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Enhanced dissipation in fluids

Observed in (at least) two models:
e 2D Navier-Stokes equation
e Taylor dispersion in shear flows

Goal of talk:
e Describe the phenomenology
e Analyze mathematically in above models.




Observed dynamics: 2D Navier-Stokes

2D incompressible Navier-Stokes on the torus with small viscosity:

[Fluid dynamics laboratory, Eindhoven]

e Vorticity evolves from small scale to large scale structures
e Localized vortices persist and organize the dynamics
e Separation of time scales

— Rapid convergence to localized vortices

— Slow motion and merger of vortices



2D Navier-Stokes: decaying turbulence

Some questions:
e How to characterize the quasi-stationary states? [Y, M, C '03]
e What causes the separation in time scales? [B., Wayne '13]

Determine quasi-stationary states via statistical mechanics:
e Stationary solutions of inviscid Euler equations seem to play a role
e Such states with maximum entropy are good candidates
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[Yin, Montgomery, Clercx 2003]



Quasi-stationary states

Yin, Montgomery, Clercx 2003:
e Euler: formal calculations and numerical analysis determined these states

e Navier-Stokes: dynamic calculations confirmed predictions (v = 1/5000)
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Observed dynamics: stochastically forced Navier-Stokes equation
Statistical equilibrium consists of bars and dipoles [Bouchet, Simonnet '09]:
e Square torus: dipole dominates
e Asymmetric (rectangular) torus: bar dominates
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Observed dynamics: Taylor dispersion in a shear flow

Named after Geoffrey Taylor (1953)
Drop dye in pipe with background (nonuniform) shear flow

Dye will be advected at mean background rate, and also spread out due to
both the shear profile and diffusion

e If diffusion coefficient is 0 < v < 1, then effective diffusion will be ~ 1/v!



Analysis: 2D Navier-Stokes on the torus

Oru =vAu — (u-V)u— Vp, V-u=0, (x,y)€T2

Assume viscosity is small

o<rl, physical range = O(107?).

Vorticity formulation: w = (0,0,1) - (V X u)

_ _ (-9, A7w
Ow =vAw —u-Vw, /TZw—O, u_<8XA’1w>'

Decay of energy due to diffusion

il/ w?(x, y)dxdy = *V/ [Vew(x, y)| dxdy < 71// w?(x, y)dxdy
dt2 Jp 2 T2
is very slow

lw(t)lliz = O(e™).



Explicit families of metastable states

bar(x,y, t) = e “" cos(x), WP (x,y, t) = e “*[cos(x) + cos(y)]

ZZ AN

w

iy

A
N7

Bar Dipole

These solutions:

Are quasi-stationary if 0 < v < 1.

Match observations of [Yin et al 03] and [Bouchet and Simonnet 09].
Are stationary solutions of the Euler equations when v = 0.

Should attract (some) nearby solutions faster that O(e™"").

Are part of an infinite family:

SIOW( —vm?t

x,y,t)y=e [a1 cos(mx) + a> cos(my) + a3 sin(mx) + as sin(my)]



Linearization about a bar state

. _[(-o,A7 w
Orw = VvAw —u - Vw, u_<8XA’1w>'

Ansatz: w = wb +v
v =vAv — e [sinxdy(1+ A H]v —u" - Vv.
First understand linear evolution:

dev = vAv — e V[sinxd, (1 + A™N)]v =: L(t)v



Linearization about a bar state

. _ —9,A w
Orw = VvAw —u - Vw, u_(GXA’lw)'

Ansatz: w = w4+ v
v =vAv — e [sinxdy(1+ A H]v —u" - Vv.
First understand linear evolution:
dev = vAv — e V[sinxd, (1 + A™N)]v =: L(t)v
Role of pieces of operator:
e vA: causes diffusive decay O(e™"")

e e “'sinxd, A" nonlocal, expect higher order
e Approximation similar to passive scalar advection by shear flow:

O0tv = VAv — sin x0,v

Asymptotic of eigenvalues in [Vanneste, Byatt-Smith 07]: O(e™V"?)

Expect ||v(t)|| = O(e™V"*) <« O(e™"*). Second term must increase decay!




What causes the fast decay?

ur = Lu
Villani, 2009, considers operators of the form

L=A"A+B, B'=-B

e AB = BA: antisymmetry of B implies || u|| = ||u||, and so

L A*At_B
Il e =

A* At
=lle” Te [

lle e

)

so B cannot increase the decay rate of the semigroup.

e AB # BA: rapid decay possible via hypoceorcivity
Define commutator C = [A, B] = AB — BA and a functional
®(u) = (u, u) + a(Au, Au) — 26Re(Au, Cu) + v(Cu, Cu)

Careful choice of «, 8, and =y can show faster than expected decay.



Back to our problem...

dev = vAv — e V[sinxd, (1 + A™Y)]v =: L(t)v

Slow modes: Cannot expect rapid decay on all of L2

AVslow = 8tVslow = l:(t)vSIOW7 A= O(V)

2, - .
—vmt+imx _—vttiy |,
Vsiow € {€ e :m € Zo}.

Like an infinite-dimensional eigenspace — need to “project” off it.

Intuitively:
— Expect something like a center manifold with slow decay O(e™"*)
— and something like a stable manifold with rapid decay O(e™V"*)
— Use hypocoercivity to get rapid decay rate in stable manifold.
— But operator is time-dependent.
— Can't use spectral projections to obtain manifolds.

Invariant subspaces:
— Can construct them directly by careful inspection.
— Related to movement of energy between Fourier modes.



Rapid decay in “stable” subspace
drv = vAv — e sinxd, (1 + A7 H)]v.

Since there is no y-dependence in the bar state: v(x,y) = >,, Vi(x)e”

ey = vl O — ile” H[sinx(1+ A D0, A =07 — P



Rapid decay in “stable” subspace
drv = vAv — e sinxd, (1 + A7 H)]v.

Since there is no y-dependence in the bar state: v(x,y) = >,, Vi(x)e”

ey = vl O — ile” H[sinx(1+ A D0, A =07 — P

Recall: want L = A*A+ B, with B* = —B
o A=9d,, A* = —8,, so that v0? = —VA*A
e But the second term is not anti-symmetric! Change variables...

Motivated by Wilkinson's book “The algebraic eigenvalue problem”:

u:=+/1+ Aflﬁ/
1
k2412
Invertible transformation in our subspace.

1+4A'=1 & /] + [k > 1.



Transformed equation

Oru = v —ile™" {\/1 +A" sinx\/l + A,‘l} u.
We have
o A:= 0,
o Bi= —ile [\/1 + A7 sinxy 1+ A,*l}, B* = B

o C:=[0,,B]=—ile ™"t {‘/1 + A cosxy/1 +A,‘1], Cc*=-C.

Problem: [B, C] # 0; will lead to difficult terms in Villani's framework.




Transformed equation

Oru = v —ile™" {\/1 +A" sinx\/l + A,‘l} u.

We have
o A:= 0,

o Bi= —ile [\/1 + A7 sinxy 1+ A,*l}, B* = B
o C:=[0,,B]=—ile ™"t {‘/1 + A cosxy/1+ A,‘l], Cc*=-C.

Problem: [B, C] # 0; will lead to difficult terms in Villani's framework.
Partial solution: first consider only the approximate equation

Ot = vAju — ile™ "  sin xu 1= Lapprox(t)u.
A= 0y
B := —ile "'sinx, B* = —B
C :=[0x,B] = —ile "' cosx, C* = —C.
[B,C] =0



Analysis: 2D Navier-Stokes, Main result

Function space: C = C(/) = —ile™"" cos x

~ ~ v o 1 .
X=Qu:do=0Y [+, /|T|H8XU/H2 + WHC(/)UNF] < oo
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Theorem [B., Wayne '13] Pick T € [0,1/v]. There exist constants K and M,
O(1) with respect to v, such that the following holds. If v is sufficiently small,
then the solution to u; = Lapprox(t)u with initial condition u® € X satisfies

lu(®)k < Ke ™Y1k
for all t € [0, T].
Implies rapid decay of solutions:

e Decay e~ Mv¥t much faster than the viscous time scale e~
e If T=1/v, then

vt

_M _ _
efMﬁT:eﬁ<<1’ e VT — ot




Taylor Dispersion

ur = vAu— V(y,z)ux
2 8u
x €R, (y,z) eQCR’, %\on, O<r<l

Remove background advection

1

V02 = AL +x02). A= g / V(y, z)dydz.

Moving coordinate (x — x + At) and rescale

X = vx, T =vt.



ur = Puxx + Ay u— Ax(y, z)ux.

Fourier series wrt eigenfunctions {t¢,} of A, , with eigenvalues {un}:

U(X7y7 Zz, T) = Z u"(X7 t)w"(.yv 2)7 X(yvz) = and)n(y,z),
n=0 n=0
to obtain
3TU() = IJ28)2<UO — AZXmaxum
m=1
oru, = 1/28)2<u,, — Wntn — AxnOxuo — AZX,,,m(?xum, n#0

m=1



ur = Puxx + Ay u— Ax(y, z)ux.

Fourier series wrt eigenfunctions {t¢,} of A, , with eigenvalues {un}:

U(X7y7 Zz, T) = Z u"(X7 t)w"(.yv 2)7 X(yvz) = and)n(y,z),
n=0 n=0
to obtain
3TU() = IJ28)2<UO — AZXmaxum
m=1
Oru, = 1/28)2<”" — pntn — AxnOxuo — AZX,,,m(?xum, n#0
m=1
Similarity variables: € = X/v/1+ T, 7=log(1+ T)
1
X, T) =
UO( ) ) \/ﬁwo (657—)
1
u"(X7 T) = (1+T)W"(£77-)7 n#o



Taylor Dispersion

Laplacian ©?9% becomes in similarity variables: (2m — 1)

Lw = 1ow + %ag(fw)

X
X




Taylor Dispersion

Laplacian ©?9% becomes in similarity variables: m =
Lw = 1ow + %Bg(gw) o 4X
o(L)
Dynamics of Fourier modes becomes in L*(m)
Orwo = Lwo— A KmOewWim
mA0

Or Wy

1 T/2 = T
(E + 5) Wy — e/ AZX,,J,,@{W,,, — e (nWn + AxnOewo).

m=1



Taylor Dispersion

Laplacian ©%0% becomes in similarity variables: (2m —1) C
4
Lw = 0w+ 2 0c(éw) .
a(£)
Dynamics of Fourier modes becomes in L*(m)
Orwo = Lwo— A KmOewWim
m#0
1 oo
07— Whn = (L + *) Wn — eT/QAZ Xn,maﬁ Wm — eT(Man + AXnaf WO)'
2 m=1
For large 7,
Axn _ 2 1. 292
W, ~ — 85W0 = Orwo = Lwy + A Z*‘Xm‘ 6§W0.

Hn mAO m

Rapid diffusion:

1 1 .
Orwy = thagwo + E@g(fwo), Vg = V2 + A? Z 7‘Xm‘2

m#0 ©M

=:D¢q



Taylor Dispersion
Intuitively, we expect:

Wn

Orwo = Liqwy AXn

w
\\ I/LTL
Wo

But this is not quite true!

e Enhanced diffusion affects only low modes (isolated eigenvalues)
Infinite-dimensional ODE governing low modes has a center manifold
Convergence to the center manifold is exponentially fast

High modes (rest of spectrum) decay exponentially due to regular diffusion

292 2,2
t —vkt —t .
e/t L e R e if k~1/v

Taylor dispersion only affects low modes, still physically observable.



L*(m) = {w € ’(R): /R(l + X3 w(X)PdX < oo}

Theorem [B., Chaudhary, Wayne '18] Given any N, if u(-,y, z,0) € L*(N + 1)
U(X:}’7Za T) = uaPP(X,yvzv T) + urem(X,y,z, T)7

where

1. wapp is governed by an infinite-dimensional system of ODEs that possesses
a globally exponentially attracting center manifold on which the dynamics
correspond to enhanced diffusion with viscosity v44. In other words,

(X T) < ~ T
Us. Y, Z, - ¢ (Tt
poAY drveg(T + 1)

C
<.
(14 T)32

12

2. The remainder term satisfies

Hufem(X,y7z7 7-)||L2 S

1 -

(1+t)sts



Ideas in Proof

-— C
2m—1)
—
O'(,Ctd)
Orwyg = Lgwy — Dtd8§W0 — AZ )2,,,85 Wm in LQ(m)
m#0
1 oo
87-Wn = <['td + §> Wp — Dtdagwo _ eT/QAZXn,mafwm _ eT(IJ/an + AXna§W0)

m=1



Ideas in Proof

— C
2m—1)
4
O’(,Ctd)
s T2
8T wWo = £tdWO — Dtdag wo — AZ )A(mag Wm in L (m)
m#0
1 oo
o-w, = <Etd + §> w, — Dtd(?gwo — eT/QAZX,,,mang — e (unwn + AxnOewo)
m=1
Separate into low and high modes using o(L¢):
W0(€7 T) = Z ak + Wo (57 )
Wn(é-’,r) = Zﬁk +Wn(§7 )7 n: 17273""

Define Uapp and Urem:

® Ua.pp defined via aupl® and Bl

® Urem defined via w§ and w,



Analysis of wapp:

wo(é,7) = Zak &) +ws(&,7)

W"(ng) = Zﬁk +Wn(£, )7 n= 172737"'

Project equations onto low eigenmodes: 2 < k< N, n=1,2,3,...

a = 0
a - 1
1 = 2011
S S B Ai g
ax = 2Ozk td Ok —2 71Xm k—2
IBS = _eT(MnBS + AXnao)
- 1 n - n T > m
51 = 75/81 — € (/‘Lnﬁl + AXnal) —e? AZ_IX”’mﬁO
Hn k n T n n = - m
Bl = =280 — € (1aBf + Axocu) — DBz — €T AN XomBils

m=1



Analysis of wapp:

Diagonalize and make autonomous via 0 = e~ ™/2, 7 = log(1 + T):

ay = 0
1

a, = —50231

a, = o° 753 - Ai by

k 5 k m:1xm k—2
bgl = —pnbg

n 1 n — mw A
bll = — (50-2 + H") bl - AU;Xn,m (bo — %aa)

n k n n A n A2 n > m
by = - <§U2 + /ln> by — Dro® (bk—z -2 3/&2) B Xng2 Zmek—z

Hen Hn m=1
7JAZXn,m (b;ﬁ"—l — Axm ak—1)
m=1 Hm
/ 1 3
o = —=0,



Analysis of wapp:

Write
b = {bi}nls

Proposition The above system has an invariant center-stable manifold given by
My =A{(bo,...,bn) = (0, hi(a0,0),...,hn(a0,...,an—1,0))}.

Moreover, there exist constants C, 71,7, > 0 so that

lI(bo, - - b, ¥)(T)—(0, hi(a0,0), ..., hn(ao, - . ., an—1,),0)[|(2yws2 < Ce ™7,

while

C

|§m7 1<k<N

|ax(T)

Remark: The functions hx can be determined explicitly, as can the rates 7 ».
We essentially have
m o~ p, 2~ k/6.



Analysis of tpem:

[
M=

wo (&, 7) ar(r)eil (&) + ws (€, 7)
k=0
N
wa(6,7) = D BR(DPR(E) + walé,7),  n=1,23,...

>~
Il
o

Project off lowest eigenmodes to obtain equations for wg, w,. Convert back to
(X, T) variables and take the Fourier transform in X to obtain

g L Qo @k T)
7U=BR)U+F(xT), U= ({az(n, T)}r
where
Y 10 ] 0 x _ 0 O
B(r) = —v"k <0 1)+WA(>< x*) (0 T)
and

T = diag(un), n=1223,...



Analysis of tpem:

d o o a5(k, T)
ﬁU =B(k)U+ F(k, T), U= ({ﬁg(om, T)}ﬁil)

sw=— (5 2) a3 X) - 9

Prove rapid decay in T by considering three regions:
o |k| < ko: Spectrum divided into Aw(x) and X(k)
— Aw(k) only causes T~"/® decay because of definition of U
— X (k) gives decay like e7*17.
e 1o < |k| < C/v: use hypocoercivity estimate to obtain exponential decay.

where

e C/v < |k|: exponential decay via usual diffusive estimate

252 2.2
Oxt — t —t :
eV Xt e e if k~1/v



Summary

Fluids can exhibit enhanced decay due to diffusion.

2D Navier-Stokes on the torus with small viscosity:
e Rapid convergence to bar states O(e™V"?)
e Slow diffusive decay to rest state O(e™"")
e Analyzed approximate operator using the theory of hypocoercive operators

Model of shear flow to study Taylor Dispersion:
Enhanced diffusion affects only low modes

Intermediate Fourier modes decay exponentially fast via hypocoercivity
High Fourier modes decay exponentially fast due to usual diffusion

Evolution of low Fourier modes and Taylor diffusion can be explained using
similarity variables and invariant manifolds






Analysis: Towards the stochastic 2D Navier-Stokes equation [B. Cooper,
Spiliopoulos]

Vorticity formulation of 2D Navier-Stokes:

—-9,A 1w
Ow =vAw —u-Vw u= r .
t ’ A w
Above-mentioned results suggest:
e Bar states and Dipoles are important; correspond to low Fourier modes
e Any asymmetry (ie square vs rectangular) in the torus is important
e Transfer of energy between Fourier modes is important

Work on (x,y) € Q = [0,276] x [0, 2x] with periodic boundary conditions:
. 1 .
_ 2 : ~ i(kx/6+ly) A _ —i(kx/é+1y)
W(X,y)— k#ow(k7/)e ’ w(k7/)_ 471_25/5;‘*)()(1}/)6 dXd.y

e Bar states: @(+£1,0) or &(0,£1) nonzero, rest zero
e Dipoles: combination of &(+1,0) and &(0, +1) nonzero, rest zero



Analysis: create model problem via Center Manifold Reduction

Formal Center Manifold Reduction:
e Include lowest four modes to capture bars/dipoles
e Include some higher to model energy transfer between low/high modes
e Simplest reasonable model: lowest 8 modes

low : wi =®(1,0) we =&(—1,0) ws=®(0,1) ws = (0,—-1)
“high’ :  ws =&(1,1) we=&(-1,1) wr=&(1,-1) ws=a(-1,-1)
We obtain
d

EW:F(W;V,(S):O(|W|,|W|2), W= (m,...,w).

Note: the construction of this center manifold is local, and possibly holds only
in a small, O(v), neighborhood of w = 0!



Results for model ODE

%WZF(W;I/,&)7 W = (wi,...,ws).
Theorem [B., Cooper, Spiliopoulos '17]
e For all § sufficienlty close to one, the high modes decay at the rate
O(e""), while the low modes decay at the rate O(e™"*).

e On the square torus, when ¢ = 1, most initial conditions will evolve to a
dipole state.

e On the asymmetric torus, when § # 1, most initial conditions will evolve to
a bar state. It will be an x-bar state if 6 > 1, and a y-bar state if § < 1.

Proof Methods:
e Analysis for § =1 is much easier because many terms drop out.

e Straightforward energy estimates show background decay of O(e™"*)
e Detailed estimates on transient timescales show fast decay of high modes.
e Convergence to bar/dipole determined by evolution of
R(t) _ |W1(t)|2
lws(t)]?

Future work: add noise to ODE model to study stochastic 2D Navier Stokes



Analysis: create model problem via Center Manifold Reduction

Using the relation &(k, 1) = &(—k, —1), we have

i = v L v 30° 2 2
Wy = —?W1+W[W3W7_W3W5]+2V(4+62)(1+62)2W1[|W5‘ + |we|7]
i o W 7 30° 2 2
wy = —VW3+m[W1W5—W1W7]+2V(1+462)(1+52)2W1[|W5| + |wr|7]
W = —V(1+52)W - (5271 wiws + 965(5271) W1W3‘W7|2
i 2 " J 402(4 + 62)(1 + 462)(1 + 62)2
_ (1+362) W5|W3|2 _ 66(3+52) W5‘W1|2
2v6%(1 4 46%)(1 + 6°) 2v(4+ 82)(1 + 62)
SR ¢ 2 I Catet VP 98°(8% — 1) .
T i S vl ) T e e
— (1+352) VV7|W3|2 _ 56(3+52) W7‘W1|2
2002(1 + 462)(1 4+ 6?) 2u(4 + 8)(1 + 62)

Equation for R = |w1[*/|ws3/?:

. 1-462 .
R = —-2v 5 R + nonlinear stuff

If § <1, R — 0 and evolution is to a y-bar state.






Construct invariant subspaces

v(x,y) = o(k, 1))
k,IE€Z,(k,1)#(0,0)

Goal: don't excite the slow modes

{e VMM o TVEYY (k1) € {(0, 1), (m, 0)}
In Fourier space, v = vAv — e~ "%9, sin x(1 + A™')v becomes
ook, 1) = —w(K+P)o(k, 1)
—% v {(1 — #) V(k—1,1)— (1 - m) O(k+ 1,/)]

Try My = {v € [}(T?): ¢(m,0) =0, m € Z}
d:0(m,0) = —vm°9(m, 0) invariant

Try: M, = {v € [3(T?) : 0(0,+1) = 0}

0:0(0,£1) = —yO(O,:I:l):Fi TVEO(=1,41) — 0(1, +1)] not invariant



Construct invariant subspaces

Recall: we don’t want to excite the modes e=™ and e*"

o x-modes: M, = {w € L*(T?) : w(m,0) = 0}
e y-modes: Formal calculations with Fourier equation lead to...

Define

pi = w(2), £1) + W(—2j,+1), g = W(2j + 1, £1) - w(-2j — 1,+1)

()-wo(;)

Propositon A solution of w; = L(t)w satisfies w(0, £1)(t) = 0 for all t > 0 if
and only if w(0) € M,, where

One can show:

M, ={we ’:pf=q" =0Vj}

Recall: In [YCM '03], only special initial data converge rapidly to bar states.



Why is this new inner product useful?

Motivated by work of Gallagher, Gallay, and Nier 2009, we rescale time:

O = ((f — /2)u + %Bu.

Define, for (u,u) = ||ul|?2, o, 8,7 >0,

&(t) := (u, u) + aOxu, dxu) — 28Re(xu, Cu) + v(Cu, Cu)
If 3% < ay/4, Young's inequality implies

3 3
ull? + Sl + 2 Cul® < & < JJul? + 2 [jux]? + 2| Cull?.
2 2 2 2

Therefore, by controlling the dynamics of ®, we can control the above norm.

Strategy:
e Compute do/dt
e Chose «a, 3, to obtain a decay estimate
e Show this implies rapid convergence of solutions to the bar states



Proof of Theorem

deu = (02 — PYu + %Bu
&(t) := (u, u) + aOxu, dxu) — 28Re(xu, Cu) + v(Cu, Cu)

Differentiate:

%MﬂzKmmﬂ{wwﬂ+ﬂ@wﬁwyuaw@wﬂ
—2fRe[(Oxur, Cu) 4 (xu, Cut)] + v[(Cur, Cu) + (Cu, Cut)]
+[(Ceu, Cu) + (Cu, Gu)].

The first term gives

(0, 0) + (u, 1) = wf+£+%mm@+@&f+x+%m@

1
—2P[|ulf* = 2]l ux||* + = [(Bu, u) + (u, Bu)]
[ —
=0

by the anti-symmetry of B.



Proof of Theorem

Deu = (92 — P)u+ LBu
v
&(t) := (u, u) + a(Oxu, Oxu) — 28Re(dxu, Cu) + v(Cu, Cu)

The o term gives

(Oxu, Oxu) + (Oxu, Oxue) =

We can bound

[(9x(Bu), ux) + (ux; 0x(Bu))]

(O(~F + 82+ B)u, u,)

(e, Ox(—1P + &2 + %B)u)
=2 ux | = 2| |

J%[(ax(su), 1) + (ux, 0x(Bu))]

=C
= (Buu) + (fr, Blu. )
+(ux, Buy) + (ux, [Ox, Blu)
2Re(ux, Cu)
2| [ 1| Cu|-

IN



Proof of Theorem

deu = (02 — P)u + %Bu
&(t) := (u, u) + aOxu, dxu) — 28Re(Oxu, Cu) + v(Cu, Cu)
The 8 term gives
(Oxur, Cu) + (B, Cuy) = —2IPRe(Bvu, Cu) + [(thoo, Cu) + (tx, Cuix)]
1
+ [(9«(Bu), Cu) + (ux, C(Bu))]

One can show

(0x(Bu), Cu) + (ux, C(Bu)) = ||Cull* + (ux, [C, Blu) = || Cul?
Important term: —(23/v)||Cul|?

The v and C; terms are similar.



Proof of Theorem
Collecting these estimates, we have shown

%D(t) < 2P ul? = [2+ 20| ud® — 20| u)?
2& 2
+ (7 +2B8(21° +1+ 1/)> lux ||| Cull + 48]t || || Cuxc||

2
- (@24 2 2 )l - 2l + 25l

We now use the fact that 2ab < a® + b? and scale the parameters as

1

Oé:\/;Oéo, /8:507 V= ﬁ’yo

With appropriate conditions on ag, Bo, 70, this gives

d 2 Yo 2 1 2
Zo(t) < -2 2% 1Bul? — 2 |u? —
G0 < 200l +2 22 1Bul” — 7 o]

3050

2E00 cull?
20 cul

Goal: Show ¢’ < —(M//v)®



Proof of Theorem

3
lul? + covy

covv 30 | cu?

2
> + T

|Cull® <& < [|uf® + lul® + 5=

2{‘

d > Yo 2 350
< — “Nux||” — Cu
5 0(0) < =2l +2f“B ull? — IIU l | I

Proposition If |/| > 1, then there exists a constant My such that, for all

0<t<T,
Do cup > Mol Bo

1 2
sl + 5 Tl

Proof: Follows like a similar result in [Gallagher, Gallay, & Nier '09].
Essentially due to connection with harmonic oscillator:

H=adw +bx* = (Hu, u) 2wy > Vab(u, u)2x)
Need to be careful about the role of |/|. Also, My = O(e™"").

This implies (after choosing aq, o, Y0)
, M
P(t) < ——=P(t
()< ~2o()



