Please note: for some of these problems, there is more than one valid line of reasoning. The answers I've written below are just one example of a way to solve each problem.

Question 1

(i) [7 points] Put the following matrix into reduced row echelon form.

$$\begin{bmatrix} 2 & 0 & -4 & 0 \\ 1 & 3 & 1 & -3 \\ 0 & 4 & 8 & 4 \\ -1 & 0 & 2 & -9 \end{bmatrix}$$

Solution: (Note that there are many correct ways to row-reduce a matrix, but the end result should be the same.)

$$\begin{bmatrix} 2 & 0 & -4 & 0 \\ 1 & 3 & 1 & -3 \\ 0 & 4 & 8 & 4 \\ -1 & 0 & 2 & -9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 1 & -3 \\ 2 & 0 & -4 & 0 \\ 0 & 4 & 8 & 4 \\ -1 & 0 & 2 & -9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 1 & -3 \\ 0 & -6 & -6 & 6 \\ 0 & 4 & 8 & 4 \\ 0 & 3 & 3 & -12 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 1 & -3 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 1 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 1 & -3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 1 & -3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(ii) [8 points] Consider the following system of linear equations.

$$x_1 - 4x_3 - x_5 = 1$$

$$x_2 + 2x_3 - 4x_4 + 3x_5 = -2$$

$$x_4 + x_5 = 1$$

Write the solution set in parametric vector form.

Solution: The associated augmented matrix is

Row reducing this yields

$$\rightarrow \left[\begin{array}{rrrrr} 1 & 0 & -4 & 0 & -1 & 1 \\ 0 & 1 & 2 & 0 & 7 & 2 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{array} \right]$$

Therefore, x_5 and x_3 are the free variables, and so the solution set in parametric form is

$$\mathbf{x} = \begin{bmatrix} 1+4x_3+x_5\\2-2x_3-7x_5\\x_3\\1-x_5\\x_5 \end{bmatrix} = \begin{bmatrix} 1\\2\\0\\1\\0 \end{bmatrix} + x_3 \begin{bmatrix} 4\\-2\\1\\0\\0 \end{bmatrix} + x_5 \begin{bmatrix} 1\\-7\\0\\-1\\1 \end{bmatrix}$$

Question 2. (Note: there is more than one correct way to justify the answers to this problem.)

(i) [5 points] Consider the following matrix

$$B = \left[\begin{array}{rrrr} 2 & 0 & 0 & 1 \\ 0 & -1 & 3 & 7 \end{array} \right].$$

Do the columns of B span \mathbb{R}^2 ?

Solution: Yes. In order for the columns to span \mathbb{R}^2 , we need a pivot in each row, and the matrix B (already in echelon form) has a pivot in each row.

(ii) [5 points] Given an arbitrary $m \times n$ matrix A, is it possible for the columns of A to span \mathbb{R}^m if m > n? Why?

Solution: No. This matrix has more rows than columns, and so cannot possibly have a pivot in each row. (It can have at most n pivots.)

(iii) [5 points] Given an arbitrary $m \times n$ matrix A, is it possible for the columns of A to span \mathbb{R}^m if n > m? Why?

Solution: Yes. This matrix has more columns than rows, and so could potentially have a pivot in each row, as in the above matrix B.

Question 3. Consider the matrix

$$A = \begin{bmatrix} 1 & 0 & 2 \\ -3 & 1 & 2 \\ 0 & 1 & 1 \\ 4 & -1 & 0 \end{bmatrix}.$$

(i) [7 points] Find the solution set for the equation $A\mathbf{x} = \mathbf{0}$.

Solution: Construct the augmented matrix and perform row reductions:

$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ -3 & 1 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 8 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & -8 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 8 & 0 \\ 0 & 0 & -7 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there is a pivot in each column of the echelon form of A, the only solution is the trivial solution, $\mathbf{x} = \mathbf{0}$ (ie $x_1 = x_2 = x_3 = 0$).

(ii) [5 points] Describe, in terms of the columns of the matrix A, the vectors \mathbf{b} such that $A\mathbf{x} = \mathbf{b}$ is consistent.

Solution: $A\mathbf{x} = \mathbf{b}$ is consistent only for vectors b that are linear combinations of the columns of A. This can be seen by writing

$$\mathbf{b} = A\mathbf{x} = [\mathbf{a}_1 \dots \mathbf{a}_n]\mathbf{x} = x_1\mathbf{a}_1 + \dots + x_n\mathbf{a}_n$$

(iii) [5 points] Given a vector **b** such that a solution of $A\mathbf{x} = \mathbf{b}$ exists, is the solution unique? Solution: (Note: more than one correct way to justify this answer.) Yes, the solution is unique because $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, ie the echelon form of A implies there will be no free variables when finding a solution.

Question 4 [8 points] Consider a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$, and suppose that

$$T\left(\left[\begin{array}{c}1\\0\\0\end{array}\right]\right) = \left[\begin{array}{c}-3\\1\\2\end{array}\right], \qquad T\left(\left[\begin{array}{c}0\\1\\0\end{array}\right]\right) = \left[\begin{array}{c}1\\-2\\1\end{array}\right], \qquad T\left(\left[\begin{array}{c}0\\2\\1\end{array}\right]\right) = \left[\begin{array}{c}0\\1\\4\end{array}\right].$$

Find the standard matrix for the transformation.

Solution: The matrix is given by

$$A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ T(\mathbf{e}_3)],$$

where

$$\mathbf{e}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \mathbf{e}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$

We are told $T(\mathbf{e}_1)$ and $T(\mathbf{e}_2)$, so we only need to find $T(\mathbf{e}_3)$. To do so, notice

$$T(\mathbf{e}_3) = T\left(\begin{bmatrix} 0\\0\\1 \end{bmatrix} \right) = T\left(-2\begin{bmatrix} 0\\1\\0 \end{bmatrix} + \begin{bmatrix} 0\\2\\1 \end{bmatrix} \right) = -2\begin{bmatrix} 1\\-2\\1 \end{bmatrix} + \begin{bmatrix} 0\\1\\4 \end{bmatrix} = \begin{bmatrix} -2\\5\\2 \end{bmatrix}$$

Therefore,

$$A = \begin{bmatrix} -3 & 1 & -2 \\ 1 & -2 & 5 \\ 2 & 1 & 2 \end{bmatrix}$$

Question 5 Suppose A is a 4×3 matrix that satisfies $A\mathbf{x} = \mathbf{0}$ for $\mathbf{x} = \begin{bmatrix} 2\\1\\0 \end{bmatrix}$. Define a linear transformation by $T(\mathbf{x}) = A\mathbf{x}$.

- (i) [5 points] What is the domain and codomain of T?
 Solution: The domain is R³ and the codomain is R⁴.
- (ii) [5 points] Is $T(\mathbf{x}) = A\mathbf{x}$ one-to-one?

Solution: (Note: more than one correct way to justify this answer.) No. Since $T(\mathbf{x}) = \mathbf{0}$ has a nontrivial solution, for any **b** in the range of *T*, there will necessarily be infinitely many points **y** that get mapped to it.

(iii) [5 points] Is $T(\mathbf{x}) = A\mathbf{x}$ onto?

Solution: (Note: more than one correct way to justify this answer.) No. In order for T to be onto, its standard matrix would need a pivot in each row. The above matrix has four rows but only three columns, and so can have at most three pivots, which isn't enough.

Question 6

(i) [5 points] Compute the determinant of

$$A = \left[\begin{array}{cc} 3 & k \\ -1 & 1 \end{array} \right].$$

Solution: Using the formula for the determinant of a 2×2 matrix, we find detA = 3(1) - (k)(-1) = 3 + k.

(ii) [5 points] For what values of k does the system $A\mathbf{x} = \mathbf{b}$ have a solution for all $\mathbf{b} \in \mathbb{R}^2$? Why? Solution: (Note: more than one correct way to justify this answer.) The system will be consistent for all **b** whenever A is invertible, which is whenever det $A \neq 0$. Therefore, whenever $k \neq -3$.

Question 7

(i) [7 points] Suppose that the columns of an $m \times n$ matrix A are linearly dependent and the vector **b** in \mathbb{R}^m is such that the system $A\mathbf{x} = \mathbf{b}$ is consistent. Prove that $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.

Solution: (Note: there is more than one correct way to prove this.) Since the columns of A, $\mathbf{a}_1, \ldots, \mathbf{a}_n$, are dependent, there exist weights x_1, \ldots, x_n , not all zero, such that

$$x_1\mathbf{a}_1 + \dots + x_n\mathbf{a}_n = \mathbf{0}.$$

Therefore, if these weights are put into the entries of the vector \mathbf{x} , then $A\mathbf{x} = 0$. Since the system is consistent, there exists a \mathbf{y} such that $A\mathbf{y} = \mathbf{b}$. We can compute

$$A(\mathbf{y} + c\mathbf{x}) = A\mathbf{y} + cA\mathbf{x} = \mathbf{b} + \mathbf{0} = \mathbf{b},$$

for any scalar c. Thus, we have found infinitely many solutions.

(ii) [6 points] Let A and B be $n \times n$ matrices. Prove that if the matrix AB is invertible, then so is the matrix B.

Solution: (Note: there is more than one correct way to prove this.) Since AB is invertible, there exists a matrix C such that C(AB) = I. Therefore, (CA)B = I. Define D = CA. By a theorem we discussed in class and that is in the book, if there exists a matrix D such that DB = I, then B is invertible and $D = B^{-1}$. Therefore, we have shown B must be invertible.

(iii) [7 points] Suppose that a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ has the property that $T(\mathbf{u}) = T(\mathbf{v})$ for two vectors $\mathbf{u} \neq \mathbf{v}$. Is it possible for T to be onto? Why or why not?

Solution: (Note: there is more than one correct way to justify this answer.) By definition, this transformation is not one-to-one, and therefore it can't have a pivot in each column. So, it has less than n pivots. Since its matrix is $n \times n$, it can't possibly have a pivot in each row, which is what is required for it to be onto. Therefore, it is not possible for T to be onto.