(l + (e2- 1) c2/4#2)-- e 

as A - oo, where ,u = -VA. 

Proof of Proposition 1.17. Similar to the proof of Proposition 1.2, put B(A)= 
W(A -,uI) V and let v(x) = -e +exp (-,ax) Wy(x). Then since Be, = 0, solutions of 
(1.1) correspond to solutions of 

dv/dx = B(A) v +F(x, A) (v + el). 

The particular choice y(x) = +(x, A) yields v(x), which satisfies v(x) - 0 as x - oo and 

v(x) = e(x-) BF(s, A) (v(s) + e) ds. 

Now, B(A) is diagonal with Re (B,,) > 0 for 1 < k < m. Using hypotheses (1.43), 
(1.44), we may choose x0 sufficiently large, independently of A so that for x > x0, 

Iv(x)l < sup Iv(s)l JF(x, A)l ds + IF(s, A) el ds 
s xo xo o 

< sup Iv(s)l + IF(s, A) e,I ds. 
s>xo xo 

It follows that 

sup Iv(x)l <2 JIF(s, A) el ds = o(1) as IAI-> o. 
x > x o 0 

Now v(x) also satisfies 

v(x) = e(x-x) B V(X ) + e ) BF(s, A) (v(s) + e1) ds, 
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from which we obtain the estimate, for 0 < x < xo, 

Iv(x)l o< C IF(s, A) Iv(s)l ds + C v(x,)I + IF(s, A) eIl ds). 

Applying Gronwall's inequality we obtain 

\v(x)\ < Cexp (C f F(s, A)l ds) (v(xo)l + F(s, A) ell ds) 

=o(1) as AI -oo in Q, 

by using the estimate on v(xo) above and hypotheses (1.44). This proves (1.45). 
To establish (1.46), put w(x) =-e +exp (tx) z(x) V. Then solutions of (1.2) 

correspond to solutions of 

dw/dx+wB(A)+ (w+et)F(x,A) = 0. 

The particular choice z(x) = p-(x, A) yields w(x) which satisfies w(x)- 0 as x - o 
and 

w(x) = - (w(s) + et) F(s, A) e-(x-) B ds. 
'0 0 J -xO 

For x0 sufficiently negative we have, for x < xo, 

Iw(x)l < (C+ sup Iw(s)l) IFl(s, A)I ds < 1(C + sup Iw(s)l) 
s < xo 0o s _ xo 

so that sups<x0 Iw(s)l < C. Furthermore, w1(x) = w(x) e1 satisfies (since Be1 = 0) 

Iwi(x) < (C+ sup Iw(s)l) lF(s, A) ell ds = o(1) as IAI-> o. 
sx< J xo 

In a fashion similar to the argument for (1.45), applying Gronwall's inequality for 
xo < x < 0 to estimate lw(x)l and lwl(x)l, we find that 

lw(x)l < C for x < 0, lw1(x)l < C F(s, A) ell ds = o(1) 

as IAI - oo in Q2. This establishes (1.46) and finishes the proof of Proposition 1.17. 
D 

Let us consider the typical application of the results above to systems obtained 
from higher-order scalar ODES by the standard reduction. Let 

m-1 

~(v) = vm+ E a, (A) vj 
j=o 

denote the characteristic polynomial of A?. The m distinct eigenvalues of A? 
correspond to simple roots of A(v) = O, labelled vl, ..., vm. The matrix of eigenvectors 
may be taken as Vj = v -l assuming v1 = It. The components of the deviator R(x, A) 
are 

( o if j< m, 
k = A -a A)+ a' (A) if j=m 

where k = 1,2,...,n. 
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Put pk(x, A) =?- ak(x, A) + a' for k = 1, ..., m. Since the last column of W = V-1 is 
given by Wjm = 9(vj)-l, we find that 

m-l 

F1k(x, A) = g()- p(x, A) vk. 
i=0 

In this situation, sufficient conditions for the hypotheses of Proposition 1.17 to be 
satisfied are given below. In the applications studied in this paper, pi(x, A) does not 
depend on A so the conditions (1.47) and (1.48) hold automatically. 

Corollary 1.19. Suppose that for some integer i0, pi 0 if i > i0, and that for some 
C > O, as A oo we have 

coo 

pi(x,/ A) dx < C independent of A (1.47) 

and pi((x, A)l dx- 0 as xo-+ co uniformly in A. (1.48) 
XI > Xo 

Suppose also that for j, k = 1,..., m,0 < i < io we have 

9(^v(A))- vl < (1.49) 
and (recall a = vl) 

I['(v1(A))-l1il = o(1) as A-> oo. (1.50) 

Then the hypotheses (hence the conclusions) of Proposition 1.17 hold. 

To verify the conditions (1.49) and (1.50) in applications, we have found it 
convenient to use a perturbation argument based on the following lemma. 

Lemma 1.20. Assume that analytic functions Y(v) and c (v), depending on a 
parameter A, are given, and that (v) = (v) + ?(v). Assume that as IAl - oo, there is a 

(simple) zero v = v(A) of ?, a positive function p(A) -> 0 as IA - oo and a constant Po > 1 
such that for Iv- vl p 

Y'(v) = Y'(v)(1+o(1)) and (v) = 2(v)(1+o(1)) (1.51) 

as JA/ - oo, and p > pOJJ(v)/{Y'(v)l. Then for AIl sufficiently large, 9 has exactly one root 
vO = v0(A) satisfying [lo - l < p. 

Proof. The conclusion follows from Rouche's theorem if we can prove I1(v)l > 
I\(v)l on the circle Iv- vl = p(A) with IAl sufficiently large. By using Taylor's theorem 
and (1.51), for Iv -v = p we have 

V(r) = \4'(v + T(r- )) dr(v-v (v9 ) ()(v-v) (+o(1)) 

so for IAI large, 

I(v)l > Pl\'(v)l (1 +o(1)) > p0Ol(v)I (1 +o(1)) > 1S(v)l. F 

(h) Zeros of higher-order and Jordan chains 
If A is a zero of D(A) of order greater than one, a number of derivatives of +(x, A) 

in A also enjoy submaximal growth as x - -oo. Such a fact has been used in 
applications to identify the order of vanishing of a zero of D(A) with its algebraic 
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multiplicity as an eigenvalue of the original problem, by using the derivatives of + 
to construct a Jordan chain (Evans 1975; Alexander et al. 1990). Here we prove only 
the following result, which is needed in ?4. 

Proposition 1.21. Suppose that A eQ is a zero of D(A) of order k+ 1, k > 1, so 
0 = D(A) = ... = D(k)(A) # D(k+l)(A). Then we have, for 0 <j < k and any e > 0, 

a+(x, A) = o(e*.xeelxl) as x--o (1.52) 

and D(k+l)(A) lim -(x,A) ak+1 +(x, A) (1.53) 
X---c00 

Similarly, d3V-(x,A) o(e*+xe6lxl) as x-+oo. (1.54) 

Proof. We omit the proof of (1.54); the treatment of y- is similar to that of +. 
We prove (1.52) by induction on k: Assume it holds forj < k- 1. The function y(x) = 
ak x+(, A) satisfies the equation 

dy/dx = A(x,A) y +f(x), (1.55) 

where f(x) = dk(AF+)-A 
k +. By the induction hypothesis and H2, for any e > 0, 

f(x) = o(e/*Xeelxl) as x---oo. (1.56) 

Lemma 1.22. Assume (1.56). Then equation (1.55) has some solution y(x) satisfying 

y(x) = o(e/*x eelxl) as x--co 

for every e > 0. 

This lemma may be proved by a standard method by using the variation of 
constants formula and the contraction mapping principle, as in the proof of 

Proposition 1.5. Or, since A is fixed, Theorem 11 of Coppel (1965) may be applied to 

give the result almost immediately. 
Now, y(x) = 

aD +- y(x) is a solution of the homogeneous equation (1.1), so - 'y is 
a constant. Observe that 

-' yO = O(e-~-x e* x elxl) - 0 

as x - o. Using Proposition 1.6, we conclude that the following is true: 

Lemma 1.23. Assume (1.52) holds for j < k- 1. Then it holds for j = k if and only 
if 

lim / 
- 

k+(, A) = 0. (1.57) 
X->--O0 

Now we shall show that (1.57) holds under the hypotheses of the Proposition. 
First, observe that for all j > 0, 

a -(x, A) = o(e- -x e6xl) as x- -oo 

for every e > 0. This follows from (1.9). Then 

D(k)(A) = ak(/-~+) = y- ak + +o(e-t-x eIlxl) o(ec* ee1xl) as x->--o, 

so since D(k)(A) = 0, (1.57) follows, proving (1.52). This calculation also proves (1.53), 
finishing the proof of the Proposition. - 
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2. Instability of solitary waves 

(a) Outline of strategy 
In this section we apply the results of ? 1 to derive a hamiltonian criterion for the 

linearized exponential instability of solitary waves of gKdV, gBBM and gBou. For 
each of these equations, the instability criterion is 

d 
d,CLuc]<0, (2.1) 

where JA is an appropriate momentum or impulse functional which is constant in time 
for solutions of the nonlinear equation. Our discussion of how this criterion is made 
precise and proved will be broken down into parts corresponding to the calculations 
which are performed for each particular example. 

1. The momentum functional .X is obtained from a translation invariant 
hamiltonian J, and the solitary wave profile u,(x) is characterized variationally as 
a stationary point for J -cM /. Namely, uc satisfies 

6U(g[uC]-cdX[uC]) = 0. (2.2) 

In each example, this equation is a second-order ODE which admits a homoclinic loop 
with vertex 0 in the (u,u') phase plane, and it is easy to check that uc and its 
derivatives approach zero at an exponential rate as lxl - oo. 

2. When the linearized evolution equation for small perturbations in the form 
v(x - t, t) = u(x, t) - U(X - t) is considered, and separated solutions are sought in the 
form v(x, t) = eAt Y(x), the equation for Y takes the form in (1.29), 

/(x, )Y= 0. (2.3) 

This yields a first-order system dy/dx = A(x, A)y via the standard reduction. 
In this section, we call A an eigenvalue of (2.3) if (2.3) admits a square integrable 

solution Y. We must relate this notion to the definition of 'eigenvalue 
' used in ? 1 and 

the criteria in (1.36), (1.37). We show that in each example, the theory in ? 1 may be 
applied for A in a domain Q that contains the closed right half-plane Re A > 0. 
Recalling the definitions in 113, we will show more precisely that 

Re,t(A) < 0 < /,(A) for ReA > 0, (2.4) 

Re/,(A) < 0 = u*(A) for ReA = 0. (2.5) 

Provided Re A > 0, therefore, Propositions 1.6 and 1.13 imply that A is an eigenvalue 
of (2.3) if and only if A is an 'eigenvalue' in the sense of ? 1, i.e. D(A) = 0. In this case 
the estimates in (1.36), (1.37) imply that Y(x) decays to zero at an exponential rate 
as Ixl - oo. (However, if D(A) = 0 but Re A < 0, the estimate in (1.37) does not imply 
that Y(x) is bounded as x - oo, because it turns out that /,*(A) < 0. Also, if Re A = 
0 (2.3) may admit a bounded solution even if D(A) # 0.) 

Our strategy for proving (2.4) and (2.5) breaks into two parts. As a preliminary 
step, we have the following obvious observation. 

Lemma 2.1. The number of eigenvalues (counting multiplicity) of AO(A) having 
negative real part is constant as A varies in any connected component of the complement 
of the closed set 

Se = {A e C A"(A) has some purely imaginary eigenvalue}. 
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3. The first step in proving (2.4) and (2.5) is to show: 

Proposition 2.2 Se coincides with the imaginary axis. Moreover, as A varies on the 

imaginary axis, the number of purely imaginary eigenvalues of A"?(A) is constant. 

4. The second step is to study the eigenvalues of A(A) for IA] large and show that 

(2.4) holds for AIl large. Combined with Proposition 2.2, this establishes (2.4) and 

(2.5), and it turns out in each example that we may take Q in the form 

2 = {A IReA >-e} (2.6) 

for some e > 0. At this point, it is also easy to verify that D(A) -> 1 as Al -> oo, A e ,, 
by using Lemma 1.20 to verify the hypotheses of Corollary 1.19. 

5. Next, we proceed to follow the strategy outlined in the introduction to show 
that when the instability criterion (2.1) holds, then D(A) = 0 for some A > 0. Namely, 
we compute Y+, Z-, YA and ZA at A = 0 (cf. ?1 e) explicitly in terms of the solitary 
wave uc(x) and its derivatives with respect to x and c. 

6. Then the derivatives of D are evaluated at A = 0 by using (1.35) and we prove 
that 

D(0) = 0, D'(0) = 0, sgnD"(0) = sgn X[uc]. (2.7) 

It follows that whenever the instability criterion (2.1) holds, then D(A) < 0 for 
small A > 0. Since D(A)-> as A-. oo, we have D(A) = 0 for some A > 0 and the 
existence of an unstable eigenvalue has been established. 

7. For the explicit nonlinearity f(u) = up+l/(p+ 1), it turns out that the solitary 
waves always have the form uc(x) = a sech/P (yx). We compute the instability 
criterion explicitly for each example. For this purpose it is useful to define 

k(p) = sech4/p x tanh2 x dx sech4/p x dx. 
J?p)=$ oo I J? .,,,,,,,,,~oo 

As in Weinstein (1987) from Gradshetyn & Ryzhik (1980) follow the identities 

(r) = r(1)Tr(lr)/r(-(r+ 1)), k(p) =p/(4+p). 

(b) The generalized KdV equation 
t u + jf(u) + u = 0. (gKdV) 

(i) Hamiltonian structure 

The hamiltonian is 

_[U] = (-l(x U)2 +F(u))dx, (2.8) 
J 00oo 

where F(z) = f If(s) ds. The momentum is 

V[u] = 2 udx. (2.9) 

Equation (2.2) for the solitary wave is 

-_8 U + CU-f(Uc) = 0. (2.10) 
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For c > 0, this equation has a unique positive exponentially decaying solution which 
is even in x. For f(u) = up+l/(p+ 1), explicitly 

UC(X) = [c(p + 2) (p + 1)]1/p sech2/p (2p A/c). 

(ii) Linear evolution and the eigenvalue equation 

Changing to a moving frame x' =x- ct, t' = t, the linearized equation for small 

perturbations of uc(x') is (dropping the prime on the new variables) 

a v = Lcv, (2.11) 

where LC =- + -+c-f'(uc). The eigenvalue equation (2.3) takes the form 

aXL, Y= AY, (2.12) 

or a Y+(f'(U c) axY+(hA+axf()) Y . (2.13) 

Therefore, ao - A, a = -c and ao = 0. 

(iii) Imaginary asymptotic eigenvalues 
A number v is an eigenvalue of At(A) if and only if 

(p) = V3-CV + A 0. (2.14) 

Clearly A must be purely imaginary if v is, and indeed 

Se = {A A = i(cT + T3) for some real T}. 

So Se coincides with the imaginary axis. Since --cr+T3 is monotone increasing, 
there is one imaginary eigenvalue of At(A), v = iT, for any imaginary A. This proves 
Proposition 2.2 in this case. 

(iv) Asymptotic eigenvalues for large A 

We seek to apply Lemma 1.20. We may take 

(V) = 3 +A, (v) -c. 

Then '(v) = 3v2, the roots v of B are the cube roots of -A, and for Iv- v = o(1) we 
have 

J c(vv) 3-c((1 +o(1)), 'v) 3(1+o(1 )), v)'( = c/31AI3. 

Taking p(A) = Po c/31AI} for any po > 1, the hypotheses of Lemma 1.20 are satisfied, 
so the roots of 0)(v) = 0 are given by 

v= (-A)i+O(IA-). (2.15) 
From this and part (iii), (2.4) and (2.5) follow, and it is easy to see that Q may be taken 
in the form (2.6). 

To apply Corollary 1.19, we may take i0 = 1. To verify (1.49) and (1.50) it suffices 
to observe that for any labelling v1, V2, V3 of these roots we have 

Iv~/j'(vj)l = A111/31Al (1 +o(1)) = o(l) 

as Ah -> oo. By Corollary 1.18, it follows that D(A) - 1 as IAI- oo in 2. 

(v) Generalized eigenfunctions at A = 0 

According to the requirements laid down in ? 1 e, for A = 0, Y+ = - and Z- = m 
are the unique solutions of 

axLc Y+(x, A) = 0, LcxZ-(x, A) = 0, (2.16) 
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such that 
Y+(x,A)e-/LX-v as x-+o,(2.17) 

Z-(x,A)e/x-->wm as x-+-oo, 

where v1Wm '(Iu) = 1, O being the monic polynomial in (1.33a). 
Differentiating (2.12) and the associated transposed equation, for A = 0, we find 

that the derivatives, YA and ZA, are solutions of 

axLc Y= Y+, LcxZ =-Z-, (2.18) 

which decay exponentially as x- oo or -oo respectively. 
For the gKdV equation, for A = 0 we have ,u = - Vc, '(,u) = 2c. We may choose 

v = 1, Wm = 1/2c. 
Differentiating (2.10) in x, we observe 

Lc ax u = O, axLc ax uc = 0. (2.19) 

Differentiating (2.10) in c, we find Lcacuc = -u and hence 

axL, Q^uc ax uc, Lcdax af uc = -uc. (2.20) 
J ?oo 

From (2.10) one can show that there exists i > 0 (depending on c) such that 

(uc(X), x uc(x)) e-x j(1,/ ) as x--oo. 

By the uniqueness of Y+, we find that at A = 0, Y+ = (/tf)-1 dxUc. It follows from 
(2.20) that axLc(YA + (,fl)-l c Uc) = 0; hence for some f,^ independent of x we have 
Y _ (iUfi)-1 a Uc + f, ax UC. We determine Z- and ZA in a similar way, summarizing 
the results as follows: For A = 0, 

Y+ = (af)- axu, Z- = (2c/)- uc, 

YA = C +axUC1 Z 2 ac+ (2.21) 

(vi) Derivatives of D(A) at A = 0 

Here, we use (1.34) and (1.35) and (2.13). At A = 0 we have D(0) 0. Using (1.35) 
and (2.13) we have (0/1A = dao0/A = 1 and therefore 

r0 1 ro0 
D'(O) - Z (x, ) Y+(x, O)dx = 2cf2J Uc ucdx=0. (2.22) 

By Theorem 1.11, equation (1.35) may be differentiated in A. Using that D'(0) = 0 
and 02'/A2 -= 0 we find that 

D"(0)= ( Z Y+ + Z-Y) dx 
-00 

- 2 Yef (J2 ac uc)x c+uc( dc Uc)dx 

"~l +(?f< n dx) = _+_-_-) 
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(vii) Power nonlinearity 
For f(u) = u+l'/(p+ 1), uc(x) = a.sech2/p (yx) where 

= -[c(p+ 1) (p+2)]1/P, 7 = p \/c. 

Therefore the momentum is given by 

U[ ] 1-- u2 dx = 1a2 sech2 (yx) dx = -1), 

where 1(r) is defined in ?2a(vii). To determine the sign of dX[uc]/dc, we compute 

d d 2 1 
[uc] -1 d[uc = d (2 In a-lny) pc 2c 

Hence dJ4[uc]/dc > 0 for p < 4 (stability), 

dJ4[uL]/dc < 0 for p > 4 (instability). 

(c) The generalized BBM equation 

at u+ u+?x?f(u)-a 0tu = 0. (gBBM) 

(i) Hamiltonian structure 

The hamiltonian is 

[u] = f (u2 +F(u)) dx, (2.23) 
00 

where F(z) = ff(s) ds. The momentum is 

J[u] = 2 (u2 + ( x)2) d. (2.24) 

Equation (2.2) for the solitary wave is 

-cax c+ (c- 1)U-f(u) = 0. (2.25) 

For c > 1, this equation has a unique solution which is positive, exponentially 
decaying, and even in x. For f(u) = uP+l/(p+ 1), it is explicitly given by 

uc(x) = [L(c- 1) (p+ 2) (p + )]1/ sech2/p (}xp /((c- 1)/c)). 

(ii) Linear evolution and eigenvalue equation 
The linearized equation for perturbations in the moving frame is 

(-_) at v = ax(-c ? + (c- )-f'(u/))v. 

The eigenvalue equation (2.3) takes the form 

d L Y = A(J-_ ) Y, (2.26) 

where here Lc = -c +- 1 -f'(uc), or 

Y- (A/c) a Y- (/c) (c- -f'(c)) aY+ (/c) (A + axf'()) Y 0. (2.27) 

Therefore, aO = A/c, a' = (c-1)/c, and a = -A/c. 
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(iii) Imaginary asymptotic eigenvalues 
A number v is an eigenvalue of AO(A) if and only if 

c(v) = (A-cv) (1 - v2) + v = 0. (2.28) 

A must be purely imaginary if v is, and we have 

Se = {A I A = iCT-iT/(l +T2) for some real T}. 

So Se is the imaginary axis. Since c > 1, the map T->CT-- T(I +T2)- is monotone 

increasing, so there is exactly one imaginary eigenvalue of A"(A), v = ir for any 

imaginary A. This proves Proposition 2.2 for gBBM. 

(iv) Asymptotic eigenvalues for large A 

To apply Lemma 1.20, we take 

() = (A-cv) ( 1-v2), (v) = v. 

Then \'(v) = c(v2-1)+2v(cV-A) and the roots of Y are =-, V2 = 1, and V3 = 

A/c. The corresponding values of Y'(i) are 2(A+c), 2(c-A), and (A2_-2)/c. The 
condition in (1.51) can easily be verified for \v- vj = o(1), and in each case we may 
take p(A) = O(lIA-1), so the roots of i satisfy 

= v=-l+O(lAI-), v2 = 1+O(IA-1), V3 = A/c+O(IAl-l). (2.29) 

Now (2.4) and (2.5) follow directly, and Q may be taken in the form (2.6). 
To apply Corollary 1.19, we may take i0 = 1. We have I'(vj)-1 = O(lAl-1) for j 

1,2, and O(l[A-2) for j = 3. Hence the conditions (1.49), (1.50) hold. So by Corollary 
1.18, it follows that D(A)-> 1 as AIA - o in Q. 

(v) Generalized eigenfunctions at A = 0 

As in ?2b(v), Y+ and Z- are described by (2.16), (2.17) for A = 0, with Lc as in 

(2.26). Differentiating (2.26) we find that for A = 0, 

aXLCY = (I-_ )Y+, Lc axZ 
= -(I--2 Z-, (2.30) 

while YA and ZA decay exponentially as x- oo or -oo respectively. 
In the present case, for A = 0 we have Iu = - ((c- 1)/c), and '(,u) = 2(c- 1). We 

may choose v1 = 1, wm = (2(c-1))-. By differentiating (2.25) we find 

Lc Ox uc = O, ^L axL uc = 0, 

L, ^~ 'a,~ rja,l, c ,T r2 u, , L,a u(2.31) 
Lac cU = -(I-82)uc, x Lc uc = -(I-812) Uc,, 

-oo 

and there exists / > 0 such that 

(Uc, x u,~) e--x f(l, /1s) as x-> o. 

Using the fact that Y+ and Z- are the unique exponentially decaying solutions of 

(2.16) up to multiplication by constants (Proposition 1.2), we determine that 

Y+ = (j)-l ax Uc, 
- = (2(c- 1) )-1 uc' 

1ir rX 

f } U(2.32) 

YA = -(f)-- cUc+flXC, ZA=- 2( c-l) aC•• cc+f2U 
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(vi) Derivatives of D(A) 
At A = 0 we have D(0) = 0. Using (1.35) and (2.27) we have 

cD'(0)= Z-(I- - ) Y+ dx = ( 
uc(l-2) axudx 0. 

0co -o 

Differentiating (1.35) and using D'(0) = 0, a2 A/A2 = 0, we find 

r00 

cD"(O)= [Z; (I-2) y+ ++Z-(I-2)Y Y] dx 

= 2/(c_l)f2f 4(f cc)(I-a2)dxuc+uc(I-a2) (-acuc) dx 

(c--1) 
2 dc -2 [U2 + (x Uc)2] dx =-(c-1) 2 d 

Since /a = /u(0) < 0, we have shown sgnD"(0) = sgn dj[uc]/dc. 

(vii) Power nonlinearity 
For f() = uP+l/(p+ 1), uc(x) = a sech2/p (yx), where 

= [(c-1) (p + 2) ( + )]/P, y = -p((c- 1)/c). 
Hence 

V[uc] = J (+( c)2) dx = se f (sech2 y + 4 sech2y tanh2 y) dy 

= I )j 2 
[1 + k(p)] 

in the notation of ?2 a (vii). A computation gives that 

d p(c- 1) c2y7C jdc [u,] 2(4/) = (1 + k) C2- 2kc-kp, dc 1(4-p) 
4 

from which it follows that for c > 1, dX/[uc]/dc < 0 if and only if c < co(p), where 

co(p) = (p/(4 + 2p)) [1 + (2 + p)]. 

For p < 4, we have dX[uc]/dc > 0 for all c > 1. When p > 4, for 1 < c < co(p), the 
instability condition (2.1) holds. Furthermore, let p > 4. Then there is a threshold 
J*(p) > 0, such that for any X > X*(p), there are two solitary waves ucl and uc2 
with speeds 1 < c1 < c(p) < c2. The results of this paper imply the exponential 
instability of ucl, the slower wave. 

(d) The generalized regularized Boussinesq equation 
a u- a2 u - a2fl(u) - 2u = 0. (gBou) 

(i) Hamiltonian structure 

The hamiltonian is 

^00 
[aU] = f [v2 + (at u)2 + u +F(u)] dx (2.33) 
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with the constraint that D v = u, and F(u) = ff(s)ds. The momentum is 

J'[u] = (v+ xuaxv)dx. (2.34) 
J ?oO 

Equation (2.2) for the solitary wave eventually implies that vc = cu, and 

-c2a2 + (2- 1) U--f(u) = 0. (2.35) 

This is the same as (2.25) after replacing c2 by c. For c2 > 1, (2.35) has a unique 
solution which is positive, exponentially decaying and even in x. (We thank Peter 
Smereka for showing us this hamiltonian structure.) 

(ii) Linear evolution and eigenvalue equations 
The linearized equation for the evolution of small perturbations of uc in the moving 

frame is 
(a-caX)2 (I-2)v = 2(v+ f'(Uc)v). (2.36) 

The eigenvalue problem (2.3) becomes 

(A-cax)2 (I-0) Y-82 (Y+yf'(uc) Y) = 0, (2.37) 

which may also be written as 

_-2 L Y= (A2-2cAa)(I-a)Y, (2.38) 

where L = -c2 +c2 --f'(Uc), or 

4 Y- (2/c) A3 Y+ [ -c 2 + A2 +f'(Uc)] c-2 a2 Y 

+(2/c2) [cA + ,f'(uc)] x Y+c-2[2f'(uf )-A21 Y= 0. (2.38') 

Thus aO =-A2/c2, a" = 2A/c, a" = (c2- + A2)/c2, ax =-2A/c. 

(iii) Imaginary asymptotic eigenvalue 
A number v is an eigenvalue of A?(A) if and only if 

-c2(v) = (A-c)2 (1 -v2) -v2 = 0. 

Again, A must be purely imaginary if v is, and we have 

Se = {A IA = icT+i V(T2/(1 +T2)) for some real }). 

So Se is the imaginary axis. Since c2> 1, both maps T->CT+V/(z2/(I+T2)) are 
monotone, increasing or decreasing according to the sign of c. So there are exactly 
two imaginary eigenvalues of A?(A), v = ir for any purely imaginary A. This proves 
Proposition 2.2 in this case. 

(iv) Asymptotic eigenvalues for large A 

To apply Lemma 1.20, we take 

(v) = (v2- ) ((A-cv)2 + ), (v) = 1. 

Then '(v) = 2v((A-cv)2+1)-2c(v2-1)(A--cv) and the roots of ' are =-1, 

J2 = , 1 = (A+i)/c, and 94 = (A-i)/c. The corresponding values of Y'(g) are 

-2((A+c)2 1), 2((A-c)+ 1), 2ic(V3 -1), and -2ic(iv-1). 
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It is easy to check that (1.51) holds for Iv-vl = o(1), and in each case we may take 
p(A) = O(Ah-2). Thus we find that for JAI large, the roots of 9 satisfy 

t = -+1 + (IA-2), v2 = 1+O(A-2), (2.39) 
= (A+i)/c+O([Ah-2) v4 (A-i)/c+O(ll-2).j 

Now (2.4) and (2.5) follow, and one may see that Q2 may be taken in the form (2.6). 
To apply Corollary 1.19, we may take i = 2. We have I'(rv)-ll = O([Ah-2) for all 

j, so one can check easily that conditions (1.49) and (1.50) hold. By Corollary 1.18 it 
follows that D(A) -> 1 as AI -- c in Q. 

(v) Generalized eigenfunctions at A = 0 

According to the discussion in ? 1 e, for A = 0, Y+ and Z- are the unique solutions 
of 

-a LY+ = 0, -L aZ- = 0, (2.40) 

such that (2.17) holds. Differentiating (2.38) and the transposed equation for Z-, we 
find that for A = 0, 

LC YA+ -2eDx(I- ) Y+, -LC a Z = 2cax(l-2) Z-, (2.41) 

while YA and ZA again decay exponentially as x-- + oo or -oo respectively. 
For gBou, at A = 0 we have , = -/ ((2-_ 1)/c2), and 2'( a) = 2,3. We may choose 

V = 1, Wm = 1/(2ut3). By differentiating (2.35) we find 

Lc axc = O and Lcauc = -2c(l - )uc , 

so that -2Lau = 0, -Lca Uc = 

-82 L~cuC = -2caX(I_-2) (- XUc), (2.42) 

-Lca X u =2x(-ax) u 

From (2.35) also follows that there exists 8 > 0 such that 

(uc, xUc)e-x-I->/?(l,/) as x->o. 

Using that Y+ and Z- are the unique exponentially decaying solutions of (2.40) up 
to multiplication by constants, we determine that 

Z - 2fit 2 f ,o 
(2.43) 

Y+=- (t,18)-lacuc+fia z- 2xUc2 r U 1= - 
1(/ac+^c Z = 

i- J r t2+ -0 J -o o J-o 

(vi) Derivatives of D(A) 
At A = 0 we have D(O) = 0. Using (1.35) and (2.37) we have -c2'V/aA = 

2(A-cax) (- a2) so 

-c2D'(O) = -2c Z-ax(I-a) Y+ = 2c C(I- a)ax,u = 0, 
T R Soc. Lo A 
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after an integration by parts. Differentiating (1.35) and using D'(0) = 0, and 
-c2 82/A2' = 2(I-82x), we find 

-c2D"(O) =2c a Z- -(I- 2) y+ + Z-2(I- a) y +2 Z-- I 2) Y+. 

Using (2.43) and after some integrations by parts, we find 

2~3/32c2D"(0) = 2cf ({ dcnc)c (I-) a2) (-aUc) 

-+2 (fXJ n/)(I- )dx 

d 00 /d = 2 c u2 + (ax Uc)21 =2 dX 

Since u = ,(0) < 0, we have sgnD"(0) = sgn dj[uc]/dc, as desired. 

(vii) Power nonlinearity 
For f(u) = u-+l/(p + 1), uc(x) = c sech2/p (yx) where 

[ (c2 - 1) (p+ 2) (p + 1)]/P, 7 = lp((c2- 1)/c2). 

c + (Ox Uc) 2 T Hence A[uc] = c U2+( - = 2+ c2 k(p) 
J-oo 2 

from which we may compute that 

/[uc] 3 
dc ac2(4/p) k 

Therefore, the instability criterion (2.1) holds when I < c2 < c2, where 

c = 3k/(k+1) = 3p/(4+2p). 

3. Further results that exploit special structure 

(a) Bounds on the number of unstable eigenvalues 
As we show below, the eigenvalue problem for gKdV and gBBM can be cast in an 

abstract form which we now consider. Suppose J is a skew symmetric operator and 
L is a self-adjoint operator on a real Hilbert space X, and consider the eigenvalue 
problem 

JLu = Au (0.8) 

in Z = X+ iX. We assume that on the negative real axis {A < 0}, the spectrum of L 
consists of a finite number of eigenvalues of finite multiplicity. 

Theorem 3.1. Let J and L be as above and assume that L has exactly k strictly 
negative eigenvalues, counting multiplicity. Then JL has at most k eigenvalues (counting 
algebraic multiplicity) in the right half-plane Re A > 0. (The same statement holds for the 
left half-plane.) 

The proof of Theorem 3.1 rests on two lemmas. 
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Lemma 3.2. Let Y c X+ iX be an invariant subspace for JL with dim Y = N < oo, 
such that whenever A and t are eigenvalues of JL ry we have A +i v 0. Then, 

<Lv,w> = 0 whenever v,we Y. (3.1) 

Proof. First, we choose a basis B for Y such that with respect to this basis, JLyI 
is in Jordan canonical form: There exist generalized eigenspaces M, ...,M8 in Y such 
that JLIMj has a single eigenvalue Aj, and 

s s 

Y= ? Mj, dimMj = n, n = N, 
j=1 j=l 

and furthermore, with respect to some basis {v1), ..., v(j)1} of Mj, JLIM\ is represented 
as 

Aj 1 0 ... 0 
0 Aj 1 ... 0 

JLIMj= '.. 0 

0 ... 0 Aj 

Define the basis B by B = {v(j Ij 1,...,s, k = 0,..., nj-1}. 
Now, for f = v?) eB, the initial value problem 

u'(t) = JLu(t), u(0) =f 

has a solution, which we denote formally by u(t) = eJLtf, given by 

tk tq ) 
eJLtf = eAjt E 

q=Oq 

For f, g B, it is easy to check that 

<L eJLtf, eJLtg> = Lf, g>. 

For f = v1), g = vm), this yields 
Ic n tq+r 

<Lv(,) V(m)> = e(j+Am) t r <Lvjq, V(m) > for all t > 0. (3.2) 
q=O q=Or 

From this equation, it is easy to use induction to show that <Lf, g>= 0 for all 
f, g B. This implies (3.1). 

Next, we observe that, clearly Yn kerz(L)= {0}. Now the following lemma 
finishes the proof of Theorem 3.1. 

Lemma 3.3. Assume L is as above, and that Y c domz (L) is a subspace of Z = 
X+iX satisfying (3.1), with Y n kerz(L) = {0}. Then dim Y< k. 

Proof. Because of our hypothesis on L, X admits an orthogonal decomposition 
X= X_ 3 XO @ X+ where XO = ker (L), LX = X_ and L(X+ n dom (L)) c X+ with 

<Lu, u> < for non-zero u X_, 

(Lu,u> > O for non-zero ueX+ n dom (L). 

We have dim X_ = k. Assuming N = dim Y> k + 1, one can construct a non-zero 
u e Y which also lies in the orthogonal complement of X_: 
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u = uo + ivo + u+ + iv+, 

where u0,voeXo and u+, v+ X+ n dom(L). By (3.1) <Lu,u = 0 and therefore 
u+ = v+ = 0. Therefore, uekerz(L) n Y= {0}, by hypothesis. So u = 0, a con- 
tradiction which proves the result. [-] 

We now apply Theorem 3.1 to gKdV and gBBM to characterize the spectrum. 

gKdV. We take X= L2(p), J = dx, and L =-a2+c-f'(u,). Since f'(u,(x))->0 
as Ixl - oo, it is well known that the essential spectrum of L is the interval [c, oo). 
Since Luc = 0 and uc vanishes exactly once (uc is radially decreasing), it follows from 
oscillation theory that A = 0 is the second eigenvalue of L. Hence Theorem 3.1 applies 
with k = 1. We conclude that gKdV has at most one simple eigenvalue with Re A > 0. 
Note that if A is an eigenvalue, then A and -A are also. Thus any unstable eigenvalue 
A must be real (A > 0) and is paired with a negative real eigenvalue -A. 

We also observe that the essential spectrum of JL (spectrum with isolated 
eigenvalues of finite multiplicity removed) is the imaginary axis. This is easy to 
verify for the operator dx(-2 + +c) by using the Fourier transform; since JL is a 

relatively compact perturbation, its essential spectrum is the same (Henry 1981). 
gBBM. We may multiply equation (2.27) by (I-72)- , to put the eigenvalue 

problem in the form JLu = Au where J = (I-82 )-l1x and L = -c2 +c-1 -f (Uc). 
The Hilbert space is X = L2(ll). It is clear that J is skew symmetric and L is self 
adjoint. Exactly as for gKdV we find that Theorem 3.1 applies with k = 1. The 
conclusions made above for gKdV all hold here as well. Taken together with the 
results in ?2, we may summarize these results as follows. 

Theorem 3.4. For gKdV and gBBM, let J and L be as above. If dX[uc]/dc < 0, then 
the spectrum of JL consists of the imaginary axis together with two simple real 
eigenvalues A > 0 and -A < O. If dV[uc]/dc > 0, then the spectrum of JL is the 
imaginary axis. For dI`[uj]/dc < 0, the spectrum of JL is pictured in figure 1. 

Proof. The only assertion that remains to be verified is that for the case when 
dX[uc]/dc O: It suffices to show in this case that JL has no non-zero real 

eigenvalue. The proof is based on part of the stability argument in Weinstein (1985), 
Bona et al. (1987), Grillakis et al. (1987). Let w satisfy LJw = 0; we take w = uc for 

gKdV and w == (I-2) uc for gBBM. In both cases, we have Lcuc = -w and 

<w, aC u) = d[ /d = -ddc = La u, c, uC). 

In this situation, Lemma E.1 of Weinstein (1985) (see also Maddocks 1985) yields the 

following. 

Lemma 3.5. If dX[u,]/dc > O, then <Lv, v> > 0 for all v such that (v, w> = 0. 

Now suppose that JLv = Av for some A > 0. Then <Lv, v> = 0 since A(Lv, v> = 
<Lv, JLv>. Also (v, w> = 0 since A<v, w> = (JLv, w> = <v,LJw>. Now, from Lemma 
3.5, we may deduce that <Lv, y>= 0 for any yedom (L) with <y, w = 0, since 
(L(v+ty),v + ty> is minimized at t = 0. We may conclude that Lv = fw for some 
constant /f. But then 

LJLv = f3LJw = 0 = ALv. 

Since Lv $ 0 and A v 0, this is a contradiction. This finishes the proof of the 
theorem. 
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Remark. As shown by Smereka (1992), the eigenvalue problem for gBou can 
formally be written in the form (0.8), JLu = Au, where J is skew and L is self-adjoint. 
But in this case L has continuous spectrum which is unbounded both above and 
below, so the results of this subsection do not apply. It is exactly the same difficulty 
which has obstructed previous methods (Benjamin 1972; Bona 1975; Laedke & 
Spatschek 1984; Weinstein 1986a, b, 1987; Grillakis et al. 1987, 1990; Bona et al. 
1987; Souganidis & Strauss 1990) from obtaining any result concerning stability or 
instability for solitary waves of gBou. 

(b) Detecting eigenvalues embedded in the essential spectrum 
In each of our applications, when A lies on the imaginary axis, the constant 

coefficient system y'=A?(A)y admits non-trivial globally bounded solutions, 
associated with a purely imaginary eigenvalue of A (A). (See the description of the 
set Se in ?2 parts (iii).) In this situation, consider the consequences of Proposition 1.6, 
the proof of Proposition 1.3, and the fact that Rea(A) < 0 and ,*(A) = 0, cf. (2.5). We 
find that if D(A) = 0, then the solution +(x, A) of (1.1), which decays exponentially 
as x -- + oo, may be merely bounded as x -o- o and fail to decay. In principle, then, 
zeros of D(A) on the imaginary axis need not correspond to eigenvalues of the 
linearized evolution equations (2.13), (2.27) or (2.37), embedded in the essential 
spectrum (considered in the space L2(f), for example). 

However, we find that for the gKdV, gBBM and gBou equations, such zeros do 
correspond to embedded eigenvalues with exponentially decaying eigenfunctions. 
This property is associated with the fact that the eigenvalue equations (2.13), (2.27) 
and (2.38) have the following symmetry: For A = ifl, fl6 X, if Y(x) denotes a solution, 
then Y(- x) is a solution. 

Theorem 3.6. For the gKdV, gBBM and gBou eigenvalue equations (2.13), (2.27), 
and (2.38) suppose A is purely imaginary. A non-trivial eigenfunction which decays 
exponentially as Ixl -> o exists if and only if D(A) = 0. 

Proof. We give the proof for gKdV; the treatments of gBBM and gBou are similar. 
It is only necessary to prove the 'if' part, see Theorem 1.9 and ? 1 e. Suppose D(A) = 0 
with A = i(cr + 3) for some real T, cf. ?2b (iii). The eigenvalues of A (A) are l, ir, and 
v where Reu < 0 < Rev. As in ?2b(v) consider Y+(x,A) = (x,,A) and Z-(x,h) = 

m (x, A), which satisfy 

XL,Y+ = AY+, LcZ- =-AZ-, (3.3) 
Y+(x,A)e-xzl as x->+co,t (3.4) 

Z-(x, A) e- /(3/a2-c) as x--oo.j 
Our goal is to show that Y+ decays exponentially as x - oo. According to the 
conventions in ? 1 e, we have 

= (Y+, Y+, Y+")t, - = (-LZ-, -Z-',Z-) 

and by Proposition 1.2, 

+(x, A) e-x -> (1,, ,2) as x ->+o, 

]-(x, A) e-x (2 --c,, 1)/(3a2- c) as x --Xo. 

As a consequence of the hypothesis that D(A) = 0, Proposition 1.6 and the fact we 
may take r(A) = 0 in (1.12) of Proposition 1.3, we have that + and - are bounded, 
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on the whole line. Indeed by invoking results in ch. 4 of Coppel (1965), we find that 
there exists a bounded solution to y' = A?(A)y such that 

+(x,A)-y(x) -O as x- -oo. 

We may take y(x) = aeiTx (1,i, _72)t, for some ae C, possibly zero. Similarly, 

1-(x, A)-z(x) O as x- +oo, 

where z(x) is a bounded solution of z' = -zA?(A); we may take 

z(x) = be-iX (- 2- c, iT, 1)/(-3T2 - c) 
for some b E C. 

Now observe that Y*(x) = Y+(-x, A) is also a solution of the eigenvalue equation 
(2.13), since -A = A and uc is an even function of x. Therefore, *,(x), defined by 

= (, Y,, Y't = (Y+(-x), -Y+'(-x),Y+"(-x))t 

satisfies (1.1) with ,*(x) -> as x - -o and 

,*(x)-y*-0O as x->+oo, with y*(x) = aeix(1,iT, 2)t. 

But now -Y, == 0 (take the limit x -- oo), which implies ab = 0. In fact a and b are 
proportional: It is easy to see that with Z*(x) = Z-(-x), dxZ, satisfies the 
eigenvalue equation (2.12), and 

x z*(x) e--U/(3U2_-c) as x-+oo. 

It follows xZ,* = /(3/2 - )-1 Y+, from which we infer that a and b are proportional. 
Hence a = b = 0. We conclude that + and /- decay to zero as Ixl - + oo. By results 
in Coppel (1965) (ch. 4), they must do so at an exponential rate. [ 

Remarks. (i) As the proof shows, when D(A) = 0 the transposed eigenvalue 
equation in (3.3) also has an exponentially decaying solution as Ixl-> co. 

(ii) For gBBM the proof is virtually identical. To implement the above proof for 
the case of gBou we observe that if Z-(x) satisfies 

-L a Z-(x) (A2 + 2cA 0X) (I-)2 Z-(x), 

then, with the notation Z*(x) = Z-(-x), 82 Z*(x) satisfies (2.38). Thus, 82 Z*(x) plays 
the role that xZ,*(x) played in the cases of gKdV and gBBM. Another point of 
difference for gBou is that for purely imaginary A, A?(A) now has two purely 
imaginary eigenvalues instead of one. This causes no difficulty, however, since by 
?2d(iii) these eigenvalues are always distinct except when A = 0. 

4. Transitions to instability 
In this section we study how instabilities arise as parameters vary in gKdV, 

gBBM, and gBou. For definiteness we consider the special one parameter family of 
nonlinearities f(u) = uP+1/(p+ 1), p > 0, and study the stability of solitary waves as 
a function of the pair K = (p, c), where c is the wave speed. 

The results of ?2 and in Bona et al. (1987), Souganidis & Strauss (1990), Weinstein 
(1986a, b, 1987) imply for gKdV and gBBM the following. 

gKdV. For all c > 0, u,(x) is linearly exponentially unstable (i.e. (2.1) holds) if and 
only if p > po == 4. 
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gBBM. (a) If p < p0 = 4, u,(x) is orbitally stable for all c > 1. (b) For p > 4, there 
is a constant co(p) > 1 such that for c > c,(p), uc(x) is orbitally stable while for 
1 < c < co(p), Uc(x) is linearly exponentially unstable. The value of co(p) is 

P +(+ )] (2(4+p))1 p-4 C o [ + \/(2p)2p) = 4+ 2p (4. 1 a) o 
=24+22 p (2(4+p))l 4 1. 

We also conclude from ?2 that for gBou we have: 
gBou. For p > 4, uc(x) is linearly exponentially unstable if 1 < c2 < co(p) where 

c (p) = 3p/(4 + 2p). (4.1 b) 

In these examples, we see that a transition from stability to instability occurs as 
K = (p, c) crosses a curve in the plane. Let us study Evans's function D(A,K) as a 
function of A and the parameters K = (p, c) near a point (A,K) = (0, K), where Ko lies 
on the transition curve. From the explicit formulae in ?2, and Remark 1.12, it is clear 
that D is analytic in some neighbourhood of (0,K0) in C3. For any p > 0, c > 1 (c > 0 
for gKdV) we have computed 

D(O,K) = 0, DA(0,K) = 0. (4.2) 

The transition curve is the curve in the (p, c)-plane on which: 

DAA(O K?) = dC [U] = O. 

Examining the Taylor expansion of D at (0,K0), therefore, we find that for (A,K) 
close to (0, K) we have 

D(A,K) = A2(d3D(O, K)A+ VK D(O, o)- (K-Ko)) (1 +O(IAI+ lK-Ko ll)). (4.3) 

Below we shall prove the following for the above examples. 

Proposition 4.1. DAD(0,^K) # 0 and VKdaD(0,Ko) # 0. 

With this result, the mechanism for transition from stability to instability may be 
described as follows: As K = (p, c) crosses the transition curve at K0, a real root Ao(K) 
of D(A,K) = 0 crosses from the negative real axis A0 < 0 to the positive axis A0 > 0, 
with Ao(Ko) = O. Ao is locally an analytic function of K, and VA0(K0) # 0. 

Discussion. Let us discuss this mechanism in some more detail. The mechanism 
outlined here is very different from a typical transition to instability in finite- 
dimensional hamiltonian systems. In finite dimensions, unstable eigenvalues 
typically arise as purely imaginary eigenvalues collide and branch in pairs away from 
the imaginary axis (see, for example, Arnold & Avez 1968; Arnold 1978; MacKay 
1987). 

By contrast, in our examples, the transition to instability does not involve any 
purely imaginary eigenvalues. We have seen in ?2 that when Ao(K) > 0, an 
exponentially decaying eigenfunction exists; the solitary wave is unstable. When 
Ao(K) < 0, however, it is not an eigenvalue in the usual sense (at least for gKdV and 
gBBM, where we know the solitary wave is stable in this case). What happens when 
A = Ao(K) < 0 is that because D(Ao(K),K) = 0, the solution Y+(x, A) of the eigenvalue 
equations (2.13), (2.27) or (2.37) exhibits maximal decay rate Y+ = O(eIt) as x-> o, 
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and submaximal growth Y+ = O(el*x) as x- oo. But since A = Ao(K) < 0, in each 
example we have ,*(A) < 0 (see ?2 parts (iii) and (iv)); and compare (2.4), (2.5)). 
Hence Y+ need not decay as x -- oo. Indeed it cannot, for gKdV and gBBM at least, 
since no unstable eigenvalue exists in these examples when Ao(K) < 0. 

We remark at this point that small values of Ao(K) < 0 can be regarded as true 
eigenvalues on a weighted L2 space consisting of measurable functions u such that 
eaxu is square-integrable; provided u <-a </*, the function eaxY+ will decay 
exponentially as Ixi -> oo. Introducing the weight can also serve to shift the essential 
spectrum from the imaginary axis strictly into the left-plane. The technique of 

analytic dilation serves the same purpose in quantum scattering theory (Reed & 
Simon 1978). Weights are used to shift essential spectrum in the study of travelling 
waves of some parabolic systems (see Sattinger 1976). In work in progress, nonlinear 

stability with an exponential decay rate is established for gKdV solitary waves in 
such weighted spaces (Pego & Weinstein 1992). 

Another interpretation of Ao(K) when negative is that it corresponds to what 
is known in quantum scattering theory as a resonance pole (Reed & Simon 1978). 
The same phenomenon is associated with what is called Landau damping in the 
Vlasov-Poisson system (Crawford & Hislop 1989a, b). To fix ideas, consider the 
resolvent equation for gKdV in L2(aP), written as 

(JL-)u = g, 

where J = Ox and L =-8 +c 1-f'(u') as in ?3a. Suppose we are near the transition 
with Ao(K) < 0, so JL has no eigenvalues off the imaginary axis by Theorem 3.4. We 
denote the resolvent of JL by 1l(A) = (JL-A)-1. For Re A = 0, i1(A) is a bounded 
operator on L2(R). For Re A > 0, it is given in terms of the first component in formula 
(1.39) by 

u = 1(A) g = et() (0,..., g)t, (*) 

where et = (1,0, ..., 0). (For Re A < 0, an analogous representation can be obtained.) 
In operator norm, the resolvent 1i(A) becomes singular as Re A->0; the imaginary 
axis is essential spectrum. The formula above using (1.39) is not correct when 
Re A < 0; in this case t* < 0 and the right-hand side of (*) does not define an 

operator on L2. But for a dense set of right-hand sides g in L2, namely those which are 
continuous with compact support, the formula (1.39) yields an analytic continuation 
of l(A) g(x) (for fixed x) from the region Re A > 0, across the essential spectrum 
(avoiding a double pole at A = 0), into the region -e < Re A < 0 for some e > 0. This 

analytic continuation exhibits a pole (called a resonance pole) at A = Ao(K), where 

D(A) = 0. During the transition from stability to instability, this resonance pole moves 
across the imaginary axis, and emerges as an eigenvalue in the right half-plane. 

This description accounts for the emergence of the unstable eigenvalue A during 
the transition in terms of AO(K), but something should be said about the emergence 
of the symmetry-related eigenvalue -A. Recall that for JL, -A is an eigenvalue if 
A is. When Ao(K) > 0, the eigenvalue -A = -Ao(K), while not a zero of D(A), is a pole 
of the resolvent ~1(A). We claim that, as Ao(K) becomes negative, the pole at 

-Ao(K) becomes a resonance pole, in the right half-plane. 
Formula (1.39) does not apply directly to this situation, but can be used with 

the odd symmetry of JL in the following way. Let T denote the reflection operator 
Tu(x) = u(-x). Then TJL = -JLT, from which one can easily verify that 

31(A) = - T11(- A) Tg = -Tet (- A) (0, . ., 0Tg)t 
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Using this relation for Re A < 0 we see clearly that A = -A(K) is a pole or a 
resonance pole of the resolvent, respectively, when A0(K) > 0 or Ao(K) < 0. 

For g continuous and of compact support, it is appropriate to view the function 
A - l(A) g(x), for fixed x, as extending to a Riemann surface, cut by the imaginary 
axis but continuing across it from both sides. See figure 2. Crawford & Hislop 
(1989 a, b) have a somewhat different visualization.) In the region - e < Re A < 0, let 
12(A) g(x) denote the analytic continuation of p1(A) g(x) from the region Re A > 0 to 
a second sheet of the Riemann surface. Then the analytic continuation of 1(A) g(x) 
from the region Re A < 0 to a second sheet over the strip 0 < Re A < e, is given by 
42(A) g(x) = - T2(- A) Tg(x). We remark that from (1.39) one can see that 2(A) g(x) 
is typically not a bounded function of x; for ReA < 0, *,(A) < 0 and (1.1) has 
solutions of the form -(x, A)c which grow as x oo. The global structure of this 
Riemann surface is unknown. 

To prove Proposition 4.1 for each example, it is useful to show that certain 
simplifications occur when computing higher derivatives of D(A) at a high-order zero. 
For our purposes it suffices to prove the following formulae, which are quite generally 
valid under the assumptions of Theorem 1.11 and Proposition 1.21. Below, the 
subscript A denotes differentiation with respect to A. 

Proposition 4.2. Make the assumptions of Theorem 1.11. and Proposition 1.21. 
Assume that 0 = D(O) = DA(O) = DAA(O). Then 

-DAAA(O) = 6 AA + 3( AAA ? + -AAA ) + -AAAA . (4.4) 

Moreover, for higher-order scalar equations as discussed in ? 1 e, we have 

DAAA(O)= f 6Z A YA + 3(Z ,,AA Y+ + Z-AA YA) + ZAAA Y+. (4.5) 
00 

Proof. Start with formula (1.21), differentiate twice and evaluate at A = 0. We 
obtain 

-DAAA(O) = J (-AA )AA. (4.6) 
J 00 

The convergence of this improper integral is guaranteed by Theorem 1.11, but more 
is true. Using Proposition 1.21 and (1.8), (1.9) we find that if e > 0 is sufficiently 
small, 

g+, Y, g` ={O(e~x e-Ix) as x oo(4.7) 
O(x2 ex) as x++oo, 

g=_ 
_ _ 

{fO(x2e-=x) 
as X--c, (4.8) 

O(e-xe-elxI) as x-+coo. 

Therefore, when the differentiation in (4.6) is carried out, each term is O(x2 e-61ll), so 
decays exponentially. Using the equations 

d A =A Ag +A , dA = AA + 2AA CA +A~+, 

d d d 
-dx -A, dx-/ A = -A-A? , dA = r A + 2?- AA + t-AAA, 
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Figure 2. Riemann surface for resolvent. During transition to instability, resonance poles on 
upper sheet move across the imaginary axis, and become eigenvalues on lower sheet. 

along with (4.7), (4.8) we may write, for A = 0, 

-f() 

~~J--~Ro J-co \R 

RFoo J-R 

J ?00 

and similarly J AA A = 2y AA A + A AA C. 

Using these equations in (4.6), the result (4.4) follows easily. Equation (4.5) is an 
immediate corollary. D 

Let us prove Proposition 4.1 for each example: 

gKdV. The transition curve is given by KO = (4, c) for c > 0. We have sA = 
identity; using (4.5) and (2.21) we compute that 

1DAAA(O,K) = K Z 2,c2 (c a 4C2 

(all other terms vanish since f 6c uc u = 0 for p = 4). Since 

Uf = - sech2 y dy, 

where x and y are given in ?2b(vii), we find that 
00 d 

#c uc = const. c-4 4 0. 
j?oo 

Hence DAA^(O, Ko) = 0, as claimed. 
To compute apD8D(O,Ko) we use the result of ?2b(vi), that -,cfl2 D(0,Ko) = 

d,A[uc]/dc and the fact that a8D(O,Ko) = 0. Hence 

aF '21 1 1 
-c28 02D(0,Ko) = 08a8 ] = X(-- -[-] - /[- 0 0 

L\ a/ J (p, c)=(4, c) 8e 

using the calculation of ?2b(vii). This proves Proposition 4.1 for gKdV. 
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gBBM. From ?2c (vii) we may compute that the transition curve is Ko = (p, co(p)), 
where co(p) is given by (4.1a). We have cs = (I-62). Using (4.5) and (2.32) we 

compute that 

'cDAAA(O,Ko) = Z(I-d1 ) YA = -2/ (c )2 u c (I_ 2) c c 
Oo ) 

A 
-- 

2 c (r )O 0- 
) ^ 

4,U(c -i) f2 J- c - 

From ?2c(vii) we compute that Jf uc = a/y times a constant independent of c, so 
that 

u~ ac uc = In u --I. <0 
-o 

c J C-o = clnf 2nc-1 + 2 2c(- 1) ) < 

for c > 1 and (p, c) on the transition curve. Hence DAAA(O, K) 0 0 as claimed. 
We compute DcdaD(O,Ko) by using the results of 2c(vi) and (vii), finding that 

d2 
-ac(c- 1) ,52 c 

2 D(0, K) = X[uc] dc2 

and (on the transition curve) 

p(c- 1) c2y d2 
2-I(4/p) d r[u] = 2(1+k)c-2k >O. 

x2J(4/p) dC 

Hence 0 a,D(0, K) - 0, establishing Proposition 4.1 for gBBM. 
gBou. From ?2d(vii) we find that the transition curve is K = (p, co(p)), where 

co(p) is given by (4.1b). We have -c2SA = 2(A-cxc) (I-_2), so using (4.5) and (2,43) 
we compute that 

~-c2DAAA^(O, K) =-2 Z 
ax(I-a ) YA + Z (I-2) Y+ + Z (I-a2 )YA 

J? oo J ~oO 

After some integrations by parts, 

- 2c2f2L3DAAAD(O, Ko) = 2c ac Uc ( I ) e Tu , 2 

-00 -00 

+J ( a u c (__02)uc+J u c (__2)OCUC foo r \2 r?0 / r 

=C cuc + a cuc uc 
\ ?00 J ?00 J -~o 

As previously, we have fJ uc = (a/y)1(2/p), so 

d1 (2C2 1: 

- 

- - \ c2 

U ( uc =-d- (In al- Iny)= c(c _- I ) Pl c c . c dc (-1) A ( c(C2-l) 
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on the transition curve, so 

-2c2 f2i3DAA(O KO) = aCuC u 2 - 
0 

hence DAA(O,KO) 4 0 as claimed. 
From the results of ?2d(vi) and (vii) we have that -,/t3f2 Cdc dD(O, K) = 

d2X[c]j/dc2 and, on the transition curve 

c2(c2 d_ 1)/ d/ 2 \I k 
(I(4/p))' d 2 2c2[3c] = 2c 22 k -3 = 6c 0. 

al(4/p) dc2 

Hence d2D D(0,Ko) # O, proving Proposition 4.1 for gBou. 

5. Remarks on the generalized KdV-Burgers equation 

(a) Construction of travelling waves 

Consider the generalized KdV-Burgers equation: 

a u+ xf (U) + = a xu. (5.1) 

Here a > 0 is a parameter, and in addition to the previous assumptions on f, we 
assumef is strictly convex. The properties of the travelling waves which we study are 
summarized as follows. 

Theorem 5.1. Given any c > 0, a > 0, there is a travelling wave solution u(x, t) = 
uc(x-ct) to (5.1), unique up to translation, which satisfies the ODE 

-8a U + aU + cu,c-f(uc) = 0, xel (5.2) 

and has the limiting behaviour 

{ as x->+ co, 

UL as x->-oo, 

where uL is the unique positive solution of f(uL) = cuL. The wave profile uc satisfies 

(uc(x), ax u(X)) e-~x -> /(1, I) as x-+ coo (5.3) 

for some f > 0 where 1 = l(ca- ?/(c2 + 4c)) < 0. For a > 2 /(f'(uL) -c), u, is monotone 
decreasing, while for a < 2 /(f'(uL) -c), uc(x)-UL decays to zero exponentially in an 

oscillatory fashion as x - - oo. 

Proof. The proof is little different from that given for f(u) = u2 by Bona & 
Schonbek (1985). Consider the phase plane for (5.2): Let u = uc, v = Oxuc and 
consider the system 

u'= v, v' = cu-f(u) + v. (5.4) 

Our hypotheses on f guarantee that for u > 0, the only critical points of (5.4) are at 
(0, 0) and (UL, O). By convexity of f, 0 < < < <f'(UL), so the point (0, 0) is always a 
saddle while the point (0, L) is an unstable spiral point or node, depending on 
whether -a2 < f'(uL)-c or not. 

Put E(u, v) = 1v2-1cu2 + f (s)ds, 
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then E(u, v)' = acv2 > 0. The level curve E(u, v) = 0 contains (0, 0) and encloses (UL, 0) 
in a single loop in the half-plane u > 0. When c = 0 this loop corresponds to a 
homoclinic orbit for (5.4) that yields the solitary wave for gKdV. For cc > 0, the part 
of the stable manifold of (0, 0) in the half-plane u > 0 is a trajectory lying in the 
bounded region where E(u, v) < 0. As we decrease x, this trajectory is trapped in this 
region and E is non-increasing. It is easy to show that the trajectory must approach 
the critical point (UL, 0) as x - oo. This is the unique trajectory connecting (UL, 0) 
to (0, 0): the only other trajectory approaching (0, 0) as x - + o0 lies entirely in the 
half-plane u < 0, since E(O, v) > 0 for v v 0. 

It remains to show that when a > 2 V(f'(uL)- c), the connecting trajectory lies in 
the quarter plane u > 0, v < 0, so that uc is monotone decreasing. Assume -c2 > 
f'(uL)-c, the case of equality follows by continuity. Consider a line segment with 
slope m > 0 passing through (UL, 0), parametrized by (UL + s, ms) for - L < s < 0. At 
any point of this line segment, (5.4), the equation f(UL) = cuL, and Taylor's theorem 
imply that for some e (uL+s, uL), 

dv cs +f(UL) -f(UL + s) c -f'() c-f'(uL) -= ac+ =cc + >c a + 
du ms m m 

The inequality follows since f is strictly convex. Because la2 >f(uL)-c, we may 
choose m so that m2 -am- (c-f'(L)) < O. Hence dv/du > m on the line segment 
above, which implies that no trajectory above it can cross this line segment as x 
decreases in (5.4). The connecting trajectory in particular is trapped between this line 
segment and the axis v = 0. Hence v < 0 on this trajectory, as claimed. - 

(b) The spectrum, and constraints on transitions to instability 
Let us now consider the linear stability of these waves. In a coordinate frame 

moving with the travelling wave, the eigenvalue equation for small perturbations of 
uc is 

AY= dx( - + ca + c -f'(Uc)) Y= JLY, (5.5) 

where J = ax, and L = - + cx + c -f'(uc) is not self-adjoint. We may consider the 
spectrum of JL in any of the spaces X = LP(R), 1 p < oo or Cu(R) (the space of 
bounded uniformly continuous functions); the results are the same. For simplicity, 
take X = L2(t1). Applying the theory laid out by Henry (1985), the essential 
spectrum of JL may be determined as follows. 

Reduce the equation (- JL + A) Y = 0 to a first-order system in the manner of ? 1 e. 
Let 

Se = {(A IA+(A) has an imaginary eigenvalue}. 
We have 

S+ = { A = - a2 + iT(72 + c) for some real T}, 

Se = { = - T2 + iT(T2 + c-f'(u)) for some real T}. 

These sets are curves in the left half-plane Re A < 0, which pass through A = 0. 

Proposition 5.2. The essential spectrum of JL contains S+ U Se, but contains no 
point of the component 2Q of C\(S+ U S-) that includes the right half-plane. 

Proof. It is straightforward to show that S+ U Se lies in the approximate point 
spectrum of JL. As in the proof of Theorem A.2 of ch. 5 in Henry (1981) one may 
show that either Q+ consists entirely of eigenvalues, or it does not intersect the 
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essential spectrum. But for A > 0 and large, if Y satisfies (5.5), we may assume Y is 
real and compute 

00 rX 

AJ y2 = J (- 
" + otCY" + cY-(f'(u)) Y)') 

J-oo -oo 

=-ocA (y)2_ y2/f"(uc) Uc 

< C J y2 < A y2, 
J-o J- oo 

which implies Y = 0. So Q+ does not consist entirely of eigenvalues, and the result 
follows. 

Lemma 5.3. For A in Q+, A (A) has exactly one eigenvalue u = g+ (A) with negative 
real part. We have A+(0) = (c- /(2 +4c)),u-(0) = 0. (5.6) 

Proof. It is clear that as A varies in Q+, the number of eigenvalues of A -+(A) with 
negative real part is constant. Any eigenvalue v of A+%(A) must satisfy 

+(v) = v3-62-cv + A = 0. 

At A = 0 the roots of Y + are v = 0, 2(x+ V/(C+24c)). These are simple, so are locally 
analytic functions of A. Considering the root v = 0 and differentiating, we find 
cdv/dA = 1 at A = 0, so for A > 0 small we have v > 0, hence the Lemma holds for 
A+`. Similarly, any eigenvalue of A-'(A) must satisfy 

(v) = V3-CV2 + (-c +f'(UL)) v + A = 0. 

But now, f'(uL) > c, so at A = 0 the only root with Re v < 0 is at v = 0. This 
root satisfies (f'(uL)-c)dv/dA = - at A = 0, so v < 0 for A > 0. This proves the 
Lemma. [] 

It is clear from the Lemma that the theory of ? 1 may be applied to define D(A) on 
a domain Q that contains Q+ and some neighbourhood of A = 0, and that for A E6 Q+, 
A is an eigenvalue of JL if and only if D(A) = O. Our main result in this section is the 
following: 

Theorem 5.4. 1. If uc is monotone decreasing, then D(A) v 0 for Re A > 0. 
2. In all cases, for all a > 0, we have D(O) = 0, but D'(O) 0. 

We remark that when uC is monotone decreasing, it may be shown as in Pego 
(1985) that the travelling wave is nonlinearly orbitally stable. The theorem above 
creates the following dilemma. Suppose that for a = 0, c > 0 fixed, the solitary wave 
of gKdV is exponentially unstable. For c > 0 large, the corresponding travelling 
wave of (5.1) is monotone and stable. As a decreases to zero, the travelling wave 
profiles develops an oscillatory 'tail'; the right-most hump approaches the solitary 
wave in form. We conjecture that there should be a transition to instability as 
a -0. But the mechanism is mysterious: Theorem 5.4 seems to forbid the emergence 
of a positive eigenvalue out of A = 0 as ca decreases. 

Proof. To prove part 1, suppose ReA > 0 and D(A) = 0. Then (5.5) has as a 
solution Y which decays to zero as Ixl - oo together with its derivatives at an 
exponential rate. Integrating (5.5) yields 

A Y=0, 
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so, if we define 

W(x) = Y(s) ds, 
00oo 

then W and its derivatives decay exponentially as xl -> oo and W satisfied the 
'integrated equation' 

AW= (_-2+aa+c-f'(u,))axw. (5.7) 
Then we compute 

0 < ReA WW = Re (-W"' +a'W" +cW'-f'( u) W')W 

= -c lJW'2 
+ I 

Wl2f"(UC) u < 0 J? oo J? oo 
-00 -00 

since f" > 0 and uC < 0. This contradiction establishes the result. 
For part 2, we compute D'(0) from equation (1.35) in a manner similar to ?2 parts 

(v) and (vi). For A = 0, Y+ = g+ and Z- = /m are the unique solutions of 

0 = ax(- a+ ca+c-f'(uc)) Y+ = JLY+, 
0 = (- a- + -f '(c))axZ- =LtJZ-, 

such that Y+(x)e-+x X>1 as x-+oo, 

Z-(x)-+>1/'(0) as x- -oo, 

where we use that ,-(0) = 0. From differentiating (5.2), we know that 

Lax u = 0, Lt a 1 = 0. 
Using (5.3) we find 

Y+(x) (at+#f)-laUc, Z-(x) = (f'(UL)-c)- 

Since Y+ decays exponentially as x-- oo, D(0) = 0, and using (1.35) we compute 
that 

(f(UL)- C) (+f3)D'(0) = 1 axUc = -UL 0.o 
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