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Abstract

Bioremediation is a promising technique for cleaning contam-

inated groundwater and soil. We study a bioremediation model

involving a substrate (contaminant to be removed), electron ac-

ceptor (added nutrient), and microorganisms in a 1-D soil column.

Using geometric singular perturbation theory, we construct travel-

ing waves (TW) corresponding to motion of a Biologically Active

Zone, in which the microorganisms consume both substrate and

acceptor. For certain values of the parameters, the traveling waves

exist on a 3-dimensional slow manifold within the 5-dimensional

phase space. In order to prove persistence of the slow manifold

under perturbation, we control the nonlinearity via a change of co-

ordinates and construct the wave in the transverse intersection of

appropriate stable and unstable manifolds. We study how the TW

depends on the half saturation constants and other parameters.

Introduction

We begin with the nondimensional form of the bioremedia-

tion model studied in [1] and [2]. The model assumptions are

• One dimensional, infinite soil column.

• Initial constant level of substrate (S) and biomass (M ),

and no acceptor (A).

• Constant level of A injected continuously at inlet of soil

column.

• S is sorbing: travels at the retarded velocity 1/Rd < 1.

•Microbes attached to soil particles: no spatial motion.

• M will increase above its equilibrium in the presence of

both S and A.

The model equations are
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for x ∈ [0,∞), t > 0, with boundary and initial data
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fbd represents monod reaction kinetics. The parameters KS

and KA represent the relative half-saturation constants and

indicate the degree to which the presence of each (or lack

thereof) may limit the growth of the microorganisms.

continuously
A supplied

BAZ

x

Figure 1a Schematic diagram
of the soil column and
traveling wave.
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Figure 1b Numerically observed
traveling wave solution for
KS = KA = 0.3.

Wave Speed and Scalings

In the TW coordinate ξ = x− ct, the model is

sξξ + (cRd − 1)sξ = a1fbd

aξξ + (c− 1)aξ = a1a2fbd

cmξ = a4(m− 1)− a3fbd,

with asymptotic conditions

s(−∞) = 0, s(+∞) = 1

a(−∞) = 1, a(+∞) = 0

m(−∞) = 1, m(+∞) = 1.

One may eliminate fbd from the equations for s and a, inte-

grate once with respect to ξ, and use the asymptotic condi-

tions to obtain [1]

c =
a2 + 1

a2Rd + 1
.

We rescale the parameters as suggested by the specific val-

ues which produce the numerically observed traveling wave.

a1 = δ2ã1 Rd = Rd

a2 = a2 KS = δκK̃S

a3 = δã3 KA = δκK̃A

a4 = δ2ã4

Hence, the model we study is

sξ = v

vξ = −(cRd − 1)v + δ2ã1fbd

aξ = r (*)

rξ = −(c− 1)r + δ2ã1a2fbd

mξ = δ2ã4

c
(m− 1)− δ

ã3

c
fbd.

Reduction to Slow Manifold

We cannot apply Fenichel theory directly to the above sys-

tem because the kinetic terms s
δκK̃S+s

and a
δκK̃A+a

in the

reaction function fbd are not uniformly bounded in the C1

topology as δ → 0. More precisely,

d

ds

(

s
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)

=
δκK̃S

(s + δκK̃S)2
→∞ for s¿ O(δ

κ
2).

Therefore, we change coordinates to

y =
s

KS + s
, w =

a

KA + a
,

which makes the reaction function a polynomial in the new

variables.

In addition, we scale the dependent variables as v = δ1+κṽ,

r = δ1+κr̃, and m− 1 = δκ−1m̃. System (*) becomes

y′ = δ
ṽ

K̃S
(1− y)2

ṽ′ = −(cRd − 1)ṽ + ã1m̃yw + δ1−κã1yw

w′ = δ
r̃

K̃A
(1− w)2

r̃′ = −(c− 1)r̃ + ã1a2m̃yw + δ1−κã1a2yw

m̃′ = −δ
ã3

c
m̃yw − δ2−κã3

c
yw + δ2ã4

c
m̃.

The fast variables are ṽ and r̃; the slow variables are y, w,

and m̃. There exists a three dimensional slow manifoldMδ

given by

ṽ = h0(m̃, y, w) + δ1−κh1(m̃, y, w) + δh2(m̃, y, w) + h.o.t

r̃ = g0(m̃, y, w) + δ1−κg1(m̃, y, w) + δg2(m̃, y, w) + h.o.t,

where h0 = −g0, h1 = −g1, and h2 = a2g2. In terms of the

slow “time” scale η = δξ, the motion onMδ is

yη = yw
ã1(1− y)2

K̃S(cRd − 1)

[

m̃ + δ1−κ + δh2

]

wη = −yw
ã1(1− w)2
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[

m̃ + δ1−κ + δg2

]

(**)

m̃η = −
ã3

c
yw
[

m̃ + δ1−κ
]

+ δ
ã4

c
m̃.

From the reduced fast dynamics, if a solution leaves the slow

manifold it cannot return, and one of ṽ or r̃ must become un-

bounded as ξ → ±∞. Hence, we conclude that the entire

TW solution lies onMδ.

The expansions for ṽ and r̃ onMδ are not well ordered for

κ ≥ 1. Therefore, our construction will be valid only in the

regime 0 < κ < 1. This is verified numerically in figure 2.
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Figure 2. Comparison of v (blue) and r (red) as computed
numerically (*) and analytically on the slow manifold (-).

Determination of Leading Order TW

N−0 ≡ {y = 0} and N+
0 ≡ {w = 0} are “superslow” invari-

ant manifolds of (**). The dynamics on these manifolds are

given by

yζ = 0, wζ = 0, m̃ζ =
ã4

c
m̃, where ζ = δη.

These dynamics on N−0 and N+
0 correspond to the portions

of the TW behind and ahead of the BAZ, respectively.

To capture the dynamics within the BAZ, we use the fact that

the O(1) and O(δ1−κ) terms in (**) imply that

K̃S

(1− y)2
yη = −

K̃A

(1− w)2
wη = −

cã1

ã3(cRd − 1)
m̃η.

Using these and the boundary conditions, we compute the

integral curves which, combined with the pieces on N±0 ,

determine the leading order traveling wave. The result is

shown in figure 3a.
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Figure 3a. Sketch of the leading
order integral curve near the
wave.
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Figure 3b. A plot of the
numerically computed
traveling wave for KS,A = 0.3.

Tracking Manifolds

To prove existence of the wave, we track the following lines

and show they intersect transversely the plane {y = w} (see

figures 4a and 4b):

L− = {(0, w−, m̃) : w− fixed, m̃ ∈ [0, m̃pk]},

L+ = {(y+, 0, 0) : y+ ∈ (1− ε, 1 + ε)}.

Because L− is the unstable manifold of (0, w−, 0) in N−0 and

L+ is a line of equilibria, this result will show that there ex-

ists a persistent solution connecting (0, w−, 0) with one of

the points in L+.
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Figure 4a. Schematic diagram
of the phase space inMδ and
the lines L±.
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Figure 4b. Sketch of the image of
L± in the plane {y = w}, showing
the transverse intersection.

The boundary conditions are satisfied because they are en-

coded in the wave speed.

Peak Height Dependence on KS and KA

It is observed numerically that the peak height of m de-

creases as κ decreases (as KS,A increase). To leading order,

the peak height is constant. However, with the first order

corrections, the peak height does decrease with κ. Figure

5a shows agreement between the asymptotics and numerics.
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Figure 5a. Comparison of the
numerically (*) and analytically
computed peak height for m.

0

14
Periodic Wave

3200 x 5400

Figure 5b. Numerically computed
periodic wave for KS,A = 0.01.
(See below.)

Conclusions and Work in Progress

We constructed the traveling wave solution within the three-

dimensional slow manifold for KS,A sufficiently large. For

smaller values, the geometry of the phase space changes,

and different analysis must be used in the construction. Fu-

ture work includes completion of the geometric construction

for these parameter values and analyzing the stability of the

wave and its bifurcation (see figure 5b).
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