
Solutions to Midterm 2a – MA 225 B1 – Spring 2011

Question 1 Differentiating both sides of the equation with respect to y, we obtain

z + yzy = zy/(x + z).

Solving this equation for zy, we find
∂z

∂y
=

z(x + z)

1− y(x + z)
.

Question 2 The linearization is given by

g(x, y) ≈ g(x0, y0) + gx(x0, y0)(x− x0) + gy(x0, y0)(y − y0).

Since (x0, y0) = (1, 1), gx(x, y) = (2xyexy + x2y2exy) and gy(x, y) = x2exy + x3yexy, we have g(1, 1) = e,

gx(1, 1) = 3e and gy(1, 1) = 2e. Hence, g(0.9, 1.1) ≈ e− 0.1(3e) + 0.1(2e) = (0.9)e.

Question 3 Since fx = 4 − 2x and fy = 6 − 2y, the critical point is (2, 3), and f(2, 3) = 13. To

check the boundary, we check the interior of each of the four sides, and then we check the four corners.

We get fx(x, 5) = −2x + 4, which is zero when x = 2, and f(2, 5) = 9. Also, fx(x, 0) = 4 − 2x, and

f(2, 0) = 4. Also, fy(4, y) = 6− 2y, and f(4, 3) = 9. Also, fy(0, y) = 6− 2y, and f(0, 3) = 9. For the

corners, f(0, 0) = 0, f(0, 5) = 5, f(4, 0) = 0, and f(4, 5) = 5. Hence, the maximum is at (2, 3), where

f(2, 3) = 13, and the two minima are at (0, 0) and (4, 0), where f(0, 0) = f(4, 0) = 0.

Question 4 By the properties of the directional derivative, the maximum rate of change is |∇g(0, 0)|
and it occurs in the direction of ∇g(0, 0). Since ∇g = 〈e−y − ye−x,−xe−y + e−x〉, we have ∇g(0, 0) =

〈1, 1〉 and |∇g(0, 0)| =
√

2.

Question 5 We have that the surface area is equation to

∫ 1

0

∫ π

0

|ru × rv|dvdu =

∫ 1

0

∫ π

0

|〈cos v, sin v, 0〉 × 〈−u sin v, u cos v, 1〉|dvdu

=

∫ 1

0

∫ π

0

|〈sin v,− cos v, u〉|dvdu =

∫ 1

0

∫ π

0

√
sin2 v + cos2 v + u2dvdu

=

∫ 1

0

∫ π

0

√
1 + u2dvdu.

Question 6 The constraint is g(x, y) = x3 + y3 − 16 = 0. The equation ∇f = λ∇g is 〈yexy, xexy〉 =

λ〈3x2, 3y2〉. Thus,

yexy = 3λx2, xexy = 3λy2, ⇒ 3λx2

y
=

3λy2

x
.

Manipulating this equation, we find x3 = y3 (or λ = 0, but that implies (x, y) = (0, 0), which doesn’t

satisfy the constraint). Plugging this into the constraint, we have 2x3 = 16, or x = 2. This in turn

implies y = 2. This must correspond to a maximum, rather than a minimum, because one can find



values of (x, y) that satisfy the constraint and make f arbitrarily close to zero. Thus, f(2, 2) = e4 is

the maximum of f , subject to the constraint. (Alternatively one can check it is a maximum using the

second derivative test.)

Question 7 We have

∫ 1

0

∫ x2

0

y

1 + x5
dydx =

∫ 1

0

y2

2(1 + x5)
|y=x2

y=0 dx

=

∫ 1

0

x4

2(1 + x5)
dx =

1

10
ln(1 + x5)|10 =

1

10
ln 2.

Question 8 Drawing the projection of the planes in the xy-plane, we see that the region of integration,

D, is bounded by the lines x = 0, y = x, and y = −x + 2. This gives

∫ 1

0

∫ −x+2

x

x dydx.

Question 9 This integral implies that the region of integration in the xy-plane is bounded by the lines

y = x, y = 0, and x =
√

π. Thus, we switch the order of integration by writing

∫ √
π

0

∫ x

0

cos(x2)dydx.

Question 10 The upper limit of integration in y is when y =
√

2x− x2, or y2+x2 = 2x. By completing

the square, one can see that this is a circle of radius one with center (1, 0). Since 0 ≤ y ≤
√

2x− x2,

we only take the top half of the circle, so 0 ≤ θ ≤ π/2. Converting the equation for the circle to polar

coordinates, we have r = 2 cos θ, and so 0 ≤ r ≤ 2 cos θ. Hence, since the integrand is r and we get an

extra factor of r from the change of variables formula,

∫ π/2

0

∫ 2 cos θ

0

r2drdθ.
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Question 1 We have

∫ 1

0

∫ y2

0

3x

1 + y5
dxdxy =

∫ 1

0

3x2

2(1 + y5)
|x=y2

x=0 dy

=

∫ 1

0

3y4

2(1 + y5)
dy =

3

10
ln(1 + y5)|10 =

3

10
ln 2.

Question 2 This integral implies that the region of integration in the xy-plane is bounded by the lines

y = x, y =
√

π, and x = 0. Thus, we switch the order of integration by writing

∫ √
π

0

∫ y

0

cos(y2)dxdy.

Question 3 The constraint is g(x, y) = x3 + y3 − 54 = 0. The equation ∇f = λ∇g is 〈yexy, xexy〉 =

λ〈3x2, 3y2〉. Thus,

yexy = 3λx2, xexy = 3λy2, ⇒ 3λx2

y
=

3λy2

x
.

Manipulating this equation, we find x3 = y3 (or λ = 0, but that implies (x, y) = (0, 0), which doesn’t

satisfy the constraint). Plugging this into the constraint, we have 2x3 = 54, or x = 3. This in turn

implies y = 3. This must correspond to a maximum, rather than a minimum, because one can find

values of (x, y) that satisfy the constraint and make f arbitrarily close to zero. Thus, f(3, 3) = e9 is

the maximum of f , subject to the constraint. (Alternatively one can check it is a maximum using the

second derivative test.)

Question 4 By the properties of the directional derivative, the maximum rate of change is |∇g(1, 1)|
and it occurs in the direction of ∇g(1, 1). Since ∇g = 〈e−y + ye−x,−xe−y − e−x〉, we have ∇g(1, 1) =

〈2e−1,−2e−1〉 and |∇g(1, 1)| =
√

8e−2 = 2e−1
√

2.

Question 5 The linearization is given by

g(x, y) ≈ g(x0, y0) + gx(x0, y0)(x− x0) + gy(x0, y0)(y − y0).

Since (x0, y0) = (1, 1), gx(x, y) = (y2exy + xy3exy) and gy(x, y) = 2yxexy + x2y2exy, we have g(1, 1) = e,

gx(1, 1) = 2e and gy(1, 1) = 3e. Hence, g(0.9, 1.1) ≈ e− 0.1(2e) + 0.1(3e) = (1.1)e.

Question 6 Differentiating both sides of the equation with respect to x, we obtain

z + xzx = zx/(y + z).

Solving this equation for zx, we find
∂z

∂x
=

z(y + z)

1− x(y + z)
.

Question 7 Since fx = 6 − 2x and fy = 4 − 2y, the critical point is (3, 2), and f(3, 2) = 13. To



check the boundary, we check the interior of each of the four sides, and then we check the four corners.

We get fy(5, y) = −2y + 4, which is zero when y = 2, and f(5, 2) = 9. Also, fy(0, y) = 4 − 2y, and

f(0, 2) = 4. Also, fx(x, 4) = 6− 2x, and f(3, 4) = 9. Also, fx(0, x) = 6− 2x, and f(3, 0) = 9. For the

corners, f(0, 0) = 0, f(0, 4) = 0, f(5, 0) = 5, and f(5, 4) = 5. Hence, the maximum is at (3, 2), where

f(3, 2) = 13, and the two minima are at (0, 0) and (0, 4), where f(0, 0) = f(0, 4) = 0.

Question 8 Drawing the projection of the planes in the xy-plane, we see that the region of integration,

D, is bounded by the lines x = 0, y = x, and y = −x + 4. This gives

∫ 2

0

∫ −x+4

x

x dydx.

Question 9 The upper limit of integration in x is when x =
√

2y − y2, or x2 +y2 = 2y. By completing

the square, one can see that this is a circle of radius one with center (0, 1). Since 0 ≤ x ≤
√

2y − y2,

we only take the right half of the circle, so 0 ≤ θ ≤ π/2. Converting the equation for the circle to polar

coordinates, we have r = 2 sin θ, and so 0 ≤ r ≤ 2 sin θ. Hence, since the integrand is r and we get an

extra factor of r from the change of variables formula,

∫ π/2

0

∫ 2 sin θ

0

r2drdθ.

Question 10 We have that the surface area is equation to

∫ 1

0

∫ π

0

|ru × rv|dudv =

∫ 1

0

∫ π

0

|〈1, v cos u,−v sin u〉 × 〈0, sin u, cos u〉|dudv

=

∫ 1

0

∫ π

0

|〈v,− cos u, sin u〉|dudv =

∫ 1

0

∫ π

0

√
sin2 u + cos2 u + v2dudv

=

∫ 1

0

∫ π

0

√
1 + v2dudv.


