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Stability for PDEs

General framework:

we = F(w), ¢ = stationary solution of interest, F(e)=0

Analyze behavior of perturbations: w(x, t) = ¢(x) + u(x, t) with u(x,0) small

w=Lut N(w),  L£=DF(y)
Stability of ¢: does the perturbation u(t) — 0 as t — oo (or stay small Vt)?
Types of stability:
e Spectral stability: A € 0(£) = Re(\) <07
e Linear stability: vy = Lu = |u(t)|| > 0ast — co?

e Nonlinear stability: us = Lu+N(u) = |u(t)]] = 0ast— oo?

Focus on spectral stability for this talk.



Example to keep in mind

Reaction diffusion equation with gradient nonlinearity:

w: = Aw + VG(w), x€QCRY, weR", G:R">R

Solution of interest: localized stationary solution

0=Ap+VG(p), lim ¢(x)=0
|x|—8%Q

Perturbation Ansatz: w(x, t) = ¢(x) + u(x, t)
ur = Lu+ N(v)

Lu=Au+ V>G(p(x))u
N(u) =VG(p+ u) — VG(p) — V3G (p(x))u = O(?).

Spectral stability: 0(L£) = dess(L£) U 0pt(L)
e Essential spectrum relatively easy to compute; assume it is stable.
e Are there unstable eigenvalues?



Case 1: one spatial dimension, scalar equation
Sturm-Liouville eigenvalue problem:

A=t + & (o(x))u = Lu, x € (a, b)
u(a) =u(b)=0

Priifer coordinates: define (r,0) via
u(x; X) = r(x; A)sin6(x; \), u'(x; A) = r(x; A) cos 0(x; \)
To obtain

r' = r(l+X—g"(¢e(x)))cosOsinf
cos’ 0 + (g” (¢(x)) — A)sin® @

Al
I

Observe:
e {r =0} is invariant, so for a nontrivial solution,

u(x;\) =0 if and only if 0=jm, jEZL
e For A < —1, 0 > 0, so solutions will be forced to oscillate

Let 6(a; \) = 0 be the “initial condition”, evolve in x; is §(b; A) € {jm}? If so,
this corresponds to an eigenfunction with eigenvalue \.



Case 1: one spatial dimension, scalar equation

Looking for eigenfunctions and eigenvalues via
0" = cos’ 0+ (g”(¢(x)) — A)sin 6, x € (a, b)

e Initial condition: #(a; \) = 0; flow forward and see if 6(b; \) € {j=}
e For some A < —1 there must be an eigenvalue. Fix such a Ax:

0(b; A) = (k + 1)
e Increase A until you again land in {j7}, which is the eigenvalue \c_1.

. . — R
)\ N )\k )\k,1 /\0
O(b;A):  (k+1Dm km T

e Process stops at largest Ag; 6 no longer can complete one half-rotation



Case 1: one spatial dimension, scalar equation
Using these ideas one can show:

M=t + 8" (e(x))u=Lu, xER, ue L’(R)

e There exists a decreasing sequence of simple eigenvalues

{ *—=o — R
g"(p(20)) Ak k-1 Ao

e Corresponding eigenfunctions ux(x) have k simple zeros
Quickly conclude the pulse is unstable: u: = uw + g'(u)
e Observe that

K0 =va+8'(@)] 0=(¢)+8&"(p)y =Ly

e Qualitatively, ¢ and ¢’ look like

o(z) o' (z)

I N
' V4

e Therefore, ¢’ = u; and A\; = 0, and so \¢ > 0 and pulse is unstable




Case 1: one spatial dimension, scalar equation

Related concept of conjugate points:
0" = cos’ 0+ (g” (¢(x)) — A)sin 0, x € (a,5)

e Initial condition: 6(a; \) = 0; flow forward and see if 6(s; \) € {jm}
e Fix A = A\ to be an eigenvalue, so if s = b we know 0(b; ) = (k + 1)7
e Decrease s until you again land in {j7}, which is the conjugate point sk_;.

a b
} = = +— R
S: S0 o Sk—1  Sp=2»
0(s; Ak) : ™ ke (E+ 17w

e Process stops at largest so; 6 no longer can complete one half-rotation



Case 1: one spatial dimension, scalar equation

“Square”: Relationship between eigenvalues and conjugate points:

S .
eigenvalues
b —+ L L @

o no
cont]}lgate 51— conjugate
pomts points

S9 ——
a - no eigenvalues
| | | | |
o T i — A
Av A2 A1 Ao Ao

One can prove:
e No eigenvalues for s = a; no “time” to oscillate.
e No conjugate points for A = A large; ODE or spectral analysis.
e Number of conjugate points for A = A\, equals the number of eigenvalues
A > Ay



Case 1: one spatial dimension, scalar equation

To analyze stability, choose A, = 0:

S .
eigenvalues
b
%0 no
Con‘]}lgate S1 conjugate
points points
52
a no eigenvalues
| | | |
A =0 1 | — A
Ag A1 A0 Aso

Number of conjugate points = number of unstable eigenvalues = Morse(L)

This is a simple case of what is often called the Morse Index Theorem, and it
goes back to the work of Morse, Bott, etc.



Case 1:

one spatial dimension, scalar equation

To summarize, when we have

A= U + g (o(x))u = Lu, u€eR, x€R

Spectral stability can be determined almost immediately using qualitative
properties of the underlying solution ¢, with little knowledge of g.

A pulse is necessarily unstable. Similarly a front in necessarily stable.

p(x) p(x)
| ’ | !
pulse front

Positive eigenvalues can be counted by instead counting the number of
conjugate points when A = 0.

Conjugate points and eigenvalues can be analyzed via the winding of a
phase in R2.

Monotonicity in A and s is key.

Can this be generalized to u € R" or x € RY?



Case 2: one spatial dimension, system of equations
Eigenvalue equation:
A=t + V2G(p(x))u = Lu, u(x) eR", x€eR

Assume:
e X = [*(R), dom(L) = H*(R).
o ¢ is a pulse, lim|,_ o ©(x) = @o.
e o(V23G(p0)) < 0.
Which implies
o [ is self-adjoint, A € R.
® 0ess(L) is stable.

Write as a first-order system:
w() = (o v o ()
<(I) —0/> ((A—V g(sO(X))) B/) (:)

[Arnol'd '85]: generalized notion of phase via the Maslov index and proved
oscillation theorems



Case 2: one spatial dimension, system of equations

First-order eigenvalue problem:

(1) =amean (1),

S ((IJ Bl) Bl = <()\f V2OG(so(x))) —0/> BN = B(x:A)

Assumption o(V2G (o)) < 0 implies JBoo () is hyperbolic:

<(A e é) () =v () = (A= V’G(p0)u = u

If 11; € 7(V2G (o)), pj <0, j=1,...n, then for A >0

l/ji::t A — 1, I/J-Jr>0>1/f7 j=1,...,n

Dimension of asymptotic stable/unstable subspaces is n: dim(E3Y(\)) = n



Case 2: one spatial dimension, system of equations

First-order eigenvalue problem:

dii <c> = JB(x; \) (5) ,

J= (0 ") . B(xiA) = ((A—V2(();(¢(X))) _Ol) . BOa N = B(x )

For an eigenfunction (u, v)(x; A) we need limy_,_o(u, v)(x; A) = (0, 0).

EY (x; \) = {(5) (x; \) solution : (5) (x;\) — (8) as x — —oo} .

Space of solutions asymptotic to the unstable subspace of EZ ().

This is a Lagrangian subspace with respect to the symplectic form
w(U, V) = (U, JV)gan.
Lagrangian-Grassmanian:

A(n) = {£ C R :dim(¢) = n, w(U,V)=0 VYU,V €}



Case 2: one spatial dimension, system of equations

() = mean (4). BN = BN, S =g =

If U,V € E“(x; \), then

(U'(x), V(x)) + (U(x), JV'(x))

(JBU(x), IV (x)) + (U(x), PBV(x))
(BU(x), V(x)) — (BU(x), V(x)) = 0.

d
2wV, V()

Moreover,

lim U(x),V(x)=0 = lim w(U(x),V(x))=0

X—»—00 X——00

and so
w(U(x),V(x))=0 Vx € R.



Case 2: one spatial dimension, system of equations

[B., Cox, Jones, Latushkin, McQuighan, Suhktayev '18]:
e Proved “square” relating eigenvalues to conjugate points.
e Proved a pulse solution is necessarily unstable.

Key ideas in paper:

A= e + V2G(p(x))u = Lu, ueR", dom(L) = H*(R) C L*(R).

Compactify domain:

o(s) = tanh(s), s(a)zlln(ijj), seloo),  o€[-L1]

Will not comment on this further.



Case 2: one spatial dimension, system of equations
First prove “square” on half-line with Dirichlet BCs:
A= e + V2G(p(x))u = Lyu, x € (—oo, L)
dom(L,) = {u € H*(—oo, L) : u(L) = 0}.

S eigenvalues
L L4 L o—
N . .
no conjugate points
conjugate a(Lr) C (=00, [[V2G(9)]|0]
points
A
0 Moo

7007 no eigenvalues

— E" (—oo;\) ND = {0}

EY (s; A\) is a path of Lagrangian planes, homotopic to the trivial loop, for
(57 )‘) € [—OO, L] X [07 )‘00]

Reference Lagrangian plane - Dirichlet plane:

- ()-{() xe-o)



Case 2: one spatial dimension, system of equations

eigenvalues

L @ @ o—
N . .
no conjugate points
conjugate o(LL) C (=00, [V?G(#)]lo]
points
0 A A
o0

—ooT no eigenvalues

— E*(—o00; ) N D = {0}
Maslov index: counts crossings of the path E” (s; \) with the reference plane D.
Homotopy argument = Mas(EZ(s;\)) =0.

No crossings on bottom or right side of square; eigenvalues contribute
negatively, conjugate points contribute positively:

Morse(L.) = number of conjugate points on (—oo, L)



Case 2: one spatial dimension, system of equations

® : [a, b] = A(n) path of Lagrangian planes, D reference plane. A crossing is a
to € [a, b] such that
®(t) N D # {0}.

Generically ®(t) is transversal to D* for all t € [ty — €, to + €], and 3
#(t) : d(to) — D+ so that
®(t) = graph ¢(t) = {V + ¢(t)V : V € d(t)}
L
D o(t)

OV (V,6()V)

i @(to)
14

Crossing form [Robbin, Salamon '93]:

da

QU V) = L w(U, ¢(t)V)le=, U,V € ®(t) ND.



Case 2: one spatial dimension, system of equations

D (1)
i (tl)v (V,o()V)
% ®(to)
14
Crossing form [Robbin, Salamon '93]:
QU, V) = %w(U, S(OV)ew, U,V € Do) ND.

o Q € R*** symmetric, where k = dim(®(t) N D).
e to is regular if det@ 7 0; generic crossings are regular and isolated.
e Signature of Q:

sign@ = n(Q) — n—(Q),

n+(Q) = number of positive/negative eigenvalues



Case 2: one spatial dimension, system of equations

Maslov index for single crossing: if to € [ao, bo] is the only crossing of ® with D,

—n_(Q) if to = ao
Mas(®|[a,50]: D) = 4 signQ = n(Q) — n—(Q) if to € (ao, bo)
n+(Q) if to = bo

e Endpoint convention is somewhat arbitrary; affects intermediate results
but not our end result.

e Define Maslov index of a regular smooth path by defining it on segments
around each crossing and summing.

If all crossings of a path ® : [a, b] — A(n) with D are positive, ie Q > 0, then

Mas(®|;, 5, D) = Y _ dim(®(t) N D)
a<t<b
Similarly, if all crossings are negative, then

Mas(®|i, 5, D) = Y dim(®(t) N D)

a<t<b



Case 2: one spatial dimension, system of equations

S eigenvalues
L @ @ *—
N . .
no conjugate points
conjugate o(LL) C (=00, [V?G(¥)]|]
points
0 A A
o0

—ooT no eigenvalues

— E*(—o0;\)ND = {0}

Key aspect of proof is showing monotonicity, ie crossings at conjugate points
are positive, and crossings at eigenvalues are negative.

Path of Lagrangian planes: E“ (s; A). Parameter is s or A depending on side.

Negative crossings in \: need to show for s = L fixed

QU, V) = ‘%\w(U, SOIWV)org <0, U,V € E(L; ho) N D.



Case 2: one spatial dimension, system of equations

Suffices to check that

QV, V) = %w(v, SOIWV)ar, <0,V € EY(L; Ao) ND.

Let W(L; ) € E“(L; ) so that

W(L )=V,  W(LX)=V+¢MV.

We have
vV, V) = %w(\/,qﬁ(k)\/)h:AO = di’Aw(v, V + 6(A)V)ror
WAL o) WL sy = (WL Do), WA(L o))
Recall:
d d

_ do (00
SW=IBGANW = Wh = JB(G ) Wat MW, M_<I 0).



Case 2: one spatial dimension, system of equations

Q:w(W(L; )\0), W)\(L;)\o)), %W)\ :JB(X;)\)W)\-FMW.
Lod
Q = (—JW(L; Xo), Wi(L; X)) = —/_ $<JW(X; o), Wi (x; Xo)))dx

_/L [(BW, WA)) + (JW, JBWs + MW)]dx

L
- / (JW, MW )dx

LG ) 5o

f/L (Wi (x; Xo))?dx < 0.



Case 2: one spatial dimension, system of equations

S eigenvalues
L L @ o—

| . .

no conjugate points
conjugate o(LL) C (=00, [[V2G () o]
points
0 A A
o0

—ooT no eigenvalues

— E¥ (—o0; A\) ND = {0}
This monotonicity implies:

0 Mas(E"(x; A)square; D)
= Mas(E"(x; Aiett, D) + Mas(E“(x; A)top, D) + 0+ 0

= {number of conjugate points} — {number of eigenvalues}.

Hence,

{number of conjugate points} = {number of eigenvalues} = Morse(L,).



Case 2: one spatial dimension, system of equations

Remaining steps:

M = g+ V2G(p(x))u = Lu, u€eR", x €R.

Extend result to full line R: show for L > L., large,
e Morse(L) = Morse(L)
e Follows because you can approximate the point spectrum of an operator
on R using a large subdomain.

Prove any pulse solution is necessarily unstable:
e Show there is at least one conjugate point.
e Uses reversibility arguments applied to the original PDE
Uy = Uxx + VG(u), ie x = —x symmetry.

Remark: very few actual applications of the Maslov index in stability analysis!



Case 3: multiple spatial dimensions, one equation

Eigenvalue problem:
ueR” AER

Au+ V(x)u = Au, x€QCRY,

uloa =0

Family of domains [Smale 65]:
{Q::0< s <1}, 0 =Q, Qo = {x0}.
Hilbert space
H=H"09 x H2(09),  w((fi,e), (B &) = (&) — (g1, )
Path of subspaces in the Fredholm-Lagrangian Grassmannian of H:

o(6) = { (52 ) lon. 0 € H(@). But+ Vihu=du, xe 9]

Reference subspace:

B ou _ ou ] 1
D = {(u7 %) |6Q = (0, an> |5Q cu€eH (Qs)}
. show one can

[Deng, Jones '11], [Cox, Jones, Latushkin, Suhktayev '16], .
compute Morse(L) by counting conjugate points in this context; also results

for more general boundary conditions.



Case 3: multiple spatial dimensions, one equation

Future work: does this suggest a “spatial dynamics” for R??

0= Au+ F(u), xeQcRr?

Family of domains parameterized by family of diffeomorphisms:
’lﬁs ZQ—)QS7 s E [0,1], Ql :Q7 Qo:{Xo}.

Define boundary data via

() = uby)),  a(ty) = golly),  telo1,  yeon

and trace map
Treu = (£(t), (1))

Can (formally) obtain a first-order system

i (o) = (5r8)

Can we make sense of the above equation and put it to good use?



Summary

We've seen how the Maslov index can be used in stability analysis to obtain
results of the form

number of conjugate points = Morse(L).

Due to recent work, many abstract results exist for systems of equations with
x€RY d>1.

Current/future work:

e Find more examples! In some sense, these results are only useful if they
can be used to actually determine stability in situations of interest. | know
of two examples for x € R (one mentioned today - pulse instability; other
is [Chen, Hu '14]) and none for x € RY.

e Further understand relationship between these results and the Evans
function.

e Develop a spatial dynamics for RY.



Lagrangian subspace calculation

P(s) = {(u, %) log, :u € H'(Qs), Au+ V(x)u=Au, x€ Qs}

If u,v € ® then
wv) = (Zu)y- (%,
wihvy = an " on’
ov ou
/BQ(%uf%v)dS

= / ((VuVv + uAv) — (VuVyv + vAu)) dx
Q

/Q(u(/\v — W) — v(Au— Vu))dx =0.



Pulse - existence of conjugate point

0 = Pxx + VG(L)D(X)L
Generically, ¢(x) will be unique as a solution (up to translation)
asymptotic to the fixed point wo = limy—+o0 p(x)

Equation invariant under x — —x, so ¢(—x) is also a solution. By
uniqueness, we therefore have

P(x) = o(—x +9)

This implies
©(6/2+ x) = (6/2 — x) vV xeR
e But then
d
o/ + Xm0 = 952 = N)hes = pal3/2) =0,

e Since ¢y is a eigenfunction with eigenvalue A = 0, we have

@X(X) u ) u
<wxx(x>>6E*(X'°> = E“(3/2,0)nD # {0}

which is our conjugate point.



