
Solutions to Practice Final – MA 225 B1 – Spring 2011

(i) Using the change of variables u = 3x and v = 2y, we find that the ellipse transforms into a circle.

The Jacobian of this transformation is 1/6, so, using polar coordinates in the new variables we

have∫∫
R

sin(9x2 + 4y2)dA =

∫∫
D

sin(u2 + v2)
1

6
dA =

1

6

∫ 2π

0

∫ 1

0

r sin(r2)drdθ =
π

6
(1− cos(1)).

(ii) Since divF is a scalar, it does not make sense to take the cross product of this quantity and the

vector b. Thus, it is not meaningful.

(iii) The x and y components of the cylinder can be parameterized using x = cos t, y = sin t, 0 ≤ t ≤
2π. Thus, z = cos t+ 3, and so we find

r(t) = 〈cos t, sin t, cos t+ 3〉, 0 ≤ t ≤ 2π.

(iv) The direction vectors of the two lines are v1 = 〈2, 3,−1〉 and v2 = 〈2, 1, 7〉. These vectors are

not parallel (in fact they are orthogonal, since their dot product is zero), and so the lines are

not parallel. To see if they intersect, we write a parameterization of the second line, x = 2s+ 3,

y = s − 1, z = 7s + 1, and see if we can solve both sets of equation simultaneously. Looking

at the x and y equations only, we find t = −1 and s = −2, but these values do not make the z

coordinates equation, and so there is no point of intersection. Thus, the lines are skew.

(v) We will apply the divergence theorem. The plane forming the top of the tetrahedron is x+y+z =

1, and so∫∫
S

F · dS =

∫∫∫
E

divFdV =

∫ 1

0

∫ −x+1

0

∫ 1−x−y

0

(−1)dzdydx =

∫ 1

0

∫ −x+1

0

(x+ y − 1)dydx

=

∫ 1

0

[(x− 1)(−x+ 1) +
1

2
(−x+ 1)2]dx = −

∫ 1

0

1

2
(−x+ 1)2dx

=
1

6
(1− x)3|10 = −1/6

(vi) This is just a triple integral over the entire sphere of radius 3, and so we convert to spherical

coordinates to find ∫ 2π

0

∫ π

0

∫ 3

0

ρ5 sinφ cosφdρdφdθ = (2π)(243/2)(0) = 0.

(vii) Since the plane doesn’t intersect the xz-plane, it must be parallel to it, and hence have normal

vector 〈0, 1, 0〉. Thus, the plane is

0(x− 0) + 1(y − 1) + 0(z − 0) = 0 ⇒ y = 1.



(viii) After checking all lines of the form y = mx and all parabolas of the form y = mx2 and always

getting zero, we suspect the limit is zero. Using the squeeze theorem

0 ≤ x2 sin4 y

3x2 + 2y2
≤ x2 sin4 y

3x2
=

sin4 y

3
→ 0

as y → 0. Thus, the limit is zero.

(ix) The region of integration in the xy-plane is the region enclosed by the parabola y = 1−x2 in the

first quadrant. Thus, the integral represents the volume of the solid regions that lies under the

plane z = 1− x and above the previously described region in the xy-plane. Your drawing should

reflect this.

(x) We parameterize the surface by r(y, z) = 〈y2 + z2, y, z〉 where y2 + z2 ≤ 9. Thus,

A(S) =

∫∫
D

|ry × rz|dA =

∫∫
D

√
1 + 4(y2 + z2)dA =

∫ 2π

0

∫ 3

0

r
√

1 + 4r2drdθ =
π

6
(37)3/2.

(xi) We can think of each of these surfaces of level surfaces of functions: f(x, y, z) = k. The normal

vector of the tangent plane of such a surface at a point (x0, y0, z0) is ∇f(x0, y0, z0). Thus, the

normal vector for the tangent plane to the ellipsoid is n1 = 〈6, 4, 4〉 and the normal vector for the

tangent plane to the sphere is n2 = −〈6, 4, 4〉. These vectors are parallel, because they are scalar

multiples of each other, and both tangent planes contain the point (1, 1, 2). Since any two planes

that are parallel and contain a common point must be the same plane, the ellipsoid and sphere

are tangent at that point.

(xii) We can parameterize the sphere using r(θ, φ) = 〈
√

2 cos θ sinφ,
√

2 sin θ sinφ,
√

2 cosφ〉. When it

intersects the cylinder, we have 2 = x2 +y2 + z2 = 1 + z2, and so 1 = z2 = (
√

2 cosφ)2. Thus, this

happens when φ = π/4, and so the domain for the parameters defining the surface is 0 ≤ φ ≤ π/4,

0 ≤ θ ≤ 2π. As a result∫∫
S

y2dS =

∫ 2π

0

∫ π/4

0

2 sin2 θ sin2 φ|rθ×rφ|dφdθ =

∫ 2π

0

∫ π/4

0

4 sin2 θ sin3 φdφd = 4π

(
2

3
− 5
√

2

12

)
.

(xiii) We have

fz = xy cos(xyz)esin(xyz) − 2x2yz

(1 + z2)2
.

(xiv) Since u = 〈1, 0, 1〉/
√

2 and ∇f(1, 2, 3) = 〈12, 3, 2〉, we have

Duf = 〈1, 0, 1〉/
√

2 · 〈12, 3, 2〉 =
14√

2
.

(xv) The relationship between the length of the hypotenuse (D), the length of the base (l) and the

height (h) of the triangle is D =
√
l2 + h2. Thus

dD =
l√

l2 + h2
dl +

h√
l2 + h2

dh =
5

12
(0.2) +

12

13
(0.2) =

17

65
m.


