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Abstract

Bioremediation is a promising technigue for cleaning contam-
Inated groundwater and soil. We study a bioremediation model
Involving a substrate (contaminant to be removed), eectron ac-
ceptor (added nutrient), and microorganismsin a 1-D soil column.
Using geometric singular perturbation theory, we construct travel-
Ing waves (TW) corresponding to motion of aBiologically Active
Zone, in which the microorganisms consume both substrate and
acceptor. For certain values of the parameters, the traveling waves
exist on a 3-dimensional slow manifold within the 5-dimensional
phase space. In order to prove persistence of the slow manifold
under perturbation, we control the nonlinearity via a change of co-
ordinates and construct the wave in the transverse intersection of
appropriate stable and unstable manifolds. We study how the TW
depends on the half saturation constants and other parameters.

| ntroduction

We begin with the nondimensional form of the bioremedia-
tion model studied in [1] and [2]. The model assumptions are

e One dimensional, infinite soil column.

e Initial constant level of substrate (S) and biomass (M),
and no acceptor (A).

e Constant level of A injected continuously at inlet of soil
column.

e S is sorbing: travels at the retarded velocity 1/R; < 1.

e Microbes attached to soil particles: no spatial motion.

e M will increase above its equilibrium in the presence of
both S and A.

The model equations are
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for x € [0, 00), t > 0, with boundary and initial data

A(x,0) =0;

M(x,0) = 1.

fpaq represents monod reaction kinetics. The parameters K g
and K 4 represent the relative half-saturation constants and
Indicate the degree to which the presence of each (or lack
thereof) may limit the growth of the microorganisms.
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Figure la Schematic diagram
of the soil column and
traveling wave.

Figure 1b Numerically observed
traveling wave solution for
Kg=K,=0.3.

Wave Speed and Scalings

In the TW coordinate ¢ = x — ct, the model is

Se¢ + <CRd — 1)85 = a1 fpd
age + (¢ — 1ag = aras fpq
emg = ay(m — 1) = asfig

with asymptotic conditions

s(—o0) =0, s(+oo0)=1
a(—o0) =1, a(+o0)=0
m(—oo) =1, m(+o0) =

One may eliminate f;; from the equations for s and a, inte-
grate once with respect to &, and use the asymptotic condi-
tions to obtain [1]
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We rescale the parameters as suggested by the specific val-
ues which produce the numerically observed traveling wave.

a; =6°a;  Ry= Ry
ay=ay Kg=0"Kg
a3 =0as K4 =0"K 4
a) = 52&4

Hence, the model we study is

Sg — U
Ve = —(CRd — 1)?} + 52dlfbd
ag =T (*)
re = —(c—1)r+ 52&1a2fbd
= 2% (m — 1) — 621,
me —(m —1) = 0= fpq

Reduction to Slow M anifold

We cannot apply Fenichel theory directly to the above sys-
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reaction function f;; are not uniformly bounded in the C'
topology as 6 — 0. More precisely,
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Therefore, we change coordinates to
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which makes the reaction function a polynomial in the new
variables.

In addition, we scale the dependent variables as v = 61747,
r =657 and m — 1 = §% b, System (*) becomes
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The fast variables are v and r; the slow variables are y, w,
and m. There exists a three dimensional slow manifold M s
given by

ho(m, y, w) + 6 hy (i, y, w) + Sha(m, y, w) + h.o.t
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where hg = —gg, h1 = —g1, and ho = asgo. In terms of the
slow “time” scale n = 0&, the motion on M IS
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My = Yw [m + 51_/1 + 0—m.
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From the reduced fast dynamics, if a solution leaves the slow
manifold it cannot return, and one of v or » must become un-
bounded as & — 4o0o. Hence, we conclude that the entire
TW solution lies on M.

The expansions for v and 7 on M 5 are not well ordered for
x > 1. Therefore, our construction will be valid only in the
regime 0 < x < 1. This is verified numerically in figure 2.
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Figure 2. Comparison of v (blue) and r (red) as computed
numerically (*) and analytically on the slow manifold (-).

Determination of Leading Order TW

Ny ={y=0}and N, = {w = 0} are “superslow” invari-
ant manifolds of (**). The dynamics on these manifolds are
given by

ye =0, we=0, mc=-—m, where (=0dn.

These dynamics on N, and NO+ correspond to the portions
of the TW behind and ahead of the BAZ, respectively.

To capture the dynamics within the BAZ, we use the fact that
the O(1) and O(§'~%) terms in (**) imply that
[N(S K4 Ca
T=y2" " U—w2 " agleRg— 1)

mn.

Using these and the boundary conditions, we compute the
Integral curves which, combined with the pieces on N =
determine the leading order traveling wave. The result Is
shown in figure 3a.
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Figure 3a. Sketch of the leading Figure 3b. A plot of the
order integral curve near the numerically computed
wave. traveling wave for Kg 4 = 0.3.

Tracking Manifolds

To prove existence of the wave, we track the following lines
and show they intersect transversely the plane {y = w} (see
figures 4a and 4b):

L™ ={(0,w—,m) : w_ fixed, m € [0,m,]},
LT ={(y+,0,0) sy € (1 =€, 1+ )}

Figure 4a. Schematic diagram
of the phase space in M and
thelines L™ .

Because L is the unstable manifold of (0, w—,0) in N;” and
LT is a line of equilibria, this result will show that there ex-
Ists a persistent solution connecting (0, w—_,0) with one of
the points in L.

Figure 4b. Sketch of the image of
L* intheplane {y = w}, showing
the transverse intersection.

The boundary conditions are satisfied because they are en-

coded in the wave speed.

Peak Height Dependenceon K s and K 4

It Is observed numerically that the peak height of m de-
creases as r decreases (as K g 4 increase). To leading order,
the peak height Is constant. However, with the first order
corrections, the peak height does decrease with . Figure
5a shows agreement between the asymptotics and numerics.

Peak Height Periodic Wave
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Figure 5b. Numerically computed
periodic wave for Kg 4 = 0.01.
(See below.)

Figure 5a. Comparison of the
numerically (*) and analytically
computed peak height for m.

Conclusions and Work in Progress

We constructed the traveling wave solution within the three-
dimensional slow manifold for Kg 4 sufficiently large. For
smaller values, the geometry of the phase space changes,
and different analysis must be used in the construction. Fu-
ture work includes completion of the geometric construction
for these parameter values and analyzing the stability of the
wave and its bifurcation (see figure 5b).
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