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QUALITATIVE ANALYSIS OF INSECT OUTBREAK SYSTEMS: 
THE SPRUCE BUDWORM AND FOREST 

BY D. LUDWIG*, D. D. JONESt AND C. S. HOLLINGt 

* Institute of Applied Mathematics and Statistics and t Institute of Resource Ecology, 
University of British Columbia, Vancouver, B.C., Canada V6T 1 W5 

SUMMARY 

(1) A procedure has been described for the qualitative analysis of insect outbreak 
systems using spruce budworm and balsam fir as an example. This consists of separating 
the state variables into fast and slow categories. 

(2) The dynamics of the fast variables are analysed first, holding the slow variables 
fixed. Then the dynamics of the slow variables are analysed, with the fast variables held 
at corresponding equilibrium values. If there are several such equilibria, there are several 
possibilities for the slow dynamics. 

(3) In the case of the budworm, this analysis exhibits the possibility of 'relaxation 
oscillations' which are familiar from theory of the Van der Pol oscillator. In more modern 
terminology, the jumps of the system are governed by a cusp catastrophe. 

(4) Such an analysis can be made on the basis of qualitative information only, but 
additional insight emerges when parameter ranges are defined by the kind of information 
typically available from an experienced biologist. 

(5) At the least this can be a guide to assess subsequent priorities for both research 
and policy. 

INTRODUCTION 

As in all sciences, ecology has its theoretical and its empirical school. Perhaps because of 
the complexity and variety of ecological systems, however, both schools seem, at times, 
to have taken particularly extreme positions. And so the empiricists have viewed the 
theoretical school as designing misleading constructs and generalities with no relation to 
reality. The theoreticians, in their turn, have viewed the empirical school as generating 
mindless or mind-numbing analysis of specifics and minutiae. 

This paper aims to apply some of the tools of the theoretician-specifically the qualita- 
tive theory of differential equations-to one of the most detailed and exhaustive empirical 
studies of an ecological system that has ever been attempted-the spruce budworm/forest 
interaction in eastern North America. 

It has two purposes; the first is to demonstrate how far these mathematical tools can 
be pushed to give insight when information is available for a specific system at three 
different levels. The first level is purely qualitative and non-numerical. The second 
includes rough estimates of parameter values that are typically known by the informed 
biologist if he is asked the appropriate question. The third includes highly detailed 
quantitative data that, while rarely available, are provided in the extensive monograph 
of spruce budworm dynamics prepared by Morris (1963). 
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The development of the analysis described here in fact followed precisely that sequence. 
The first version of the equations was prepared by one of us (Ludwig) after hearing a I-h 
lecture that was totally non-numerical and qualitative. Thereafter he relied on a one-half 
page summary description of the system (in Holling 1973, p. 14). After an afternoon 
discussion some modest modifications were made (particularly Step 5, in what follows) 
to complete the qualitative analysis as far as it could go. 

We then moved to the next level of very general and easily obtained quantitative 
information. Our rule was to confine ourselves to guesses of parameter values that an 
informed entomologist or forester might reasonably be expected to have prior to the 
establishment of Morris' spruce budworm project. 

The final step was to use the data from that detailed study to see what additional 
insights were added. 

The second purpose emerges from that last step. Morris' detailed study has indepen- 
dently provided the basis for the development and rigorous testing of a simulation model 
(Jones 1976). Hence, the final set of differential equations, their parameter estimates, and 
the topological analysis could be directly compared to the functional content and 
behaviour of the full simulation model. The key question was to determine if there was 
value in compressing the detailed explanation contained in a simulation model into an 
analytically tractable set of three differential equations. 

The paper is organized into the three levels of information. Since the approach seems 
to have considerable generality, we have also identified the specific steps as a kind of 
'how-to-do-it' sequence. 

LEVEL 1: QUALITATIVE INFORMATION 

Step 1: divide the state variables into fast and slow categories 
Associated with each state variable is a characteristic time interval over which appreci- 

able changes occur. The budworm can increase its density several hundred fold in a few 
years. Therefore, in a continuous representation of this process, a characteristic time 
interval for the budworm is of the order of months. Parasites of the budworm may be 
assigned a similar, or somewhat slower scale. Avian predators may alter their feeding 
behavior (but not their numbers) rather quickly and may be assigned a fast time scale 
similar to budworm. The trees cannot put forth foliage at a comparable rate, however: 
a characteristic time interval for trees to completely replace their foliage is on the order 
of 7-10 years. Moreover, the life span of the trees themselves is between 100 and 150 

years, in the absence of budworm, so that their generation time is measured in decades. 
We first conclude, therefore, that the minimum number of variables will include budworm 
as a fast variable and foliage quantity (and perhaps quality) as a slow variable. 

In the case of the budworm, the main limiting features are food supply, and the effects 
of parasites and predators. In order to describe the former, we choose a logistic form: if 
B represents the budworm density, then, in the absence of predation B satisfies 

dB B 
= rBB 1- J. (I) 

dt KB 

The carrying capacity KB is assumed to depend upon the amount of foliage available. 
The logistic equation is chosen here because it involves only two parameters. The later 
mathematical analysis is facilitated by this choice, but the results would be analogous if 
any other form of self-limited growth were assumed. 
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The effect of predation is included by subtracting a term g(B) from the right-hand side 
of eqn (1). A feature of predators is that their effect saturates at high prey densities; i.e. 
there is an upper limit to the rate of budworm mortality due to predation. The consump- 
tion of prey by individual avian predators is limited by saturation, and the number of 
birds is limited by such factors as territorial behaviour. Similarly, parasites have a low 
searching capacity that prevents a rapid build-up of their numbers during an outbreak. 
Thus their impact does not appreciably increase with increasing budworm density. 

We conclude that g(B) should approach an upper limit / as B- oo. This limit / may 
depend upon the slow variables (i.e. the forest variables), but that possibility is deferred 
until Step 5, below. There is also a decrease in the effectiveness of predation at low 
budworm densities. This is a characteristic of a number of predators and arises in birds 
in part because of the effects of learning. Birds have a variety of alternative foods, and 
when one of them is scarce, that particular prey item is encountered only incidentally. 
As the item becomes more common, however, the birds begin to associate reward with 
that prey and they begin to search selectively for it. Thus we may assume that g(B) 
vanishes quadratically as B->O. A convenient form for g(B) which has the properties of 
saturation at a level / and which vanishes like B2 is 

B2 
g(B) = 2 +2 (2) 

This represents a Type-III S-shaped functional response (Holling 1959). The parameter 
a in eqn (2) determines the scale of budworm densities at which saturation begins to take 
place. The addition of vertebrate predation to eqn (1) thus produces a total equation for 
the rate of change of B: 

dB ( B B2 
d- --=rB B 

) 2B2 (3) 
Q.t \ ~ ^/ ^(3) 

We emphasize that this particular form was chosen to require as few parameters as 
possible; our final conclusions are not dependent upon the specific form of the equation, 
but only upon its qualitative properties. 

Step 2: analyse the long-term behaviour of the fast variables when the slow variables are held 
fixed 

In the present case, this analysis is relatively simple, since only one fast variable is 
considered explicitly. In more complicated situations, phase plane or other more elaborate 
methods might be required (Bazykin 1974). The first step in the analysis is to identify 
the equilibria (where dB/dt = 0) and determine their stability. Equilibrium values of B 
must satisfy 

rs B\ B2 
KB-) \ y2 + Bs rBB(--)-/_B2 =0. (4) 

Clearly, B = 0 is one such value. If B is near zero, the first term (growth) dominates the 
second term (predation). The derivative dB/dt is positive for B slightly greater than zero, 
and therefore B = 0 is an unstable equilibrium. The remaining roots of eqn (4) satisfy 

r K +B 0. (5) 
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ID. LUDWIG et al. ID. LUDWIG et al. 317 317 



Spruce budworm andforest Spruce budworm andforest 

The number of roots for eqn (5) depends upon the four parameters rB, KB, P, and a. The 
next step is to combine some of these parameters where possible by scaling. 

Step 2(a): Scale the equations to reduce the number of parameters 
We introduce the scaled budworm density ,t = B/a. Equation (5) takes the form 

r( 1-K )-2(l+ 0d)= (6) 

We multiply through by a//f and (6) becomes 

P/(1- K )- 1 2 =0. (7) 

Now eqn (7) involves just two combinations of the original four parameters. We set 

ctrB KB R = Q = (8) 3' c 

and rewrite eqn (7) as 

R(1 
2 (9) 

The interpretation of eqn (9) is both simple and important. The left-hand side of eqn (9) 
is the per capita growth rate of the scaled variable u (with respect to a scaled time t' = 

P/x t). The right-hand side of eqn (9) is the per capita death rate due to predation, also in 
scaled variables. The points where these curves intersect are the non-zero equilibria for 
u (and equivalently, B). The two sides of eqn (9) are plotted in Fig. 1. The left-hand side 
is a straight line, with intercepts R and Q. The right-hand side is a curve which passes 
through the origin and is asymptotic to the , axis at high densities. 

Step 2(b): Examine the equilibria of the fast variables as a function of the parameter values 

The equilibria for the budworm variable are defined where the straight growth curve 

R 

/ I \ \I 

/"- F/c H+ Q 

(B_) (BC) () (8) 

FIG. 1. The growth rate (a) [R(1 -p/Q)] and predation loss rate (b) Lu/(1 + 2)] of the scaled 
budworm density A. Stable equilibria occur at p- and #+; an unstable equilibrium is at It. 
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intersects the peaked predation curve (Fig. 1). The number and location of these inter- 
sections depends on the two parameters R and Q. In this section we examine the nature 
of this dependence. 

Equation (9) provides a minimum of one and a maximum of three equilibria. A case 
of three is shown in Fig. 1 with the lower, middle, and upper values labelled as u_t, p, 
and /t+, respectively. Although eqn (9) and Fig. 1 are, strictly speaking, in terms of 
the scaled variable # we shall henceforth substitute the original variable B, keeping in 
mind that they differ only by a constant factor, l/xa. 

It should be clear from Fig. 1 that the locations of the intersections depend upon the 
relative positions of the growth and predation curves. In this particular choice of scaling, 
both of the system parameters, R and Q, appear in the straight (growth) function. This 
makes it easier to visualize how changes in R and Q will change the number and location 
of the equilibria. 

Although we call R and Q parameters, we assume that they may turn out to be func- 
tions of the slow variables of forest development. The original purpose in separating 
slow from fast variables was to allow us temporarily to treat the slow ones as parameters. 
The definition of 'fast' is synonymous with the assumption that for any (R, Q) the value 
of B will converge rapidly to one of the stable equilibria, either B_ or B+. 

The dynamics of the system can be visualized in Fig. 1 by imagining that initially 
B = B_ and R is low. R is then slowly increased while keeping Q fixed. That is, the 
straight line is rotated clockwise about its right-hand intercept. The values of B_ and B, 
will converge in an accelerating manner while B+ increases only slightly. At the value 
of R where B_ and Bc coincide, the lower equilibrium is lost and the next increase in R 
sends the insect density to B+. If we now reverse the path of R, the level of B+ will 
decrease very slowly, even beyond the time where B_ and B, are recreated. It is only 
when R assumes even lower values that Bc and B+ coincide and the upper equilibrium 
is lost. Very similar geometric arguments would illuminate the effects of changing Q. 

It is clear that all the action occurs when the intermediate, unstable equilibrium, Bc, 
coalesces with either the upper or the lower equilibrium. When this happens the density 
may either jump from a low value to a high one or the reverse. This behaviour is similar 

R A 

v~rnl~\ up I Root 

i \ c^)P 
(Bc =-) 

~\ ~ 3 Roots 

I Root 

(Bc=8+) 

0 
FIG. 2. The location of qualitative behaviour points in terms of the parameters R and Q. 
Regions with one root have one stable equilibrium. The region with three roots has two 
stable and one unstable equilibrium (as in Fig. 1). The critical curves separating these 

regions locate conditions where the budworm density changes radically. 
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to the sudden outbreaks and collapse that characterize the spruce budworm populations. 
The equilibria B_ and B+ correspond to budworm limitation by predators and food, 
respectively. As forest conditions improve, budworm growth exceeds the control by 
predators and an outbreak occurs. On the other hand, if the forest is destroyed far 
enough, the predators can again regain control. Note that the conditions under which 

upward and downward jumps occur may be quite different since the critical combinations 
of R and Q may be widely separated. 

The critical values of R and Q are where two roots of eqn (9) coalesce and disappear. 
This translates into the two critical curves of Fig. 2. (The details of the calculation are 
shown in the Appendix.) The upper curve is when BC and B_ join and the lower equili- 
brium is lost, and the lower curve is for B. = B+, which eliminates the upper equilibrium. 

The point where both critical curves meet is that unique combination of R and Q 
where B_ = Be = B+. 

The two critical curves define a critical region, inside of which there are three 

equilibria-two stable separated by one unstable. Above this region there is one (high) 
equilibrium and below it there is one (low). The critical region can be thought of as two 

overlapping surfaces of stable equilibria. An R-value moving upward with B = B_ 
must pass completely through the critical region before the upward jump occurs. It 
must then return completely through, past the lower curve, before B collapses. 

The type of phenomena we have presented readily fits into the arena of Catastrophe 
Theory (Thom 1975). The application of this theory to dynamical systems can be found 
in Zeeman (1972, 1976) and Jones (1975). The particular case of two parameters and one 
fast variable has been given the name of a 'cusp catastrophe'. In fact a cusp appears in 

Fig. 2 where the two critical curves join. The important generality provided by that body 
of theory is that we may use all the lessons learned from other 'cusp catastrophies' in 
our current case. Thom's theory says that, at the appropriate qualitative level, all such 

systems are the same. The equivalence, seated in deep mathematical theorems, is in 

harmony with our opening assertion that the exact form of our equations was not 

important so long as they met certain biologically necessary, qualitative criteria regarding 
their shape. 

Step 3: Decide upon the response of the slow variables when the fast variables are heldfixed 

In order to characterize the state of the balsam fir forest, one ought to keep track of 
the age or size distribution of the trees, their foliage quantity, and their physiological 
condition. However, periodic budworm outbreaks synchronize the development of the 
trees, and the age distribution may be replaced by a single variable S, which gives the 

average size of the trees. S will be identified with the total surface area of the branches 
in a stand. Similarly, the condition of the foliage and health of the trees will be sum- 
marized in a single variable E, which may be analogously identified with an 'energy 
reserve'. 

Since the maximum value of surface area is bounded, we shall choose a logistic form 
for S, 
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which allows S to approach its upper limit, Ks. The additional factor KE/E is inserted 
into eqn (10) because S does not inevitably increase under conditions of stress; surface area 

may decline through the death of branches or even whole trees. However, during endemic 
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FIG. 3. The plane of the forest variables S and E. When there are few budworm the isoclines 

for no change in S and E intersect at the two points C and D. 

times E will be close to its maximum value KE and S will grow to its maximum, Ks. 
We assume the energy reserve E also satisfies an equation of the logistic type: 

dE I\B 
T 4rEE-K)-P (1 ) dt K S 

If B is small, then E will approach its maximum KE. The second term on the right-hand 
side of eqn (11) describes the stress exerted on the trees by'the budworm's consumption of 
foliage. This stress is proportional to B/S. Since B has units of number per acre and S 
has units of branch surface area per acre, B/S is the number of budworms per branch. 
This is the natural density measure for the feeding process. The factor P may be regarded 
as constant for our present purposes. 

Step 4: Analyse the long-term behaviour of the slow variables, with the fast variables held 
at their corresponding equilibria 

The isoclines for the systems (10), (11), are obtained by setting their left-hand sides 
equal to zero. Thus dS/dt = if 

Ks 
S= E, or ifS=0 (12a) 

KE 

and dE/dt = if 

PB PBKE 1 
S = x (12b) 

rEE(1 
E) 

,' 
E(KE-E) 

These curves are sketched in Fig. 3, for the case when B, and therefore PBKE/rE, is small 
and there are two equilibria for S and E at C and D. The point C is a saddle point, and 
hence unstable. There is a single pair of trajectories which reach C and which form a 
separatrix (heavy arrows). If E and S start out to the right of the separatrix, then (E,S) 
will approach D as t- oo. If E and S start out to the left of the separatrix, they move off 
into the direction of E = - oo. While this is not realistic, it is a consequence of the form 
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FIG. 4. The plane of the forest variables S and E. When there are many budworm the iso- 
clines for no change in S and E separate and all trajectories head toward low E values. 

of eqns (10) and (11). In full completeness we expect E to be limited by E = 0 and the origin 
of Fig. 3 would be a stable equilibrium. In a later section we shall patch up eqns (10) 
and (11) for low values of E and S. For the time being it is enough to know whether the 
point heads towards point D or toward the left. In the latter case we argue on logical 
grounds that it will eventually reach the origin. Even then we could conceptualize a 
source term that would regenerate a new forest after the old had collapsed. This circum- 
stance is beyond the time frame of our present model. 

Now if B increases, then the U-shaped isocline will move up, and the points C and D 
will approach each other, and the region to the left of the separatrix will take up more 
and more of the (E,S) plane. Finally, the U-shaped curve can move entirely above the 
straight S isocline, as shown in Fig. 4. 

Now every trajectory converges to the left, presumably to the origin. 

Step 5: Combine the preceding results to describe the behaviour of the complete system and 
identify the needs for additional coupling of the equations 

Figures 2 and 3 imply the possibility of periods during which budworm populations 
are low and stable (at B_). This condition holds if such populations start at low values 
and the system resides below the upper critical curve of Fig. 2. S and E will increase to 
the equilibrium condition at point D, noted in Fig. 3. The budworm will be limited 
primarily by predation. 

However, if the upper branch of the critical curve of Fig. 2 is crossed, budworm 
populations will begin to increase on a fast time scale towards B+ If this happens, Fig. 3 
must give way to Fig. 4. Given a complete separation of the two isoclines as shown in 
Fig. 4, both E and S will decrease. If, as a consequence, the lower critical curve (Fig. 2) 
is crossed, there will be a rapid decline of budworm density. The particular pattern 
described above represents one complete outbreak/decline cycle of the budworm/balsam 
interaction. 

A number of other possibilities also exist, however. For example, if budworm popula- 
tions are partially controlled, the two isoclines of Fig. 3 might never separate to the 
extent shown in Fig. 4. In such a case, the complete system would reach an equilibrium, 
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FIG. 4. The plane of the forest variables S and E. When there are many budworm the iso- 
clines for no change in S and E separate and all trajectories head toward low E values. 

of eqns (10) and (11). In full completeness we expect E to be limited by E = 0 and the origin 
of Fig. 3 would be a stable equilibrium. In a later section we shall patch up eqns (10) 
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point heads towards point D or toward the left. In the latter case we argue on logical 
grounds that it will eventually reach the origin. Even then we could conceptualize a 
source term that would regenerate a new forest after the old had collapsed. This circum- 
stance is beyond the time frame of our present model. 

Now if B increases, then the U-shaped isocline will move up, and the points C and D 
will approach each other, and the region to the left of the separatrix will take up more 
and more of the (E,S) plane. Finally, the U-shaped curve can move entirely above the 
straight S isocline, as shown in Fig. 4. 

Now every trajectory converges to the left, presumably to the origin. 

Step 5: Combine the preceding results to describe the behaviour of the complete system and 
identify the needs for additional coupling of the equations 

Figures 2 and 3 imply the possibility of periods during which budworm populations 
are low and stable (at B_). This condition holds if such populations start at low values 
and the system resides below the upper critical curve of Fig. 2. S and E will increase to 
the equilibrium condition at point D, noted in Fig. 3. The budworm will be limited 
primarily by predation. 

However, if the upper branch of the critical curve of Fig. 2 is crossed, budworm 
populations will begin to increase on a fast time scale towards B+ If this happens, Fig. 3 
must give way to Fig. 4. Given a complete separation of the two isoclines as shown in 
Fig. 4, both E and S will decrease. If, as a consequence, the lower critical curve (Fig. 2) 
is crossed, there will be a rapid decline of budworm density. The particular pattern 
described above represents one complete outbreak/decline cycle of the budworm/balsam 
interaction. 

A number of other possibilities also exist, however. For example, if budworm popula- 
tions are partially controlled, the two isoclines of Fig. 3 might never separate to the 
extent shown in Fig. 4. In such a case, the complete system would reach an equilibrium, 
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with B, S, and E all at relatively high values. This corresponds to the phenomenon of 
'perpetual outbreak' that has been observed in New Brunswick as a consequence of 
insecticide spraying. Conditions under which this may occur will be given below. 

Moreover, the above patterns are-only generated if the critical curves are crossed in a 
particular direction. That depends on the movement across the (R,Q) plane of Fig. 2. In 
the present form R and Q seem to be constants. As a first departure we expect that Q 
would increase as the forest grew. Movement in the R direction would seem to be possible 
if an external driving variable changed one of its component parameters. For example, 
weather might increase rB, the instantaneous rate of increase of budworm, enough to 
carry R across the upper curve in Fig. 2. 

However, for sake of clarity, and our step-by-step format, we have left the issue of 
careful coupling of these equations to this point. 

Let us first determine whether the budworm eqn (3) has any terms that should be 
expressed as functions of the slow variables. In order to do this, we refine our interpreta- 
tion of B and S to represent quantities per acre of forest. Since the amount of foliage 
available per acre is roughly proportional to S, KB should be proportional to S: 

KB= K'S. (13) 

Thus KB measures carrying capacity in larvae per acre, while K' measures carrying 
capacity in larvae per unit of branch area. 

Similarly, terms in the predation rate (eqn 2) are also dependent upon the branch 
surface area. Predators, such as birds, search units of foliage, not acres of forest, so that 
the relevant density is larvae per unit of surface area. Thus the half-saturation density 
for B is also proportional to S: 

o = a'S. (14) 

The new parameter c' is measured in larvae per unit of branch area. 
If eqns (13) and (14) are substituted into eqn (8), the result is 

lrB K'(15) R= =-S, Q=, (1S) 

Note that Q is independent of S, while R is proportional to S. When the forest is young, 
R will be small, but Q may be quite large. Thus R and Q will be below the critical region 
in Fig. 2. Budworm densities will be low, not only in larvae per acre, but in larvae per 
branch. The densities per branch will be low because the predators will find it easy to 
search the small number of branches per acre. As the forest grows, control by predators 
becomes more uncertain, because of satiation of their appetites. Finally, the upper 
critical curve in Fig. 2 will be crossed and control by predators becomes ineffective as B 
rapidly increases to a high level (B+) being limited now by food. 

The effect of a rapid increase in B may be to change the dynamics of the slow variables 
from that depicted in Fig. 3 to that in Fig. 4. If this happens, the budworm outbreak 
will lead to a collapse of the forest. From eqns (3) and (13), we see that B/S is close to K' 
(B _ KB) during a budworm outbreak. Can the forest reach an equilibrium in that case ? 
Equation (12b) may be rewritten as 

E E= PB PK' 
-E1-- =-. r (16) 

KE \ E rEKE S rEKE 
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if an external driving variable changed one of its component parameters. For example, 
weather might increase rB, the instantaneous rate of increase of budworm, enough to 
carry R across the upper curve in Fig. 2. 

However, for sake of clarity, and our step-by-step format, we have left the issue of 
careful coupling of these equations to this point. 

Let us first determine whether the budworm eqn (3) has any terms that should be 
expressed as functions of the slow variables. In order to do this, we refine our interpreta- 
tion of B and S to represent quantities per acre of forest. Since the amount of foliage 
available per acre is roughly proportional to S, KB should be proportional to S: 

KB= K'S. (13) 

Thus KB measures carrying capacity in larvae per acre, while K' measures carrying 
capacity in larvae per unit of branch area. 
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The new parameter c' is measured in larvae per unit of branch area. 
If eqns (13) and (14) are substituted into eqn (8), the result is 
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Note that Q is independent of S, while R is proportional to S. When the forest is young, 
R will be small, but Q may be quite large. Thus R and Q will be below the critical region 
in Fig. 2. Budworm densities will be low, not only in larvae per acre, but in larvae per 
branch. The densities per branch will be low because the predators will find it easy to 
search the small number of branches per acre. As the forest grows, control by predators 
becomes more uncertain, because of satiation of their appetites. Finally, the upper 
critical curve in Fig. 2 will be crossed and control by predators becomes ineffective as B 
rapidly increases to a high level (B+) being limited now by food. 

The effect of a rapid increase in B may be to change the dynamics of the slow variables 
from that depicted in Fig. 3 to that in Fig. 4. If this happens, the budworm outbreak 
will lead to a collapse of the forest. From eqns (3) and (13), we see that B/S is close to K' 
(B _ KB) during a budworm outbreak. Can the forest reach an equilibrium in that case ? 
Equation (12b) may be rewritten as 

E E= PB PK' 
-E1-- =-. r (16) 

KE \ E rEKE S rEKE 
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Since the left-hand side of eqn (16) is dimensionless, we denote the right-hand side as 
a dimensionless parameter M: 

PK' 
= ' (17) 

rEKE 

M is easily interpreted as the ratio of a rate of energy consumption by budworm (by 
eating foliage) to the rate of energy production by the trees. The maximum possible value 
of the left-hand side of eqn (16) is 1/4. We conclude that no equilibrium is possible if 
M> 1/4. The preceding analysis indicates that an equilibrium is likely if M< 1/4. 

Now, assuming that M> 1/4, a budworm outbreak must lead to a decline of the forest. 
Since R depends upon S, eventually the lower branch of the critical curve in Fig. 2 will 
be crossed, and the budworm population must collapse. However, it is not clear whether 
the budworm collapse will occur in time to save the forest from complete destruction. 
On the other hand, if the budworm density begins collapsing too soon, the effect on the 
forest may be reduced enough to establish a stable equilibrium for all three variables. In 
fact, the numerical values of the parameters in our equations will determine which of 
these behaviours will occur. 

When realistic parameter values are substituted into our eqns (3), (10) and (11), 
budworm outbreaks lead to collapse of the forest. That is, E and S decline sharply during 
a budworm outbreak, and eventually E becomes negative. Negative values of E are 
unrealistic, and our model is not valid when extensive tree deaths occur. This situation can 
be remedied in two ways. The first (simplest) way is to recognize that the system eqns (3), 
(10) and (11) represents a cohort of trees and its resident budworm population. This 
cohort is only capable of going through one severe decline. If this were to happen, then 
the model must be started again with a small value of S and with E near KE in order to 
generate the next outbreak. Regeneration from one cohort of trees to the next is a 
discontinuous process, and one might as well represent this fact explicitly in the model. 

On the other hand, for mathematical convenience, it might be desirable to devise a 
system of differential equations which adjusts the behaviour of E and S for small values 
in order to simulate the growth of a new cohort. We have no need for such an adjustment 
in the present investigation, but we shall indicate how it might be carried out. 

According to eqn (13), the carrying capacity for the budworm is independent of E, 
i.e. the trees put forth the same amount of foliage, regardless of their physiological 
condition. It would seem more reasonable that K' should depend upon E, and that K' 
should decline rather sharply if E falls below a certain threshold TE. Therefore, we may 
replace eqn (13) by 

E2 
K = K'S (18) 

TE2 + E2 

If TE is small compared with KE, then KB will show a sharp decline near E = TE. A 
corresponding change should also be made in eqn (11). We may set 

E2 
P=PT2 + E2 (19) 

because the stress on the trees is related to the amount of foliage consumed. 
The resulting equations are as follows: 

Since the left-hand side of eqn (16) is dimensionless, we denote the right-hand side as 
a dimensionless parameter M: 
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= ' (17) 

rEKE 
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a budworm outbreak, and eventually E becomes negative. Negative values of E are 
unrealistic, and our model is not valid when extensive tree deaths occur. This situation can 
be remedied in two ways. The first (simplest) way is to recognize that the system eqns (3), 
(10) and (11) represents a cohort of trees and its resident budworm population. This 
cohort is only capable of going through one severe decline. If this were to happen, then 
the model must be started again with a small value of S and with E near KE in order to 
generate the next outbreak. Regeneration from one cohort of trees to the next is a 
discontinuous process, and one might as well represent this fact explicitly in the model. 

On the other hand, for mathematical convenience, it might be desirable to devise a 
system of differential equations which adjusts the behaviour of E and S for small values 
in order to simulate the growth of a new cohort. We have no need for such an adjustment 
in the present investigation, but we shall indicate how it might be carried out. 

According to eqn (13), the carrying capacity for the budworm is independent of E, 
i.e. the trees put forth the same amount of foliage, regardless of their physiological 
condition. It would seem more reasonable that K' should depend upon E, and that K' 
should decline rather sharply if E falls below a certain threshold TE. Therefore, we may 
replace eqn (13) by 
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TE2 + E2 

If TE is small compared with KE, then KB will show a sharp decline near E = TE. A 
corresponding change should also be made in eqn (11). We may set 

E2 
P=PT2 + E2 (19) 

because the stress on the trees is related to the amount of foliage consumed. 
The resulting equations are as follows: 
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This system appears to be much more complicated than eqns (3), (10) and (11), but its 
qualitative behaviour will be exactly the same, except for small values of E. If the para- 
meter TE is chosen properly, the system eqns (20)-(22) will exhibit a regeneration similar 
to that obtained by re-starting eqns (3), (10) and (11). However, we shall use eqns (3), (10) 
and (11) in the sequel. 

This is as far as we can go if we restrict ourselves exclusively to qualitative information. 
Some effort is now needed to quantify parameters in order to define, more precisely, the 
behaviour of the system. Since we are interested in determining how far one can predict 
with different levels of information, it is useful to identify two levels of quantitative 
information to add to the first qualitative level-one very general and based on estimates 
by experienced field naturalists and one more detailed and specific. 

LEVEL II-GENERAL QUANTITATIVE INFORMATION 

In order to complete our model, we must estimate its parameters. Especially important 
are the combinations of parameters which form Q, R and M, eqns (15) and (17). These 
will determine the qualitative behaviour of the system. Most of the other parameters are 
rate constants which determine the speed with which certain processes occur, but do not 
alter the basic qualitative picture. 

The parameter K' in eqn (13) measures the carrying capacity of the forest in larvae 
per branch. An entomologist with cursory knowledge of budworm can confidently state 
that from 100 to 300 larvae can be supported by an average branch of balsam foliage in 
good condition. The parameter a' is likely to be low. Knowing, roughly, the speed of 
movement and distance of perception of birds for insect prey, c' can be estimated as one 
to two larvae per branch. [This particular analysis has been expanded by Holling, Jones 
& Clark (in preparation).] These ranges then permit a calculation of the likely range for 
Q from eqn (15). The results range from Q = 50 to 300, and strongly suggest that the 
system resides in or below the critical region (Fig. 2) during the endemic phase. 

But still, outbreaks will only occur if R increases above 1/2, and crosses the upper 
critical curve. Again, rough estimates of the elements determining the value of R (eqn (15)) 
can be obtained as follows: 

rB The budworm is capable of a five-fold increase in density per year. Since we are 
using a continuous time model, we set erB = 5, and conclude that rB = 1 6/year. 

, The value of / has been estimated in the literature using the most general informa- 
tion on size of birds, their maximum daily consumption, the proportion of bud- 
worm in their diet, and their ranges of densities (Kendeigh 1947; George & 
Mitchell 1948; Mitchell 1952; Dowden, Jaynes & Carolin 1953; Morris et al. 1958). 
These estimates of the maximum consumption range from 20 000 to 36 000 larvae 
per acre per year. 
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S A maximum value for S is Ks. 
Ks A fully recovered forest contains about 24 000 average branches per acre.* 

If the preceding estimates are combined (eqn (15)), we find that R, for a mature forest, 
lies between 1 1 and 3-8. Because R need only be 0 5 we have considerable leeway in the 
value of S below Ks that will initiate an outbreak. A forest is fully mature at age 80, while 
outbreaks have a period of about 40 years. Actually, numerical results show that an 
outbreak is not immediate when the upper branch of the cusped curve is crossed. It 
requires a number of years for the budworm to show an appreciable rise in density. 
Although predation cannot control the budworm when R>0.5, the predation does 
appreciably slow the rate of growth. Hence, a value of 1 1 for R at S = Ks is not 
unreasonable. 

Now we turn to the estimation of M. As mentioned above, M is a ratio of energy 
consumed by budworm to energy produced by trees. The critical value for M is 0-25 as 
trees collapse if M> 025. The time required for such a collapse will depend upon M. A 
forest can withstand defoliation for approximately 4 years, which implies that MrE must 
be approximately 0.3, since B does not in fact reach the value K'S as assumed in the 
derivation of M (eqn (17)). 

Some rates which should be estimated are rs and rE. The time of regeneration of the 
forest after an outbreak depends on rs. It can be adjusted to make the period between 
outbreaks approximately 40 years. A value of rs = 0.15/year gives satisfactory results. 
Likewise, rE sets the rate at which trees recover from the stress of defoliation. Since this 
recovery is fairly rapid, a value of 1/year is assumed for rE. Since E is a synthetic variable 
we can set its maximum value as KE = 1. 

The only remaining parameter is P, the rate of energy consumption by budworm. 
From eqn (17) 

MrEKE p= - 1.5 x 10-3 
K' 

As an independent measure, it is known that 150 to 200 larvae per branch can consume 
approximately 25% of the foliage. Therefore 

0.25 P = 17 x 10-3 
150 

All the parameters for eqn (20) through eqn (22) are summarized in Table 1. 

LEVEL III EMPIRICAL QUANTITATIVE INFORMATION 

Level I, the development of the model, utilized only qualitative information about the 
system's behaviour. In Level II we made a first attempt at estimating parameter values, 
but restricted ourselves to general quantitative information. This is the type of informa- 
tion that an experienced biologist might provide without specifically examining the New 
Brunswick budworm. 

In Level III we examine the field data that have been collected over many decades and 
determine the best values for the parameters as we have defined them. This step is made 
easier in this particular instance because much of the work has already been done in 

* The standard field measure for an 'average branch' is one that can be circumscribed by a polygon 
of 10 ft2 area. 
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TABLE 1. Parameter values for Level II and Level III information 

Symbol Description Units Level II Level III 

rB intrinsic budworm growth rate /year 1 6 1-52 
K' maximum budworm density larvae/branch 100-300 355 
,B maximum budworm predated larvae/acre/year 20 000-36 000 43 200 
a' ½ maximum density for predation larvae/branch 1-2 1.11 
rs intrinsic branch growth rate /year 0-15 0.095 
Ks maximum branch density branches/acre 24 000 25 440 
KE maximum E level 10 1.0 
rE intrinsic E growth rate /year 1.0 0-92 
P' consumption rate of E /larvae 0-0015 0-00195 
R a'rBS/f, - 107-3-84 0-994 (S/Ks) 
Q K'/a' - 50-300 302 
M PK'/rEKE - 0-15-0-45 0-71 

connection with the construction of a detailed simulation model of this system. That 
simulator is a central element in a program of ecological policy design a program to 
synthesize the methodologies and concepts of systems ecology and modelling, optimiza- 
tion, and decision theory in a case study framework. A review of that project and some 
of the lessons learned can be found in Holling et al. (1976). 

The primary source of data for the simulator was Morris (1963), with considerable 
additional expert opinion from the personnel and files of Environment Canada's 
Maritimes Forest Research Centre. The simulator mimics the univoltine character of the 
insect as a difference model with yearly time steps. As a result, its parameters are not all 
appropriate for a continuous model formulation without some adjustments. These 
adjustments could be made in the original data, but for convenience we choose to let 
the simulation serve as a surrogate for the real world, and we consult it for measures 
that are analogous to the parameters needed for our model-eqns (3), (10) and (11). The 
errors and discrepancies generated by going through this 'middle-man' are on the same 
order as those when we assume the simple continuous form that we have. 

Specific details about the budworm simulation model can be found in Jones (1976). 
We now briefly check off the parameter values suggested by that reference and indicate 
the discrepancies with Level II values. First, consider the intrinsic role of growth, rB. We 
find in the simulation that the maximum growth rate between generations in a mature 
forest with low budworm densities is 4-56. Thus, rB = In (4-56) = 1.52/year, in close 
agreement with that found above. 

The hypothetical carrying capacity per branch K' is the most difficult to interpret. The 
simulation has a comparable equilibrium at K' = 335 larvae/branch. However, numerical 
experience shows that there can be a transient overshoot to values of 600 or more. This 
wide range is a consequence of the discrete nature of the insect population. We adopt 
K' as 335 because of the conceptual parallel of that value, but note that the continuous 
model will not overshoot to the high values seen in the simulation and in nature. 

The parameters of bird predation are taken from the data summarized in Holling, Jones 
& Clark (in preparation). That paper specifically identifies three groups of insectivorous 
birds that represent three distinct size classes and, to some degree, three different modes 
of search. This more detailed, but still qualitative, analysis of field data identifies an 
expected value for P of 43 200 larvae/acre/year. This maximum consumption level is 
significantly higher than that found in the literature and reported in Level II. That 
literature only considered one class of birds-the arboreal feeders (e.g. warblers). Two 
other classes of birds were not previously recognized as important because they are 
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normally ground nesters (e.g. juncos and grosbeaks) and because their numbers do not 
increase during an outbreak. However, their large size and appetite make them at least 
equally as important as the smaller species and f is increased accordingly. Because the 
density of budworm which produces half-saturation of predation is different for each 
bird class we take an average for each, weighted by their contribution to the total preda- 
tion. Thus, a' = 1 l1 larvae/branch. 

The parameters for tree growth are taken by fitting eqn (10) (with E = KE) to a 
typical history of branch surface area following the collapse of an outbreak. This gives 
a growth rate of rs = 0.095/year and an asymptotic level of Ks = 25-4 x 103 branches/ 
acre. 

It was recognized early in the simulation development that something analogous to 
an 'energy reserve' was affecting the response dynamics of trees. However, there were 
insufficient data to incorporate this process adequately. The solution taken was to 
deputize foliage for this function, and we continue that here. As E is an intensive factor 
we lose no generality by defining KE = 1. The value of rE is evaluated from the rate of 
increase in foliage. The maximum that foliage can increase in the simulation is 1 26-fold 
per iteration. Thus exp rE = 1 26 gives rE = 0.23 yr- . This maximum occurs when foliage 
is about half its maximum; and so, as a consequence of the logistic form, rE = 4 x 0-23 = 
0.92/year. 

P is the maximum rate that an individual feeds on 'E', which is P = 1-95 x 10- 3/larvae. 
Using the above values, the three aggregate parameters R, Q and M assume the 

following values. First 

R= 1'72(S/Ks) 

Q = 302 

(or Q = 540 if K' = 600). 

Finally, 
PK' 

M = = 0.71 
rEKE 

(or M = 1-27, if K' = 600). 

The parameter values for Level III are also summarized in Table 1. There is remarkable 
agreement between the values found from extensive and intensive collection and analysis 
of field data and those estimated from a first field estimation. 

One can go a lot further than traditionally assumed with informed, but qualitative, 
insight into ecological process. Extensive data collection efforts need not always be 
carried out and completed before the system is abstracted into an analysable model. 

We have been emphasizing that the central and important aspect of this analysis is a 
process and not a product. The actual numerical integration of our model using the 
estimated parameters is a final, though anticlimactic, step to be performed for complete- 
ness. Because the parameter values from Level II and Level III information are so similar 
we adopt only Level III and use these values in our model (eqns (3), (10) and (11)). The 
integrated time course is shown in Fig. 5 through one outbreak cycle (ending in year 43). 
Fig. 6 shows a typical outbreak cycle exhibited by the simulation model. 

The qualitative behaviour is similar, as this analysis predicted. The major difference 
in the appearance is between the graphs of surface area S. This is an expected discrepancy 
resulting from our attempt to mimic a 75 age class model of tree population with a single 
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FIG. 6. A typical outbreak cycle from the detailed simulation model. The variables plotted 
are the ones most analogous to the differential equation model: 'E' is the total foliage 
available per unit of branch surface area in arbitrary 'foliage units'/10 ft (F.U./TSF); 'S' 
is the density of surface area in TSF/acre scaled such that 'S' = 1 is equivalent to S = 094 

in Fig. 5; 'B' is the density of third instar larvae in number 1 TSF 

state variable. Other discrepancies between Figs 5 and 6 were also anticipated as they 
result from fundamental differences between discrete and continuous models. First, the 
maximum level of S is lower in Fig. 5 than in 6. Equivalently, the outbreak is triggered 
at a lower 'threshold' of S in Fig. 5. In the simulation model the process of competition 
between birds (not included in our differential equations) enhances their effectiveness in 
young forests (low S). Thus S must reach a higher value in the simulation model before 
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the control by predators is overcome (Holling, Jones & Clark, in preparation). Secondly, 
the differential equations as conceptualized are capable of only one outbreak while the 
simulation model output is periodic because the regeneration of new trees is explicitly 
modelled. 

The differential equations could be adjusted, expanded, and otherwise 'tuned' so that 
their time traces more closely matched the simulation model, but we elect not to follow 
that procedure. 

DISCUSSION 

An obvious requirement for the success of this procedure is a good understanding of 
the basic phenomena, to know which are the most important variables, and to know the 
main features of their interactions. Such knowledge is never completely available at the 
beginning of an investigation. In the case of the budworm we had behind us extensive 
field investigations and simulation experience. The present methods have been exceedingly 
useful when applied in conjunction with the simulation. One can narrow the reasonable 
parameter ranges using these procedures. Perhaps most important, the analytic model is 
likely to extend our understanding of the phenomena, since the full armory of mathe- 
matical techniques is available (Ludwig, Weinberger & Aronson, in preparation). This 
raises a final question about the level of mathematical training or ability required to carry 
out such a program. In principle, the methods which were applied to the budworm do 
not go beyond first year calculus; however, their effective use requires considerable 
mathematical confidence. 
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APPENDIX 

The double roots of equation (9) 

Equation (9) has a double root if the straight line given by the left-hand side of eqn (9) 
is tangent to the predation term of the right side. We adopt the following expressions 
for the two sides of eqn (9): 

f() = R(1- Q (Al) 

g(u) 1+2 

A double root occurs if 

f(u) = g(C) 

and 

df dg (A2) 
(A2) 

dy d/l 

We treat eqn (A2) as a pair of simultaneous equations and solve for R and Q para- 
metrically with respect to ,. These relationships can be written as 

R # 
-(Q-)-1 2 

and 

R 2 1 

Q (1 +,2)2 
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It follows after some algebra that 

2#3 
R +#2)2 (A3) 

and 

2p#3 
2,3==~~ ~(A4) 

The cusp point of Fig. 2 where both critical curves meet (or begin) is the point where 
the derivatives of R and Q with respect to p both vanish. This corresponds to the inflec- 
tion point of g (L), which occurs at , = V/3 = 1.73. This value in eqn (A3) and (A4) 
gives the cusp point for (R,Q) as 

33/2 

R = - = 0-650 (A5) 

Q, = 33/2 = 5196. 

Further, the axis of the cusp is oriented as 

dR 
d= -1/16 

dQ 

Equations (A3) and (A4) also generate two limiting conditions. When #-+oo, Q-oo 
and R-O. As ,- 1, Q-+ oo, but R- 1/2. Figure 2 is based upon this information. 
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