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Abstract

This is an expository article containing a brief overview of key issues related to the stability of

nonlinear waves, an introduction to a particular technique in stability analysis known as pointwise

estimates, and two applications of this technique: time-periodic shocks in viscous conservation laws

[BSZ10] and source defects in reaction diffusion equations [BNSZ12, BNSZ14].

1 Introduction to stability analysis for nonlinear waves

We begin with a brief overview of key issues related to the stability of nonlinear waves. A nonlinear wave

is any type of wave, pattern, or other permanent structure that exists as a solution of a mathematical

model of a physical system. Ideally, analysis of such a model would help one understand and predict

the evolution of the real physical system. One important aspect of this is stability. Roughly speaking, a

solution is stable if any other solutions that start near it stay near it for all time, and maybe even converge

to it as time tends to infinity. Stable solutions are important because typically it is only stable solutions

that are observable in the real world. If the system state is near an unstable solution, then any natural

fluctuations in the system lead to evolution away from the unstable solution, towards a nearby stable one

(if such a stable solution exists).

The basic setup is to begin with a nonlinear partial differential equation (PDE) of the form

ut = F(u), (1.1)

where u = u(x, t) for x ∈ Ω ⊆ Rd and Ω is some specified spatial domain. Typically we will take Ω = R.

The function F denotes all terms – linear, nonlinear, differential, etc – in the equation other than the

time-derivative term ut. Note this does not require that the PDE be first order in time. For example, the

wave equation vtt = vxx can be cast in the above form via

∂

∂t

(
v

w

)
=

(
0 1

∂2
x 0

)(
v

w

)
,

where we then take u = (v, w) and the right hand side of the above equation to be F(u). Typical examples

of such PDEs that appear in the nonlinear waves literature are

ut = uxx + f(u), ut = −uxxx − uux, ut = i(uxx − ωu+ u|u|2),
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which are a reaction-diffusion equation, the Korteweg-deVries (KdV) equation, and the Schrödinger equa-

tion, respectively.

Suppose u∗(x) is the nonlinear wave whose stability we wish to study. We assume for simplicity that it is a

stationary solution, meaning that it is independent of time and hence 0 = u∗t = F(u∗). (This stationarity

condition will be relaxed below to allow for traveling and time-periodic waves.) One then makes the

following Ansatz. Assume the solution to (1.1) has the form

u(x, t) = u∗(x) + p(x, t), (1.2)

where p(x, t) is thought of as the perturbation of the wave u∗. We also assume that p(x, 0) is small in some

appropriate norm, so that the solution u starts near the wave u∗. Inserting (1.2) into (1.1), we find

pt = ut = F(u) = F(u∗ + p) = F(u∗) +DF(u∗)p+ [F(u∗ + p)−F(u∗)−DF(u∗)p] = DF(u∗)p+N (p)

where the nonlinear term satisfies N (p) = F(u∗ + p) − DF(u∗)p and contains terms that are at least

quadratic in p (or its derivatives), assuming that F is smooth in some appropriate sense, and we have used

the fact that 0 = F(u∗). Thus, the evolution of the perturbation is governed by

pt = Lp+N (p), L = DF(u∗) (1.3)

where the linear operator L is the linearization of the original PDE about the solution of interest.

The reason for separating (1.3) into its linear and nonlinear parts is that, when p is small, which we expect

to be true at least for small times since p(x, 0) is small, the nonlinear terms will be much smaller than the

linear terms, because p2 � |p| for |p| � 1. Thus, we expect the linear equation pt = Lp, and in particular

the spectrum of the operator L, to provide key insights into whether the perturbation will grow or decay.

This is analogous with the way one studies the stability of a fixed point of an ordinary differential equation

(ODE): one linearizes the ODE at the fixed point to determine a matrix, or linear operator, known as the

Jacobian, and then the eigenvalues of that matrix are used to determine the stability of the fixed point.

The same general strategy will be applied here as in the ODE case, but there are several complications

that arise due to the fact that (1.3) typically has an infinite-dimensional phase space, rather than the

finite-dimensional one that an ODE has. As a result, this type of PDE analysis is sometimes characterized

as the study of infinite-dimensional dynamical systems.

We now outline three key steps in analyzing the stability of u∗ via the equation (1.3): determining spectral

stability, linear stability, and nonlinear stability. The wave u∗ is said to be spectrally stability if L has

no spectrum, which we denote by σ(L), with positive real part. Figure 1 shows typical spectra of linear

operators with sup Reσ(L) < 0. This type of spectral picture suggests a strong type of stability, known

as asymptotic stability, in which the perturbation decays to zero as time goes to infinity. Continuing the

analogy with ODEs, this would correspond to a fixed point whose Jacobian has only eigenvalues with

negative real part. One key difference between linear operators in infinite dimensions and those in finite

dimensions is that, in the latter case, the spectrum just consists of eigenvalues, whereas in the former

case, there can be both eigenvalues (also referred to as point spectrum) and also essential spectrum. The

essential spectrum will not be discussed in detail here, but it can be thought of loosely as the part of the

spectrum that does not just consist of isolated points. This is also sometimes referred to as continuous

spectrum, to describe a continuous region (eg an interval, line, or open region) of spectrum in the complex
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Figure 1: Typical spectra of linear operators that are spectrally stable in a strong sense: sup Reσ(L) < 0.

On the left we see a half line of essential spectrum and an isolated eigenvalue (the cross), and on the right

we see a parabolic region of essential spectrum and an isolated eigenvalue.
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Figure 2: Typical spectra of linear operators that are spectrally stable in a weaker sense: sup Reσ(L) = 0.

On the left we see a half line of essential spectrum and an isolated eigenvalue (the cross) on the imaginary

axis, and on the right we see a parabolic region of essential spectrum touching the imaginary axis and an

embedded eigenvalue (denoted now in red for visual clarity) at the origin.

plane. Although this is typically a less precise term, it is often the one we will use, so as to avoid going

into details about the precise definitions of point and essential spectra. See [KP13] for more details.

On the other hand, Figure 2 shows typical spectra of linear operators with sup Reσ(L) = 0. This is a

slightly weaker type of spectral stability that is consistent with the perturbation remaining small for all

time. The analogy from ODEs would be a fixed point whose Jacobian has an eigenvalue with zero real

part. In this case, in order to prevent algebraic growth of perturbations, one would need the geometric

and algebraic multiplicities of this eigenvalue to be equal. The right panel of Figure 2 shows a situation

that does not occur for ODEs, because a matrix does not have essential spectrum. In this example, the

operator is said to lack a spectral gap, because there is no gap between the continuous spectrum and the

eigenvalue at zero; the eigenvalue is embedded in the continuous spectrum. We will return to this issue

below.

Of course one could also have a spectrum that extends into the open right half plane. This would suggest

that there would be perturbations that would grow exponentially fast, and thus the underlying wave would

be unstable. For more information about the spectral stability of operators that result from linearization

about a nonlinear wave, see [KP13].

Consider now linear stability. This refers to the behavior of solutions of the linear equation

pt = Lp.

If this were an ODE, and L were a matrix, then the behavior of solutions would be completely determined

by the eigenvalues (and eigenvectors) of L. Thus, in finite dimensions, spectral and linear stability are
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equivalent. In other words, if all eigenvalues have negative real part, then solutions to the linear equation

will decay exponentially fast, and so, at the linear level, the underlying wave is asymptotically stable. In

addition, if all eigenvalues have nonpositive real part, and the algebraic and geometric multiplicities of any

eigenvalues with zero real part are equal, then solutions to the linear equation will remain bounded for all

time. Hence, at the linear level the underlying wave would be what’s referred to as Lyapunov stable. To

prove this, one could use the fact that solutions to the linear equation are given by the matrix exponential:

p(t) = eLtp(0). In finite dimensions, this exponential operator, known as a semigroup, satisfies a so-called

spectral mapping theorem: σ(eL) \ {0} = eσ(L).

In infinite-dimensions the situation is more subtle. One issue is that the semigroup eLt is not well defined

for arbitrary operators L. (Although this will not really be an issue for the operators considered below.)

Moreover, it is possible for sup Reσ(L) < 0, but for pt = Lp to have solutions that grow exponentially fast

as t increases. In other words, eL fails to satisfy the spectral mapping theorem described above. Associated

to any semigroup are the spectral and growth bounds, defined respectively as

δ = sup Reσ(L), ω0 = inf{ω : ∃C(ω) such that ‖eLt‖ ≤ Ceωt}.

One can prove that δ ≤ ω, but it is possible for δ < ω. An example of such an operator is given by L = x∂x

on the space H1(1,∞). One can show explicitly that sup Reσ(L) = −1/2, but there exist solutions such

that ‖p(t)‖H1(1,∞) ≥ Cet/2. Note that the fact that δ < ω implies that, if there is spectrum with positive

real part, then there exist solutions to the linear equation that grow exponentially fast, and hence the

underlying wave is linearly unstable. For more information on semigroups and spectral mapping theorems,

see [EN00, Paz83].

Another difference between linear stability in finite and infinite dimensions is due to the continuous spec-

trum and possible lack of a spectral gap. In an example such as the right panel of Figure 2, even if it is

known that the geometric and algebraic multiplicities of the eigenvalue at zero are equal, it’s not clear that

there cannot be some interaction between this eigenvalue and the continuous spectrum that would lead to

the growth of solutions to the linear equation. Thus, in a situation where the continuous spectrum touches

the imaginary axis, one needs more information in order to determine linear stability. We also note that,

if there is spectrum touching the imaginary axis (and there are no eigenvalues on the imaginary axis), one

can still have decay of perturbations to zero as t → ∞. In this case, however, one typically expects the

perturbations to decay only algebraically, rather than exponentially. It is still possible to prove stability in

this case, but the estimates are generally more delicate. Examples include [BKL94, Sch96, SSSU11], which

are concerned not just with linear stability but also with nonlinear stability, described below.

Finally, we turn to nonlinear stability. This is the most relevant for applications, as it takes all terms of

equation (1.3) into account. Often one can use Duhamel’s formula, also known as variation of parameters,

p(t) = eLtp(0) +

∫ t

0
eL(t−s)N (p(s))ds, (1.4)

which gives an implicit representation of solutions to (1.3). If ‖eLt‖ ≤ Ceωt for some ω < 0 and the

nonlinearity is well-behaved, then (1.4) and an estimate like Gronwall’s inequality can be used to prove

that ‖p(t)‖ ≤ Ceωt, as well. If there are eigenvalues on the imaginary axis and a spectral gap, such

as the left panel of Figure 2, then one can, for example, use spectral projections and center manifold
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theory to determine nonlinear stability, just as one would do in finite dimensions. See [Hen81] for more

details. If there is no spectral gap, as in the right panel of Figure 2, then there are no general methods for

determining nonlinear stability. This is arguably the most challenging and the most interesting situation

from a mathematical perspective.

Remark 1.1. Although the above framework is useful for studying the evolution of a wide variety of physical

models, there are certainly many PDEs for which completely different techniques are required. There are

PDEs for example that are highly nonlinear and such that ignoring any nonlinear terms does not give a

good first approximation of the expected behavior. Moreover, the above framework requires that the linear

operator L be nice enough so that the semigroup eLt is well defined. If this fails, other methods will likely

be more useful.

2 Introduction to pointwise estimates

2.1 Main idea at the linear level

Pointwise estimates are one method that can be useful for stability analysis in the case where there does

not exist a spectral gap. This method was initially developed in [ZH98] and further refined in a variety

of papers by Zumbrun and various coauthors. See [Zum11] for a relatively basic treatment of the general

method. Similar methods were also employed in [Liu91, Liu97].

To illustrate the basic idea involved, consider the following spectral problem. Fix a linear operator L and

a complex number λ. Given any function f (in some appropriate function space), can we solve

(λ− L)p = f

for the unknown function p (also in an appropriate function space)? If so we say that λ is in the resolvent

set of L: λ ∈ ρ(L). If not, we say that λ is in the spectrum of L: λ ∈ σ(L). Note that we need to be able to

solve the above equation for all f in order for λ ∈ ρ(L). Suppose we could find a function G(x, y, λ) such

that, if we were to define p(x, λ) =
∫
G(x, y, λ)f(y)dy, then p would solve the above equation. Colloquially,

G(x, y, λ) would be the solution of

(λ− L)G = δ(x− y)

in the sense of distributions, where δ is the Dirac delta function centered at x = y. The function G is called

the resolvent kernel. It is an integral kernel that describes the action of the resolvent operator (λ− L)−1.

Note that G is defined pointwise in (x, y, λ).

Consider now the linear equation pt = Lp and recall that the Laplace transform is defined via

p̃(λ) =

∫ ∞
0

e−λtp(t)dt.

If we take the Laplace transform of pt = Lp, we find (λ − L)p̃ = p(0). Solving for p̃ and inverting the

Laplace transform, we find

p(t) =
1

2πi

∫
Γ
eλt(λ− L)−1p(0)dλ,
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where Γ is a contour in the complex plane that does not intersect the spectrum of L (so that (λ−L)−1 is

well-defined on Γ) and extends to infinity in such a way that the above integral is convergent. Note that

the above formula is just the usual contour integral representation of the semigroup:

p(t) = eLtp(0), eLt =
1

2πi

∫
Γ
eλt(λ− L)−1dλ.

If we now replace the resolvent operator with the resolvent kernel in the above formulas, we obtain a

pointwise representation of the linear evolution:

p(x, t) =

∫
R
G(x, y, t)p(y, 0)dy, G(x, y, t) =

1

2πi

∫
Γ
eλtG(x, y, λ)dλ. (2.1)

The function G is known as the pointwise Green’ss function; it is a pointwise representation of the semi-

group.

As an example, consider L = ∂2
x, so our linear equation is just the one-dimensional heat equation on the

real line. On the space L2(R), this operator has spectrum given by (−∞, 0] (which consists entirely of

essential spectrum). The resolvent kernel and Green’s function are given by

G(x, y, λ) =
1

2
√
λ
e−
√
λ|x−y|, G(x, y, t) =

1√
4πt

e−
(x−y)2

4t .

Note that one can “see” the spectrum in the resolvent kernel, in that it does not decay at spatial infinity for

λ ∈ (−∞, 0]. For such λ, integration against G is not a well-behaved map from L2(R) to itself. Moreover,

the Green’s function is just the usual heat kernel. It decays only algebraically in time, which is expected

as there is no gap between the essential spectrum and the imaginary axis.

As another example, consider Burgers equation and its viscous shock

ut = uxx − uux, u∗(x) = −tanh(x/2), x ∈ R.

Stability is then determined by

pt = Lp− ppx, Lp = pxx + tanh
(x

2

)
px +

1

2
sech2

(x
2

)
p. (2.2)

One can show that the spectrum of the linear operator is given by the parabolic region σ(L) = {λ ∈ C :

Re(λ) ≤ −(Im(λ))2}. In addition, there is an embedded eigenvalue at λ = 0 with eigenfunction u∗x(x).

Thus, qualitatively it looks like the picture in Figure 2 on the right. One can also solve explicitly for the

resolvent kernel to find

G(x, y, λ) =
1

2λ
√
λ+ 1

4

e
−
√
λ+ 1

4
|x−y|

sech
(x

2

)
sech

(y
2

)
g

(
x, y,

√
λ+

1

4

)
,

where

g

(
x, y,

√
λ+

1

4

)
=

[
1

2
tanh

(x
2

)
+

√
λ+

1

4

][
−1

2
tanh

(y
2

)
+

√
λ+

1

4

]
H(x− y)

+

[
1

2
tanh

(y
2

)
+

√
λ+

1

4

][
1

2
tanh

(x
2

)
+

√
λ+

1

4

]
H(y − x)
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and H is the Heaviside function.

The key point is that, although (λ − L)−1 is not well-defined if λ ∈ σ(L), the resolvent kernel G is not

too badly behaved if λ ∈ σ(L) \ (−∞,−1/4]. This is important because the spectrum implies that the

growth bound for the semigroup is no smaller than 0, and so the best bound on the semigroup one can

hope for is ‖eLt‖ ≤ C. However, using the pointwise representation (2.1), one could potentially deform

the contour Γ into the essential spectrum in some appropriate way and prove that the linear evolution

decays algebraically. (There is an issue with the eigenvalue at zero; we will return to this, below.) One

can think of this in terms of how one can “see” the spectrum in the resolvent kernel. In this case, the

branch cut (−∞,−1/4] corresponds to something called the absolute spectrum (see [KP13]). The pole at

λ = 0 corresponds to the eigenvalue at zero. Finally the rest of the spectrum corresponds to values of λ

for which |e−
√
λ+ 1

4
|z|| ≥ e−|z|/2. This may not seem like particularly bad behavior, and it isn’t. The reason

such values of λ are in the spectrum is because (λ−L) has a nontrivial kernel there, so it isn’t one-to-one

and (λ − L)−1 is not well defined as an operator from L2(R) to itself. However, as an integral kernel it’s

still pretty well behaved. Thus, as far as choosing the contour Γ, one really only needs to worry about the

pole and the branch cut; one could, in principle, allow the contour to move through the other parts of the

spectrum.

This example is simple enough that we can solve explicitly for the pointwise Green’s function to find

G(x, y, t) = −1

2
u∗x(x)

[
errfn

(
x− y + t√

4t

)
− errfn

(
x− y − t√

4t

)]
(2.3)

+
1

2

(
1 + tanh

(x
2

)) 1√
4πt

e−
(x−y+t)2

4t +
1

2

(
1− tanh

(x
2

)) 1√
4πt

e−
(x−y−t)2

4t ,

where errfn(z) = (1/
√
π)
∫ z
−∞ e

−s2ds. The Green’s function can be understood as follows. The first piece

containing the error functions, which does not decay in time, comes from the eigenvalue at zero. It is like

a generalization of a spectral projection. The error functions form an outwardly moving plateau of height

1. In the limit as t→∞, integrating the initial data against this term only leads to

−1

2
u∗x(x)

∫
R
p(y, 0)dy.

The reason for the factor −1/2 is that
∫
u∗x(y)dy = −2, so this is just a normalization factor. The remaining

two pieces look like advected heat kernels. They correspond to the fact that

lim
x→±∞

L = ∂2
x ∓ ∂x.

The heat kernels get turned on and off at the appropriate ends of the real line by the factors (1/2)(1 ±
tanh(x/2)). These pieces give the algebraic decay that results from the essential spectrum. Green’s

In general, one will not have an explicit formula for the resolvent kernel or the Green’s function. However,

one can often obtain fairly detailed pointwise bounds on the resolvent kernel that, combined with a clever

choice of the contour Γ (see [ZH98]), can be used via the representation (2.1) to prove that the Green’s

function can be decomposed into a nondecaying piece, coming from any eigenvalues on the imaginary axis,

plus a piece that decays algebraically like a heat kernel (if one has parabolic essential spectrum that touches

the imaginary axis).

See the Appendix for examples where the resolvent kernel can be calculated explicitly.
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2.2 Main idea at the nonlinear level

The reason why pointwise estimates are so useful is because they can allow for stability results at the

nonlinear level. To illustrate this, consider Burgers equation again,

ut = uxx − uux, x ∈ R, (2.4)

but this time let’s consider the stability of u∗(x) = 0. (If we apply the Ansatz u(x, t) = 0 + p(x, t), we

just get back the original equation, above, so we will work directly with the original equation.) One way

to represent solutions is via Duhamel’s formula,

u(t) = e∂
2
xtu(0)−

∫ t

0
e∂

2
x(t−s)u(s)u′(s)ds.

However, as mentioned above, the best bound we can hope to have for the semigroup is ‖e∂2xt‖ ≤ C, and

this will make it difficult to prove anything about decay in u via the above formula. (Of course one could

prove that u decays via energy estimates, but the point here is to illustrate what can be gained by using

pointwise estimates.) The pointwise representation of solutions is given by

u(x, t) =

∫
R

1√
4πt

e−
(x−y)2

4t u(y, 0)dy −
∫ t

0

∫
R

1√
4π(t− s)

e
− (x−y)2

4(t−s) u(y, s)uy(y, s)dyds. (2.5)

Using the convolution estimate ‖G ∗ f‖Lp ≤ C‖G‖Lq‖f‖Lr , where 1/p+ 1 = 1/q + 1/r, one can prove the

following.

Lemma 2.1. The solution to (2.4) satisfies

‖u(t)‖Lp(R) ≤
C‖u(0)‖L1(R)

t
(p−1)
2p

, t ≥ 0,

for 1 < p <∞, if the initial data is sufficiently small.

Note that it will become clear in the proof what the meaning of “sufficiently small” is.

Proof. Integrate by parts in the second term of (2.5) and multiply the entire equation by t
(p−1)
2p . Then

take the Lp norm of each term to obtain

t
(p−1)
2p ‖u(t)‖Lp ≤ C‖u(0)‖L1 + Ct

(p−1)
2p

∫ t

0

1

(t− s)
(2q−1)

2q

‖u2(s)‖Lrds,

where 1/p+ 1 = 1/q + 1/r. Now choose r = p/2, which forces q = p/(p− 1). Also, define

|||u|||T = sup
0≤t≤T

t
(p−1)
2p ‖u(t)‖Lp ,

where T is the maximal time such that |||u|||T ≤ 1/(2C2), for a constant C2 to be defined below. Note

that T > 0 due to standard results on the local well-posedness of the equation. We then have

|||u|||T ≤ C‖u(0)‖L1 + C|||u|||2TT
(p−1)
2p

∫ T

0

1

(T − s)
(p+1)
2p s

(p−1)
p

ds

= C‖u(0)‖L1 + C|||u|||2T
∫ 1

0

1

(1− z)
(p+1)
2p z

(p−1)
p

dz =: C1‖u(0)‖L1 + C2|||u|||2T ,
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and so

|||u|||T ≤
C1‖u(0)‖L1

1− C2|||u|||T
≤ 2C1‖u(0)‖L1 ,

due to the choice of T . If the initial data is such that ‖u(0)‖L1 ≤ 1/(4C1C2), then this is a bound that is in

fact independent of T . Thus, it must be the case that T =∞, and so we’ve proved the required estimate

for initial data satisfying ‖u(0)‖L1 ≤ 1/(4C1C2).

An additional difficulty arises if we linearize about the viscous shock (2.2). In this case, due to the eigenvalue

at zero, the Green’s function (2.3) does not decay as t → ∞. However, if we could somehow remove the

nondecaying piece of the Green’s function, we’d be left essentially with heat kernels and potentially be able

to proceed as above.

One way to handle this is to notice that the eigenvalue at zero is due to translation invariance. This can

be seen because the associated eigenfunction is u∗x(x), and u∗(x+ α) ≈ u∗(x) + αu∗x(x). Moreover,

lim
t→∞

∫
R
G(x, y, t)p(y, 0)dy = −1

2
u∗x(x)

∫
R
p(y, 0)dy = αu∗x(x), α = −1

2

∫
R
p(y, 0)dy.

Thus, if we make the Ansatx u(x, t) = u∗(x)+p(x, t), we can’t expect p to decay to zero. We can, however,

adjust the Ansatz to account for this expected translation and instead define

u(x+ α(t), t) = u∗(x) + p(x, t)

for some unknown function α(t) to be determined later. Plugging this into (2.4), we find

pt = Lp− ppx + α̇(u∗x + px), Lp = pxx + tanh
(x

2

)
px +

1

2
sech2

(x
2

)
p. (2.6)

Let’s now also factor out the nondecaying part of the Green’s function by writing (2.3) as

G(x, y, t) = u∗x(x)E(y, t) + G̃(x, y, t), E(y, t) := −1

2

[
errfn

(
−y + t√

4t

)
− errfn

(
−y − t√

4t

)]
.

One can prove that G̃ := G−u∗xE decays at least as fast as heat kernels. Since u∗x(x) is a stationary solution

of the linearized equation, ∫
R
G(x, y, t)u∗x(y)dy = u∗x(x).

As a result, applying Duhamel’s formula to (2.6), we find

p(x, t) =

∫
R

[
u∗x(x)E(y, t) + G̃(x, y, t)

]
p(y, 0)dy

+

∫ t

0

∫
R

[
u∗x(x)E(y, t− s) + G̃(x, y, t− s)

]
[(α̇(s)− p(y, s))py(y, s)]dyds

+

∫ t

0
α̇(s)

∫
R
G(x, y, t− s)u∗x(y)dyds

=

∫
R

[
u∗x(x)E(y, t) + G̃(x, y, t)

]
p(y, 0)dy

+

∫ t

0

∫
R

[
u∗x(x)E(y, t− s) + G̃(x, y, t− s)

]
[(α̇(s)− p(y, s))py(y, s)]dyds

+[α(t)− α(0)]u∗x(x).
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If we now choose α to be the solution of

α(t) := α(0)−
∫
R
E(y, t)p(y, 0)dy −

∫ t

0

∫
R
E(y, t− s)[(α̇(s)− p(y, s))py(y, s)]dyds, (2.7)

then the evolution of the perturbation is governed by

p(x, t) =

∫
R
G̃(x, y, t)p(y, 0)dy +

∫ t

0

∫
R
G̃(x, y, t− s)[(α̇(s)− p(y, s))py(y, s)]dyds, (2.8)

which involves only the decaying part of the Green’s function. Of course, one needs to prove that a solution

to the system (2.7) - (2.8) exists, that α → α∞ as t → ∞, and that p decays to zero algebraically fast as

t→∞, but this can now be done with nonlinear estimates similar to those described above when studying

decay towards zero for Burgers equation. For more details see [Zum11].

Remark 2.2. A key step in using pointwise estimates to prove stability is to obtain sufficient (algebraic)

decay estimates on the Green’s function. This step was not needed in the example, above, because we had

explicit formulas for the Green’s function. Typically such estimates are obtained via bounds on the resolvent

kernel and the contour integral representation. This step will be crucial in the applications described below.

We do not, however, have time to describe the details here. See [ZH98], [BSZ10], and [BNSZ14] for details.

3 Two applications

We now describe two applications of the above method: time-periodic shocks in viscous conservation laws

and source defects in reaction diffusion equations.

3.1 Time-periodic shocks

All of the results described in this section are based on [BSZ10]. Consider the viscous conservation law

ut = uxx − (f(u))x, x ∈ R, u ∈ Rn. (3.1)

Consider a time-periodic shock, which is a solution u∗(x, t) of the form

u∗(x, t+ 2π) = u∗(x, t), lim
x→±∞

u∗(x, t) = u∗±,

where the end states u∗± are independent of t. (The period can always be normalized to be 2π.) This is a

profile similar to the viscous shock considered above for Burgers equation, but the interior of the wave is

allowed to vary periodically in time. In [TZ05, TZ08] it was shown that such solutions can result from Hopf

bifurcations of stationary viscous shocks. Furthermore, in [SS08] it was shown that, if the Hopf bifurcation

is supercritical, then the wave is spectrally stable, whereas if it is subcritical then the wave is unstable.

The goal in [BSZ10] was to prove that a spectrally stable solution of the above form is nonlinearly stable.

If we linearize the above equation about the time-periodic shock, we find

pt = pxx − (fu(u∗(x, t))p)x =: L(t)p (3.2)

The key issue is that, since the linear operator explicitly depends on time, neither the resolvent operator

or the semigroup are well-defined in the usual sense. Thus, it’s not clear how to obtain good bounds on the
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action of the resolvent operator (or some time-dependent version of it), or how to use a contour integral

to transfer that information to the linear evolution. As a result, the key theoretical advancements for this

application were the formulation of and bounds for the resolvent kernel, and the development of a contour

integral representation that allows for bounds of the Green’s function. Once that is complete, the nonlinear

stability analysis follows in a manner very similar to that described above for the stationary viscous shock

of Burgers equation.

In order to understand the linear evolution, we first recall that, for time-periodic operators, the appropriate

notion of spectrum is Floquet spectrum. (This is analogous with time–periodic linear ODEs.) To that end,

we seek solutions of (3.2) of the form

eσtp(x, t), p(x, t) = p(x, t+ 2π),

where σ is known as the Floquet exponent and e2πσ is the Floquet multiplier. Floquet exponents are not

unique, as the map σ → σ + 2πi doesn’t change the Floquet multiplier. Hence, we restrict our attention

to −1/2 < Imσ ≤ 1/2. As a result, the analogue of the spectral equation Lp = λp is given by

pt + σp = L(t)p, p(t+ 2π) = p(t),

and the resolvent kernel G(x, y, σ, t, s) must satisfy

Gt + σG− L(t)G = δ(x− y)δ(t− s). (3.3)

The reason for the additional factor of δ(t− s) is that this kernel must now be allowed to depend on time.

One could then seek to define the Green’s function via a contour integral as follows:

G(x, y, t, s) =
1

2πi

∫ 1
2

i

− 1
2

i
eσtG(x, y, σ, t, s)dσ. (3.4)

However, at the moment, equations (3.3)-(3.4) are a bit formal, because it’s not clear that well-defined

solutions to these equations exist. Justifying this formulation was one of the main results in [BSZ10].

The following three assumptions were made about the underlying shock.

• (H1) u∗(x, t) is a Lax shock.

• (H2) u∗(x, t) is spectrally stable, meaning that its Floquet spectrum is as depicted in Figure 3.

There is no spectrum in the closed right half plane except for the double eigenvalue at the origin

(and any any integer multiple of 2πi), with eigenfunctions u∗x and u∗t , which correspond to space

and time translations, respectively. Moreover, this spectrum must be minimal, which would roughly

correspond to having algebraic multiplicity two in the time-independent case.

For the precise statements of these assumptions, please see [BSZ10]. The first assumption is not necessary,

but it made some aspects of the analysis simpler. Nonlinear stability analysis for other types of stationary

shocks, such as under- and overcompressive shocks, has been carried out in [HZ06], and a similar analysis is

expected to work in the time-periodic setting. The second assumption is necessary. It ensures that there are

no unstable eigenvalues in the right half plane, which would lead to exponential growth of perturbations,

and that no algebraic growth can result from the spectrum on the imaginary axis. Under these assumptions,

one can prove the following theorems.
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Figure 3: Floquet spectrum of a spectrally stable viscous shock near the origin. Note the spectrum is

non-unique, as it can be shifted by any integer multiple of 2πi, and hence the parabolas repeat infinitely

many times up and down the imaginary axis. There are two embedded eigenvalues at the origin, due to

translations in space and time.

Theorem 1. Make the assumptions described above and pick ρ ≥ 0. Spectral stability is equivalent to

linearized stability in L1 ∩Hρ. That is, each solution of pt = L(t)p with initial data in L1 ∩Hρ converges

in this space to Span{u∗x, u∗t } as t→∞.

This theorem follows by proving that the Green’s function has a decomposition similar to that described

above for the linearization of Burgers equation about the viscous shock. There are pieces that do not

decay, corresponding to the eigenvalues at zero, while the other pieces decay essentially like heat kernels.

Theorem 2. Define the weighted norm ‖p‖H3
w

:= ‖(1 + x2)
3
4 p‖H3. Under the above assumptions, u∗

is nonlinearly stable with respect to initial perturbations p0 for which ‖p0‖H3
w

is sufficiently small. More

precisely, there exist constants C > 0 and δ > 0 such that, for each p0 with ‖p0‖H3
w
< δ, there exist

functions (q, τ)(t) and constants (q∗, τ∗) so that, for all x ∈ R and t ≥ 0, we have

‖u(·, t)− u∗(· − q∗ − q(t), t− τ∗ − τ(t))‖Lr ≤ C‖p0‖H3
w

(1 + t)−
1
2

(1− 1
r

), 1 ≤ r ≤ ∞,

where u(x, t) is the solution to (3.1) with initial data u∗(x, 0) + p0(x) and

|(q∗, τ∗)|+ (1 + t)
1
2 |(q, τ)(t)|+ (1 + t)|(q̇, τ̇)(t)| ≤ C‖p0‖H3

w
.

Essentially, this theorem states that, for initial data sufficiently close to the underlying time-periodic wave,

solutions to the full nonlinear equation (3.1) will converge to an appropriate space and time translate of

the wave. Detailed bounds on the resolvent kernel and Green’s function were also obtained; see [BSZ10]

for details.

We now briefly describe some of the key steps in the proofs of these theorems. As mentioned above,

Theorem 1 follows by obtaining an appropriate decomposition of the Green’s function, and this in turn

follows from sufficient bounds on the resolvent kernel and the representation (3.4). To do this, first write

(3.3) as a first-order system:

d

dx

(
G

Gx

)
= A(x, σ)(t)

(
G

Gx

)
+

(
0

−δ(x− y)δ(t− s)

)
, A(x, σ)(t) =

(
0 1

∂t + σ + fuu(u∗, u∗x) fu(u∗)

)
.

(3.5)
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One would like to solve this system using exponential dichotomies, which were developed for similar time-

dependent systems in [SS01]. This theory would allow us to solve for G(x, y, σ, ·, s) ∈ Hm+1/2(S1) for

any m ≥ 0. We could not apply this theory directly to the above equation, however, because of the lack

of smoothness in δ(t − s). (The lack of smoothness in space, via δ(x − y), had already been handled.)

Addressing this issue was one main component of the proof.

Once it was shown that the resolvent kernel exists as a solution to (3.5), the issue was deriving sufficient

bounds on the resolvent kernel, justifying the representation (3.4), and using it to obtain detailed bounds

for the Green’s function. Bounds on the resolvent kernel are obtained via the asymptotic limits

lim
x→±∞

A(σ, x) := A±(σ) =

(
0 1

∂t + σ fu(u∗±)

)
.

The spectrum of this operator (which is infinite-dimensional, essentially because of the ∂t term) will

determine the spatial decay rates of the resolvent kernel. To understand this spectrum, think about

expanding in Fourier space in t, so that ∂t → ik. For k = 0, the eigenvalues are roots of the polynomial

det(ν2 − fu(u∗±)ν − σ) = 0.

Some of these eigenvalues are “weak” in the sense that, when σ = 0 (which is near the part of the Floquet

spectrum of L(t) that we’re interested in), the spatial eigenvalues ν have zero real part. This causes weak

decay of the resolvent kernel at spatial infinity, which is exactly the sort of behavior that’s associated with

the presence of the essential Floquet spectrum. By obtaining an expansion of the resolvent kernel that

captures this weak spatial decay, we will be able to obtain precise bounds on the Green’s function. (Parts

of the resolvent kernel that decay strongly at spatial infinity will lead to higher order terms that are not

as important for the estimates.)

To transfer the resolvent bounds to the Green’s function via (3.4), one first has to show that contour

integral is well-defined and convergent. See [BSZ10] for details. Once that is done, bounds for the Green’s

function can be obtained by deforming the contour Γ into the essential spectrum as shown in figure 4. This

use of a vertical contour and its deformation is similar to [MZ03]. The integration over the two dotted

horizontal lines cancel, so they do not create any spurious contributions to the Green’s function.

Once sufficient bounds for the Green’s function are obtained, the nonlinear stability analysis proceeds in a

manner very similar to that described above for Burgers equation. The only modifications are due to the

fact that there are now two nondecaying pieces,

G(x, y, t, s) = u∗x(x, t)E1(y, t, s) + u∗t (x, t)E2(y, t, s) + G̃(x, y, t, s),

due to the double eigenvalue at σ = 0. To account for this, one must use an Ansatz that allows for

translation in both space and time, but the main ideas of the argument are the same. See [BSZ10] for

details.

3.2 Source defects in reaction-diffusion equations

Unlike the previous application, where the main mathematical difficulty occurred at the linear level, due

to the time-periodicity of the operator, the main difficulty here will appear at the nonlinear level.
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Figure 4: Left panel: original vertical contour with real part µ used in (3.4). Right panel: deformed

contour used to obtain bounds on the Green’s function. The parameters ε and r can be chosen to be small

and to optimize the resultant bounds.

A defect is a solution ud(x, t) of a reaction-diffusion equation

ut = Duxx + f(u), u : R× R+ → Rn (3.6)

that is time-periodic in an appropriate moving frame ξ = x − cdt, where cd is the speed of the defect,

and spatially asymptotic to wave trains, which have the form uwt(kx − ωt; k) for some profile uwt(θ; k)

that is 2π-periodic in θ. Thus, k and ω represent the spatial wave number and the temporal frequency,

respectively, of the wave train. Wave trains typically exist as one-parameter families, where the frequency

ω = ωnl(k) is a function of the wave number k. The function ωnl(k) is referred to as the nonlinear dispersion

relation, and its domain is typically an open interval. The group velocity cg(k0) of the wave train with

wave number k0 is defined as

cg(k0) :=
dωnl

dk
(k0).

The group velocity is important as it is the speed with which small localized perturbations of the wave

train propagate as functions of time, and we refer to [DSSS09] for a rigorous justification of this.

Defects have been observed in a wide variety of experiments and reaction-diffusion models and can be

classified into several distinct types that have different existence and stability properties [vSH92, vH98,

SS04]. This classification involves the group velocities c±g := cg(k±) of the asymptotic wave trains, whose

wavenumbers are denoted by k±. Sources are defects for which c−g < cd < c+
g , so that perturbations are

transported away from the defect core towards infinity. Generically, sources exist for discrete values of the

asymptotic wave numbers k±, and in this sense they actively select the wave numbers of their asymptotic

wave trains. Thus, sources can be thought of as organizing the dynamics in the entire spatial domain; their

dynamics are inherently not localized. See Figure 5.

When analyzing the stability of a source, there are several key difficulties. First, since they are time-

periodic, the linearized operator L(t) will be time-periodic, and spectrally stable sources will have a spectral

picture similar to the time-periodic shocks [SS04]. This is a difficulty we now know how to deal with, due
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Figure 5: On the left is a diagram of the profile of a source as a function of x for a fixed value of t, with

the motion of perturbations, relative to the speed of the defect core, indicated by the red arrows and the

group velocities of the asymptotic wave trains. The right panel shows the behavior of small phase φ or

wave number φx perturbation of a wave train: to leading order, they are transported with speed given by

the group velocity cg without changing their shape [DSSS09].

to the previous example [BSZ10]. Second, since we will be linearizing (3.6) about the source, rather than

linearizing (3.1) as in the previous case, we will not have the conservation law structure, (f(u))x, in the

nonlinear term. This x-derivative is useful because in Duhamel’s formula we can integrate by parts and

transfer that derivative to the Green’s function, thus creating extra temporal decay, which helps close the

nonlinear argument. Since this is not possible for reaction-diffusion equations, the nonlinear estimates

become more delicate. The final difficulty is that, since we will linearize about a source, its asymptotic

wave trains will send any perturbation, even if it is initially localized, out towards spatial infinity. Thus,

the perturbation will not stay localized. This will add an additional degree of delicacy to the nonlinear

estimates. Moreover, this property of the source will also change the structure of the Green’s function, due

to the fact that the eigenfunctions associated with the zero eigenvalue will no longer be spatially localized.

The corresponding adjoint eigenfunctions will be exponentially localized in space, however, which implies

that the source has a well defined spatial position and temporal phase.

If a source is subjected to a localized perturbation, then one anticipated effect is that the defect core

adjusts its position and its temporal phase in response. From its new position, the defect will continue to

emit wave trains with the same selected wave number, but there will now be a phase difference between

the asymptotic wave trains at infinity and those newly emitted near the core. In other words, we expect to

see two phase fronts that travel in opposite directions away from the core as illustrated in Figure 6. The

resulting phase dynamics can be captured by writing the perturbed solution u(x, t) as

u(x, t) = ud(x, t+ φ(x, t)) + p(x, t),

where we expect that the perturbation p(x, t) of the defect profile decays in time, while the phase φ(x, t)

resembles an expanding plateau as indicated in Figure 6 whose height depends on the initial perturbation

through the spatio-temporal displacement of the defect core.

Initially, to simplify the analysis, we focused only on the analysis of the dynamics of the phase φ. For

phase perturbations of wave trains, it was indeed established formally in [HK77] and proved rigorously in

[DSSS09] that the phase φ(x, t) satisfies an integrated Burgers equation for long times. This lead us to

consider in [BNSZ12] the model problem

φt = φxx − c tanh
(cx

2

)
φx + φ2

x, c > 0 (3.7)

with small localized initial data, where x ∈ R, t > 0, and φ(x, t) is a scalar function representing the phase.

This equation is related to the linearization of Burgers equation about the viscous shock, (2.2), with some
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Figure 6: On the left is a sketch of the space-time diagram of a perturbed source. The defect core will

adjust in response to an imposed perturbation (although this is not depicted), and the emitted wave trains,

whose maxima are indicated by the lines that emerge from the defect core, will therefore exhibit phase

fronts that travel with the group velocities of the asymptotic wave trains away from the core towards ±∞.

The right panel illustrates the profile of the anticipated phase function φ(x, t).

key differences. First, the sign of the advection term is negative, rather than positive, which directs the

motion of the perturbation outward, rather than inward. The parameter c represents the speed of the

perturbation, so we are effectively assuming for simplicity that cd = 0 and c−g = −c < 0 < c = c+
g . Second,

the equation has been integrated, which is consistent with the above-mentioned results [HK77, DSSS09]

on phase perturbations of wave trains. This removes the sech2(cx/2) term, changes the nonlinearity from

ppx to p2, and replaces p with φx. One effect of this is to remove the zero eigenvalue from the spectrum

of the linear operator, which is otherwise the same as for the operator in (2.2). Having an embedded zero

eigenvalue is a difficulty that one can deal with, as described above, and so this allows us to focus on the

third difficulty, mentioned above, of the outward motion of the perturbations. The following theorem was

proven in [BNSZ12].

Theorem 3. For each γ ∈ (0, 1
2), there exist constants ε0, η0, C0,M0 > 0 such that the following is true.

If φ0 ∈ C1 satisfies

ε := ‖ex2/M0φ0‖C1 ≤ ε0

then the solution φ(x, t) of (3.7) with φ(·, 0) = φ0 exists globally in time and can be written in the form

φ(x, t) = φ∗(x, t, α(t)) + p(x, t)

for appropriate functions α(t) and p(x, t), and with φ∗(x, t, α) := log (1 + αG(x, 0, t)), where G is the

Green’s function for the linear operator in (3.7). Furthermore, there is an α∞ ∈ R with |α∞| ≤ C0 such

that

|α(t)− α∞| ≤ εC0e−η0t,

and p(x, t) satisfies

|p(x, t)| ≤ εC0

(1 + t)γ

(
e
− (x+ct)2

M0(t+1) + e
− (x−ct)2

M0(t+1)

)
, |px(x, t)| ≤ εC0

(1 + t)γ+1/2

(
e
− (x+ct)2

M0(t+1) + e
− (x−ct)2

M0(t+1)

)
for all t ≥ 0. In particular, ‖p(·, t)‖Lr → 0 as t→∞ for each fixed r > 1

2γ .
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This theorem essentially says that the solution to (3.7) looks like an outwardly expanding plateau, given by

φ∗, plus a perturbation that decays like a Gaussian. One can explicitly determine a formula for the Green’s

function G. The reason for the form of φ∗ is that, if α were constant, this would be an exact solution of

(3.7) by the Cole-Hopf transformation. However, we need to let the height of the plateau α(t) vary so as to

remove the non-decaying part of the Green’s function before conducting the nonlinear estimates. In other

words, the key mathematical advancement of this result was to determine the appropriate Ansatz for the

form of solutions, φ(x, t) = φ∗(x, t, α(t)) + p(x, t), so as to enable removal of the non-decaying part of the

Green’s function and closure of the nonlinear estimates. For more details see [BNSZ12].

Once the toy model was analyzed, and it was understood how to handle the non-localization of perturba-

tions, the next step [BNSZ14] was to analyze the nonlinear stability of sources in the complex cubic-quintic

Ginzburg-Landau (qCGL) equation

At = (1 + iα̃)Axx +A− (1 + iβ)A|A|2 + (γ1 + iγ2)A|A|4. (3.8)

Here A = A(x, t) is a complex-valued function, x ∈ R, t ≥ 0, and α̃, β, γ1, and γ2 are all real constants

with γ = γ1 + iγ2 being small but nonzero. (The reason for the tilde above α is to distinguish it from the

α which has been used, and will continue to be used, to denote an initially arbitrary function that will be

chosen to remove non-decaying parts of the Green’s function.) It is shown, for instance in [BN85, PSAK95,

Doe96, KR00, Leg01, SS04], that the qCGL equation exhibits a family of sources, and in fact much detail

is known about these sources. When cd = 0, they have the form

Asource(x, t) = r(x)eiϕ(x)e−iω0t,

where

lim
x→±∞

ϕx(x) = ±k0, lim
x→±∞

r(x) = ±r0(k0), ω0 = ω0(k0),

and the details of the functions r and ϕ, as well as information about r0 and ω0, are known. What is

particularly useful here is that the time dependence, via the term e−iω0t, factors out. Therefore we can

study perturbations of the amplitude and phase using an Ansatz of the form

A(x+ α(x, t), t) = (r(x) +R(x, t))ei(φ(x)+ϕ(x,t))e−iω0t

without ending up with a time-dependent linearized operator. As a result, we can now essentially focus

on two of the three above-mentioned difficulties that one may encounter when analyzing the nonlinear

stability of sources. Here R and ϕ are the amplitude and phase perturbations that we wish to prove decay

in some appropriate sense, and α(x, t) is a function we can choose so as to cancel any non-decaying parts

of the Green’s function. Rather than proving this directly, we instead show that solutions converge to a

modulated source defined by

Amod(x, t) := Asource(x, t)e
iφa(x,t) = r(x)ei(ϕ(x)+φa(x,t))e−iω0t.

The functions α(x, t) and φa(x, t) together will remove from the dynamics any non-decaying or slowly-

decaying terms, resulting from the zero eigenvalues and the quadratic terms in the nonlinearity, thus

allowing a nonlinear iteration scheme to be closed. To describe these functions in more detail, we define

e(x, t) := errfn

(
x+ cgt√

4dt

)
− errfn

(
x− cgt√

4dt

)
, errfn(z) :=

1

2π

∫ z

−∞
e−x

2
dx
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where d is a positive constant that is defined in terms of the parameters appearing in (3.8) (see [BNSZ14]

for a precise definition), and the Gaussian-like term

θ(x, t) :=
1

(1 + t)1/2

(
e
− (x−cgt)

2

M0(t+1) + e
− (x+cgt)

2

M0(t+1)

)
,

where M0 is a fixed positive constant. Now define

φa(x, t) := − d

2q

[
log
(

1 + δ+(t)e(x, t+ 1)
)

+ log
(

1 + δ−(t)e(x, t+ 1)
)]
,

α(x, t) :=
d

2qk0

[
log
(

1 + δ+(t)e(x, t+ 1)
)
− log

(
1 + δ−(t)e(x, t+ 1)

)]
,

where the constant q and the smooth functions δ± = δ±(t) (which are chosen to remove non-decaying parts

of the Green’s function) are defined in [BNSZ14]. The formulas for φa and α are related to an application of

the Cole-Hopf transformation. Our main result asserts that the shifted solution A(x+α(x, t), t) converges

to the modulated source with the decay rate of a Gaussian [BNSZ14].

Theorem 4. Assume that the initial data is of the form Ain(x) = Rin(x)eiφin(x) with Rin, φin ∈ C3(R). In

addition, assume that Asource is spectrally stable and that certains assumptions on the parameters in (3.8),

which can be found in [BNSZ14, Lemma2.1], are satisfied. There exists a positive constant ε0 such that, if

ε := ‖Ain(·)−Asource(·, 0)‖in = ‖ex2/M0(Rin − r)(·)‖C3(R) + ‖ex2/M0(φin − ϕ)(·)‖C3(R),≤ ε0,

where M0 is a fixed positive constant and ‖ · ‖C3 is the usual C3-sup norm, then the solution A(x, t) to the

qCGL equation (3.8) exists globally in time. In addition, there are constants η0, C0,M0 > 0, δ±∞ ∈ R with

|δ±∞| ≤ εC0, and smooth functions δ±(t) so that

|δ±(t)− δ±∞| ≤ εC0e−η0t, ∀t ≥ 0

and∣∣∣ ∂`
∂x`

[
A(x+α(x, t), t)−Amod(x, t)

]∣∣∣ ≤ εC0(1+ t)κ[(1+ t)−`/2 +e−η0|x|]θ(x, t), ∀x ∈ R, ∀t ≥ 0, (3.9)

for ` = 0, 1, 2 and for each fixed κ ∈ (0, 1
2). In particular, ‖A(·+ α(·, t), t)−Amod(·, t)‖W 2,r → 0 as t→∞

for each fixed r > 1
1−2κ .

This theorem implies that the phase ϕ(x) + φ(x, t) tends to ϕ(x) + φa(x, t), where φa(x, t) looks like

an expanding plateau as time increases. The functions δ±(t) will be constructed via integral formulas

that are introduced to precisely capture the non-decaying part of the Green’s function of the linearized

operator. The choices of α(x, t) and φa(x, t) are made based on the fact that the asymptotic dynamics of

the translation and phase variables is governed (to leading order) by a nonlinear Burgers-type equation:(
∂t +

cg

k0
ϕx∂x − d∂2

x

)
(φa ± k0α) = q(∂xφ

a ± k0∂xα)2.

By defining α and φa in this way, we are able to remove not only the non-decaying parts of the Green’s

function, but also the quadratic terms in the nonlinearity. These terms (which are not present when the

equation has conservation law structure, as for the time-periodic shocks) are problematic for the nonlinear
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estimates. This is related to the fact that the zero solution of ut = uxx − u2 is unstable. See [BNSZ14] for

more details.

Finally, we note that the condition in the Theorem that ε ≤ ε0 requires that the perturbation be quite

localized in space, essentially Gaussian. This is largely for convenience as it simplifies the analysis con-

siderably: in particular, this assumption allows us to close our nonlinear iteration scheme more easily.

Moreover, this localization separates, to some extent, the issue of stability of sources versus stability of

the asymptotic wave trains. The stability of wave trains under non-localized perturbations was addressed

only recently in [JNRZ13, SSSU11]. We believe that this source stability result remains true for initial

perturbations that decay like |x|−a for some sufficiently large a (and believe that a = 3/2 is sufficient).

4 Appendix

Here we present two examples of how to compute a resolvent kernel. First consider the equation

λG−Gxx = δ(x− y). (4.1)

Two solutions to the homogeneous equation λu− uxx = 0 are

u+(x, λ) = e
√
λx, u−(x, λ) = e−

√
λx.

We can solve for the resolvent kernel using a method known as variation of constants. Suppose the solution

has the form

G(x, y, λ) = v+(x, y, λ)u+(x, λ) + v−(x, y, λ)u−(x, λ),

for some unknown functions v±. Differentiating once with respect to x we find

Gx = ∂xv+u+ + v+∂xu+ + ∂xv−u− + v−∂xu−.

For convenience, we force ∂xv+u+ + ∂xv−u− = 0. This then leads to

Gxx = ∂xv+∂xu+ + v+∂
2
xu+ + ∂xv−∂xu− + v−∂

2
xu−.

Inserting this into (4.1) and using the fact that u± solve the homogeneous equation, we find

∂xv+∂xu+ + ∂xv−∂xu− = −δ(x− y).

Hence, to find a solution, we must solve the system of equations

∂xv+u+ + ∂xv−u− = 0

∂xv+∂xu+ + ∂xv−∂xu− = −δ(x− y).

This can be equivalently written as(
∂xv+

∂xv−

)
=

(
u+ u−

∂xu+ ∂xu−

)−1(
0

−δ(x− y)

)
=

1

u+∂xu− − u−∂xu+

(
∂xu− −u−
−∂xu+ u+

)(
0

−δ(x− y)

)
.
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Using the fact, for λ /∈ (−∞, 0] = σ(L), u+ is well behaved at −∞ and u− is well-behaved at +∞, as well

as the fact that the Wronskian is given by

u+∂xu− − u−∂xu+ = −2
√
λ,

we find that

−v+(x, y, λ) =

∫ ∞
x

∂xv+(x, y, λ)dx = − 1

2
√
λ

∫ ∞
x

u−(x, λ)δ(x− y)dx = − 1

2
√
λ
u−(y, λ)H(y − x)

v−(x, y, λ) =

∫ x

−∞
∂xv−(x, y, λ)dx =

1

2
√
λ

∫ x

−∞
u+(x, λ)δ(x− y)dx =

1

2
√
λ
u+(y, λ)H(x− y),

where H is the Heaviside function. As a result, the resolvent kernel is given by

G(x, y, λ) =
1

2
√
λ
u−(y, λ)u+(x, λ)H(y − x) +

1

2
√
λ
u+(y, λ)u−(x, λ)H(x− y) =

1

2
√
λ
e−
√
λ|x−y|.

Next consider the associated equation for the linearization of Burgers equation about the viscous shock:

λu− uxx − tanh
(x

2

)
ux −

1

2
sech2

(x
2

)
u = δ(x− y).

The two solutions to the homogeneous equation are given by

u±(x, λ) =

(
−1

2
tanh

(x
2

)
±
√
λ+

1

4

)
sech

(x
2

)
e
±
√
λ+ 1

4
x
.

These can be found by using the changes of variables v =
∫ x
−∞ u followed by w = cosh(x/2)v, which

transforms the homogeneous equation into wxx− (λ+1/4)w = 0. Now one can use the method of variation

of constants, as above, to solve for the resolvent kernel, which is given above in §2.1.
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