
Take Home Final, Due Monday, December 13, by Noon (No exceptions!!!)

Instructions: You may consult with your notes and any other books or references you like. You can also
come ask me for hints if you get stuck. However, you may not consult with any other person.

1) (An alternate proof of the existence of solutions) Consider

ẋ = f(x, t), x ∈ Rn,

where f is Lipschitz in the region R = {(x, t) : |t− t0| ≤ α, |x− x0| ≤ β}. Suppose |f(x, t)| ≤M on R

and let δ = min{α, β/M}. Prove that there exists a solution to the ODE with initial condition (x0, t0)
that is defined on the interval |t− t0| ≤ δ using the following steps.

(a) Define the sequence of approximate solutions

x0(t) = x0, xn(t) = x0 +
∫ t

t0

f(xn−1(s), s)ds, n = 1, 2, 3, ...

Prove that, for all t such that |t − t0| ≤ δ, |xn(t) − x0| ≤ β for all n. Thus, the approximations
stay within R for such t.

(b) Show the sequence has a limit in the space of continuous functions, C0([t0 − δ, t0 + δ]), with the
sup norm. (You may use the fact that that function space is complete.)

(c) Show the limiting function is a solution to the ODE.

Note that this procedure also provides a way to approximate solutions.

(d) Apply the above approximation procedure to ẋ = Ax, where A ∈ Rn×n. What do you find?

2) The linearized Hill’s equations for the relative motion of two satellites with respect to a circular reference
orbit about the earth are given by

ẍ− 2nẏ − 3n2x = 0,

ÿ + 2nẋ = 0,

z̈ + n2z = 0,

where n is a physical constant. There is a five-dimensional manifold in the phase space corresponding
to periodic orbits. Determine this manifold explicitly and explain what happens to solutions that are
not on it. (It is OK to work in C6 rather than R6.)

3) Consider the ODE
ẋ = x− y + e−t, ẏ = x+ y + e−t

(a) Use variation of parameters to write down the solution with initial condition (x0, y0) at t = 0.

(b) Fine the set of initial conditions such that the solution satisfies (x(t;x0), y(t; y0)) → (0, 0) as
t→∞.

4) (a) Find a smooth function f : R → R such that solutions to the scalar equation ẋ = −x + f(t) are
not bounded for all t ≥ 0.
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(b) Find a smooth function f : R→ Rn such that there exists a solution to the n-dimensional equation
ẋ = Ax+f(t), where all eigenvalues of A have negative real part, that is not bounded for all t ≥ 0.

(c) Prove that if the n-dimensional system ẋ = Ax + f(t), for smooth f : R → Rn and A having
eigenvalues with negative real part, has a solution that is bounded for all t ≥ 0, then all solutions
are bounded for all t ≥ 0.

5) Consider the ODE
ẋ = Ax+B(t)x+ g(x, t), x ∈ Rn.

Suppose that all eigenvalues of A have negative real part, the matrix B(t) is continuous for all t with∫∞
0 ‖B(t)‖dt <∞, g ∈ C1(R×R+), and there exist constants a, k > 0 such that |g(x, t)| ≤ k|x|2 for all
t ≥ 0 and for all x such that |x| ≤ a.

Prove that the origin is asymptotically stable using the following steps:

(a) First show that, given any ε > 0 (sufficiently small), there exists a τ, δ > 0 such that, for all
x0 ∈ Bδ(0), the corresponding solution satisfies |x(t;x0)| ≤ ε for all t ∈ [0, τ ].

(b) Next assume that, given a particular x0 ∈ Bδ(0), T is the first time such that |x(T ;x0)| = ε < a.
Use the integral form of solutions and Gronwall’s inequality to derive an estimate for |x(t;x0)| for
all t ∈ [0, T ].

(c) Use your estimate to show that, in fact, |x(T ;x0)| ≤ ε/2 if ε and δ are chosen sufficiently small.
Conclude that no such T exists, so |x(t;x0)| < ε for all t ≥ 0 if ε is small enough.

(d) Explain why the work you have done so far implies that the origin is not only stable, but also
asymptotically stable.

Remark: If B were zero, this would just be asking you to show that a linearly asymptotically stable
fixed point is also nonlinearly asymptotically stable, if the nonlinearity is sufficiently nice. However,
we already know this is true from, for example, Hartman-Grobman or the invariant manifold theorem,
at least in the case where g is independent of t. Thus, this problem is asking you to prove that
nonautonomous (non)linear perturbations that are sufficiently nice also cannot destroy asymptotic
stability of a fixed point.

6) Consider the ODE

ẋ = α− x2 + xy

ẏ = −2y + x2 + y2.

(a) Use the theorem we proved using Lyapunov-Schmidt reduction to show that there is a saddle node
bifurcation at (x, y, α) = (0, 0, 0).

(b) Using a Taylor series expansion, determine an approximate formula for the center manifold (up to
and including all quadratic terms).

(c) Draw the phase plane near the origin for α > 0, α = 0, and α < 0.

7) Consider the planar system

ẋ = −y − xy + 2y2

ẏ = x− x2y.

Use the theory we have developed regarding Hopf bifurcations to determine whether or not the origin
is asymptotically stable.
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