
Final – MA 242 A1 – Fall 2009

Question 1

(i) [5 points] Compute the inverse of the following matrix using any method you like.

A =

 1 0 2

−3 1 2

0 1 7

 .
Solution: Augment the matrix with the identity and do row reductions: 1 0 2 1 0 0

−3 1 2 0 1 0

0 1 7 0 0 1

→
 1 0 2 1 0 0

0 1 8 3 1 0

0 1 7 0 0 1

→
 1 0 2 1 0 0

0 1 8 3 1 0

0 0 −1 −3 −1 1



→

 1 0 0 −5 −2 2

0 1 0 −21 −7 8

0 0 1 3 1 −1

→ A−1 =

 −5 −2 2

−21 −7 8

3 1 −1


You can check your answer by multiplying A and A−1 and checking that you get the identity

matrix.

(ii) [5 points] Suppose A and B are n× n matrices such that det A = 3 and det B = −2. Compute

the following quantities:

(a) Solution: det AB2 = det A(det B)2 = 3(−2)2 = 12.

(b) Solution: det A−1 = 1/det A = 1/3.

(c) det kB, for some scalar k ∈ R.

Solution: The rule says that each time a row is multiplied by a scalar k, we must multiply

the determinant by k. Since there are n rows, we have to multiply by kn. Thus, det kB =

kndet B = −2kn.

Question 2

(i) [5 points] Let T : R2 → R2 be a linear transformation that first rotates points π/2 radians

(counterclockwise) about the origin and then reflects points through the horizontal x1-axis. Find

the standard matrix of T .

Solution: The standard matrix is A = [T (e1)T (e2)], so we need to compute T (e1) and T (e2).

By drawing a picture, we see that T (e1) = −e2 and T (e2) = −e1. Hence, the matrix is[
0 −1

−1 0

]
.



(ii) [5 points] Consider the linear transformation T (x) = Ax defined by the matrix

A =

[
1 2

1 1

]
.

Let S be the region inside the right triangle that has vertices (0, 0), (3, 2), and (3, 0). Determine

the area of the region T (S).

Solution: We know that area(T (S)) = |det A|area(S). We compute det A = 1(1) − 2(1) = −1

and area(S) = base · height/2 = (3 · 2)/2 = 3. Therefore, area(T (S)) = 3| − 1| = 3.

Question 3

(i) [5 points] Find the eigenvalues of the matrix 1 2 −1

0 2 −2

0 −1 1

 .
Solution: Expanding along the first column, we compute

det (A− λI) =

∣∣∣∣∣∣∣
(1− λ) 2 −1

0 (2− λ) −2

0 −1 (1− λ)

∣∣∣∣∣∣∣ = (1− λ)[(2− λ)(1− λ)− 2] = (1− λ)λ(λ− 3).

Therefore, the eigenvalues are 0, 1, 3.

(ii) [5 points] The following matrix has eigenvalues λ = 1, 2, 2, 3. Determine if it is diagonalizable.
3 2 0 0

0 1 0 1

0 0 2 0

0 0 1 2

 .
Solution: We need to determine if there are two independent eigenvectors associated to the

eigenvalue 2, so we need to solve the augmented system [(A− 2I) 0]:
1 2 0 0 0

0 −1 0 1 0

0 0 0 0 0

0 0 1 0 0

→


1 2 0 0 0

0 1 0 −1 0

0 0 1 0 0

0 0 0 0 0

 .
There is only one free variable (x4), and so there will only be one independent eigenvector. Hence,

the matrix is not diagonalizable.

Question 4



(i) [5 points] Consider the vectors

u =


−1

3

1

1

 , v =


6

−8

−2

−4

 , w =


6

3

6

−3

 .
Find an orthogonal basis for V = span{u,v,w}.
Solution: We apply the Gram-Schmidt process to obtain the orthogonal basis {u1,u2,u3}:

u1 = u =


−1

3

1

1



u2 = v −
(

v · u1

u1 · u1

)
u1 =


6

−8

−2

−4

−
(
−36

12

)
−1

3

1

1

 =


3

1

1

−1



u3 = w−
(

w · u1

u1 · u1

)
u1 −

(
w · u2

u2 · u2

)
u2 =


6

3

6

−3

−
(

6

12

)
−1

3

1

1

−
(

30

12

)
3

1

1

−1

 =


−1

−1

3

−1


(ii) [5 points] Let W = span{a,b}, where

a =


1

2

0

−1

 , b =


2

1

3

4

 ,
and let T (x) = projWx. Find a matrix A such that Ker T = Nul A.

Solution: Notice that

T (x) =
(x · a
a · a

)
a +

(
x · b
b · b

)
b.

This is a linear combination of a and b. Since they are orthogonal, the only way T (x) = 0 is if

both the weights are zero. This will happen exactly when x · a = 0 and x · b = 0. Writing this

out, we have

1x1 + 2x2 + 0x3 − 1x4 = 0

2x1 + 1x2 + 3x3 + 4x4 = 0
→

[
1 2 0 −1

2 1 3 4

]
︸ ︷︷ ︸

A


x1

x2

x3

x4

 =

[
0

0

]
.

Therefore, Ker T = Nul A.



Question 5

(i) [5 points] Let A be an n×n matrix. Provide five statements that are equivalent to the statement

“A is invertible.” (Note: you do not need to justify your answer. However, you will lose 0.5 points

for each incorrect statement you list. So if you list 10 statements and only 5 are correct, you will

only earn 2.5 points.)

Solution: There are at least 20 correct statements, and they can be found in the “Invertible

Matrix Theorems”: Theorem 8, page 129 (chapter 2.3), the Theorem on page 267 (chapter 4.6),

and the Theorem on page 312 (chapter 5.2).

(ii) [5 points] Let B be an 8× 6 matrix. What is the smallest possible dimension of Nul B? What

is the largest possible dimension of Col B? Justify your answer.

Solution: The maximum number of pivots this matrix can have is 6. In this case, there will be

a pivot in each column and so no free variables. Thus, the smallest possible dimension of the

null space is 0. Similarly, there can be at most 6 rows with pivots, and so the largest possible

dimension of the column space is 6.

Question 6

(i) [5 points] Consider the matrix A =
1 1 −1 0 1

2 1 2 1 0

0 0 2 3 5

−1 0 0 1 2

 .
Find a basis for Col A.

Solution: To find a basis for the column space, we use row reduction to find the pivots, and

then take the pivot columns from the original matrix (not the row-reduced one):
1 1 −1 0 1

2 1 2 1 0

0 0 2 3 5

−1 0 0 1 2

→


1 1 −1 0 1

0 −1 4 1 −2

0 0 2 3 5

0 1 −1 1 3

→


1 1 −1 0 1

0 −1 4 1 −2

0 0 2 3 5

0 0 3 2 1



→


1 1 −1 0 1

0 −1 4 1 −2

0 0 2 3 5

0 0 0 −5/2 −13/2

 .



Thus, the first four columns are pivot columns, so the basis for the column space is


1

2

0

−1

 ,


1

1

0

0

 ,

−1

2

2

0

 ,


0

1

3

1


 .

(ii) [5 points] Consider the vectors

b1 =

 −1

2

1

 , b2 =

 1

−2

1

 , b3 =

 1

2

1

 x =

 1

0

1

 .
If B = {b1,b2,b3}, find the B-coordinate of the vector x.

Solution: We need to write x as a linear combination of the basis elements

c1b1 + c2b2 + c3b3 = x,

Which is equivalent to solving the linear system: −1 1 1 1

2 −2 2 0

1 1 1 1

→
 −1 1 1 2

0 0 4 4

0 2 2 2

→
 1 −1 −1 −2

0 1 1 1

0 0 1 1

→
 1 −1 0 −1

0 1 0 0

0 0 1 1



→

 1 0 0 −1

0 1 0 0

0 0 1 1

⇒ [x]B =

 −1

0

1

 .
Question 7

(i) [5 points] Consider the polynomials

p1(t) = 1 + t, p2(t) = 1− 2t, p3(t) = 1, p4(t) = t+ t2, p5(t) = 1 + 3t+ t2.

Define H = span{p1,p2,p3,p4,p5} ⊂ P2. Find a basis for H.

Solution: We need to determine which of the polynomials are independent. To do so, we write

them in terms of their coordinate vectors, put those into the columns of a matrix, and do row

reductions:  1 1 1 0 1

1 −2 0 1 3

0 0 0 1 1

→
 1 1 1 0 1

0 −3 −1 1 2

0 0 0 1 1

 .
Since the first, second, and fourth columns have pivots, the basis for H is {p1,p2,p4}.

(ii) Consider the transformation T : P2 → P3 defined by T (p(t)) = tp(t) − p(t). (Part (b) on next

page.)



(a) [5 points] Determine the matrix for the transformation relative to the bases {1, t, t2} for P2

and {1, 2 + t,−1 + t2, t3} for P3.

Solution: The formula for the matrix is

M = [[T (b1)]C[T (b2)]C[T (b3)]C],

where the basis B is given by b1 = 1, b2 = t, and b3 = t2, and the basis C is given by c1 = 1,

c2 = 2 + t, c3 = −1 + t2, and c4 = t3. First, we find

T (1) = t− 1, T (t) = t2 − t, T (t2) = t3 − t2.

Now we need to find the C-coordinate of these polynomials. Consider first T (1) = t − 1.

We need to write t− 1 = x1c1 + x2c2 + x3c3 + x4c4. This is equivalent to solving the linear

system 
1 2 −1 0 −1

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

→


1 0 0 0 −3

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

 .
For T (t) = t2 − t, we solve

1 2 −1 0 0

0 1 0 0 −1

0 0 1 0 1

0 0 0 1 0

→


1 0 0 0 3

0 1 0 0 −1

0 0 1 0 1

0 0 0 1 0

 ,
and for T (t2) = t3 − t2 we solve

1 2 −1 0 0

0 1 0 0 0

0 0 1 0 −1

0 0 0 1 1

→


1 0 0 0 −1

0 1 0 0 0

0 0 1 0 −1

0 0 0 1 1

 .
Therefore,

M = [[T (b1)]C[T (b2)]C[T (b3)]C] =


−3 3 −1

1 −1 0

0 1 −1

0 0 1

 .
(b) [5 points] Find a basis for the range of T .

Solution: Notice that

T (a0 +a1t+a2t
2) = t(a0 +a1t+a2t

2)− (a0 +a1t+a2t
2) = a0(t− 1) +a1(t

2− t) +a2(t
3− t2).

Therefore, the basis is {(t− 1), (t2 − t), (t3 − t2)}. (We know this is a basis because we can

check that these polynomials are all independent and the dimension of the range can’t be

bigger than 3, since the matrix of the transformation can have at most three pivots.)



(iii) [5 points] Is the following is an inner product on P2? If so, prove it. If not, explain why not.

〈p1,p2〉 = p′1(1)p2(0).

Solution: This is not an inner product. To explain why, we just need to show that it violates

any of the four properties that an inner product must have. For example, the fourth one says

〈p1,p1〉 = 0 if and only if p1 = 0.

This fails, as can be seen by choosing p1(t) = t2. We have

〈p1,p1〉 = (2)(0) = 0,

but p1(t) 6= 0. Alternatively, you could show that it fails the first property,

〈p1,p2〉 = 〈p2,p1〉.

If we let p1(t) = t and p2(t) = t+ 1, then

〈p1,p2〉 = 1(1) = 1 6= 0 = (1)(0) = 〈p2,p1〉.

Note, however, that it does satisfy the second and third properties of an inner product (about

distributing addition and scalar multiplication).

Question 8

(i) [5 points] Prove that, if A and B are n×n matrices and the columns of B are linearly dependent,

then the columns of AB are linearly dependent.

Solution: We have a theorem that tells us that the columns of a matrix are linearly dependent

if and only if the matrix is invertible, and that a matrix is invertible if and only if its determinant

is nonzero. Thus, the columns are dependent if and only if the determinant is zero. Hence,

det B = 0. Also,

det AB = det Adet B = det A(0) = 0.

Therefore, the columns of AB must be dependent as well.

(ii) [5 points] Is it possible for a matrix to be diagonalizable but not invertible? Explain why or

why not.

Solution: Yes, this is possible. For example, it the matrix is n×n and has n distinct eigenvalues,

then we know the matrix is diagonalizable. However, if one of those eigenvalues is 0, the its

determinant will be zero. This can be seen, for example, using

det A = det PDP−1 = det P (det D)det P−1 = det D = product of diagonal entries = 0,



since the diagonal entries of D are just the eigenvalues, one of which is zero. Hence, the matrix

would not be invertible. An example of this would be an upper triangular matrix like 1 2 −1

0 0 3

0 0 3

 ,
which has eigenvalues 1, 0, 3 and determinant (1)(0)(3) = 0.

(iii) [5 points] Let W be a subspace of Rn. Prove that W⊥ is a subspace of Rn.

Solution: We check the three conditions of a subspace, using the definition

W⊥ = {u ∈ Rn : u · v = 0 for all v ∈ W}.

(a) 0 · v = 0 for all v ∈ W , so 0 ∈ W⊥.

(b) If u1,u2 ∈ W⊥, then (u1 + u2) · v = u1 · v + u2 · v = 0 + 0 = 0, so u1 + u2 ∈ W⊥.

(c) If c ∈ R and u ∈ W⊥, then (cu) · v = c(u · v) = c(0) = 0, so cu ∈ W⊥.

Thus, W⊥ is a subspace.

(iv) [5 points] Let T : V → W , be a linear transformation. Let B = {b1, . . .bn} and C = {c1, . . . cm}
be bases for V and W , respectively. Let M be the matrix of the transformation relative to these

bases. Prove that if rank M = m then the transformation T is onto.

Solution: We need to show that, given any w ∈ W , there exists a v ∈ V such that T (v) = w.

Let [w]C = y. The matrix M is m × n and has rank m, which means that it has a pivot in

every row, hence the transformation x→Mx is onto. Therefore, there is some x ∈ Rn such that

Mx = y. Define v ∈ V to be the vector with coordinates [v]B = x. Then, we have T (v) = w as

needed. You can see this more explicitly by writing

M =

 M11 . . . M1n

...
...

...

Mm1 . . . Mmn

 ,
which implies

T (v) = T (x1b1 + · · ·+ xnbn) = x1T (b1) + · · ·+ xnT (bn)

= x1(M11c1 + · · ·+Mm1cm) + · · ·+ xn(M1nc1 + · · ·+Mmncm)

= (x1M11 + · · ·+ xnM1n)︸ ︷︷ ︸
1st row of Mx

c1 + · · ·+ (x1Mm1 + · · ·+ xnMmn)︸ ︷︷ ︸
mth row of Mx

cm

= y1c1 + · · ·+ ymcm

= w.


