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Motivation: Metastability in the Navier-Stokes Equations

fluid velocity = u

vorticity =w =V X u

ow
— =plAw—u-V
5 = MOwW u-Vw

o<kl

[Matthaeus et. al., Physica D, 91]

e Unbounded domains:

— Single Oseen vortex globally stable [Gallay & Wayne 05]
— Analysis of initial vortex motion and deformation [Gallay 09]
e Numerically observed metastability [Matthaeus et. al., 91]:

— Solutions rapidly approach solutions to Euler equations (= 0)
— Large time needed for all vortices to coalesce



Motivation: Metastability in Burgers Equation

1D Burgers equation in similarity variables:
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[Kim & Tzavaras, SIAM J. Math.Anal., 01]
Results from [Kim & Tzavaras 01]:
e Observed numerically
e Explained formally using asymptotic expansions



Related results

Metastability in gradient systems:
ur = €t — u(u® —1),x € (0,1)

Eg: [Carr & Pego 89], [Fusco & Hale 89], [Chen 04], [Otto & Reznikoff 07]
u(x)

1
e Stable states: u = +1 H ’7 —‘

e Metastable states: step functions con-
necting £1 numerous times J H L
-1

Mechanism appears different from Navier-Stokes and Burgers:

e Utilize gradient structure
e Pattern of transition layers can be related to

E[u](t) = /01 Eui - 1)2} d

But ‘metastable’ time scales are the similar!



Recall known results on Burgers equation

Burgers Equation:
Ut = [Ulxx — Uy, x € R,
u(x, 0) = wo(x),

o If x>0 and
— up smooth, localized
- [u(x)dx =M

then u converges in L! to a diffusion wave of
mass M [Liu 00], [Kim & Tzavaras 01]

e If 4 =0 and
— up compactly supported
— Up satisfies an entropy condition
then u converges in L' to an N-wave [Lax 73]
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Recall known results on Burgers equation

Burgers Equation:

Up = [lxx — Ulx, xeR, t>0, velR
u(x,0) = wo(x), 0<p<l

e For any fixed t > 0,
Iim0 u(x, t; p) = u(x, t; 0)
s

pointwise in x [Evans 98].

e For 0 < < 1, u(x, t; u) looks like an N-wave for large times before
converging to a diffusion wave. Shown numerically and using asymptotic
expansions in [Kim & Tzavaras 01].

Want to understand the interplay between the limits

nw—0, t — oo



Main results

Geometry in phase space:

Arbitrary
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Fast transient
7= O(|log )
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Scaling or similarity variables

Burgers Equation:

Up = [Ulxx — Uy, xeR, t>0,
u(x,0) = uo(x), 0<puxl

Scaling variables - deal with continuous spectrum:

u(x,t) = ! W( X _lo (t+1))
VT eri\Ver1 e
X
= , =log(t+1

3 s g(t+1)

Scaled Burgers equation:
1 1
Wro = pwee + SEwe + ow — wwe

Lw
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Spectrum of L
In the space

)= {we CR): [ @+ €mwieds < oo

the spectrum of L is [Gallay & Wayne 02]

J(E):{—g:neN}U{)\EC:ReAg1—42m}

Eigenfunctions:

A=—T (e = ﬂlﬂi ©n(€) = (92¢0) ()

Invariant manifolds:
e 1D global center manifold: diffusion waves
e 1D global foliation: diffusive N-waves



1D global center manifold

Burgers equation:

1 1
Wr = uwee + §£W§ + EW— WWe

Stationary solutions:
1 1,
0 = — — —
pwe + 2§W o
Solve explicitly:

_&2
e

M
" (1 —e ZM)
_ ﬁ ffoo e_mdn
Claim: The family {Aum} corresponds to a 1D global center manifold in L?(m)
for m>1/2.

Proof: Fix m > 1/2, so A = 0 is isolated.
— Apply invariant manifold theorem, e.g. [Chen, Hale, & Tan 97]
— Then there exists a local 1D center manifold
— It must contain all globally bounded in time solutions.
— Therefore the manifold is global and equal to {An}.

Au(§) =

) o =

=



1D global stable foliation

Linearize about a diffusion wave: w(&,7) = Am(&) + v(&, 7)
ve = Lv — (Amv)e —vve
———
Apyv
Can show explicitly that Ay and £ are conjugate:
AwU =UL, U e L(L*(m))

Therefore, their spectra coincide. Fix m > 3/2 to get a local, 2D center-stable
manifold near each diffusion wave.

Want to show:
e Chose mass M appropriately, it is 1D

e It is a global manifold

Use Cole-Hopf.



1D global stable foliation

Ve = Amv — vvg
Cole-Hopf:
V(. 7) = v(g m)e 3 e oy = Ay
Eigenfunctions:
A=0,  Po(§), Wo(§) =1
N=-1/2, 0i(6) = Ay

e 2D center-stable subspace: span{®g, ®;}
e Restrict to solutions such that: (Wo, Vo) = [ Vo(£)dé =0

/ Vo(£)de = _2U/8§ (e*ﬁ JE Vo(y)dy) dé = -2 (e*i Jvoly)dy _ 1) -0

o / w(€)de = 0

Recall w = Ay + v: chose M = [ w(€,0)d¢

.

N de” 2 Au()
wn(E,T) = AM(§)+—ﬁe*%AM(§)



1D global stable foliation

Alternatively, apply Cole-Hopf directly to Burgers:
wr = Lw — wwg

W(E ) = w(E,r)e 3 S5 0% o = o

2D invariant subspace: span{o, 1}

Wi (€, 7) = Bowo(€) + Bre” 2 p1(€)

Invert Cole-Hopf:

Bopo(€) + Bre” 2 p1(€)
2o € woly)dy — e~ Fipo(€)

wy(€,7) = .

Diffusive N-waves



Geometry of Phase Space

We now have:

.2 (m) Diffusive N—m
{wn}

Self-similar
Diffusion waves {AM}

e

T—‘

Need to show:
e wy looks like an inviscid N-wave; family is attracting
e Time scales O(|logp|) and O(1/p)



N-waves
Ur = [Uxx — UUx

For i = 0, there are invariants:

Yy 0o
p=-2 infy/ u(x)dx, qg=2 supy/ u(x)dx, 2M =q—p
oo y

N-wave:

Npq(x,t):{til if —p(t+1)<x<y/q(t+1)
’ 0

otherwise
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Self-similar N-waves

1 1
Wr = UWee + Efw,g + W — ww,

e For =0, p and q still invariant.
N-wave:

0 otherwise

Np,q(f):{€ TomVPsisa

e For u > 0, diffusive N-wave

Boo(€) + Pre” 2 p1(€)
1— 52 5 woly)dy — —5te Fo(€)

WN(&, T) =

where

Bo=2p(1—e %), Bre  =F(p(r),q(r)), 2M = q(r)— p(7)



N-waves near Diffusive N-waves

Lemma: Given any positive constants p, g, and 4, let wy (&, 7) be the diffusive
N-wave such that, at time 7 = 79, the positive mass of wy(+, 7o) is g and the
negative mass is p. There exists a po sufficiently small so that, if 0 < u < o,
then

Wi (-5 70) = Np,q ()l 2my < 0.

Proof: Calculation (lengthy) using the explicit formulas for wy and N q.

Intuitively:

_ _2uBg
£ - G2l

wn(é,7) =

2 3
L g |1 5 o)

Remark: This is proven pointwise in [Kim & Tzavaras 01].



Initial Transient

Theorem: Fix m > 3/2. Let w(&, 7) be a solution to Burgers equation with
mass M, and let N, 4 be the inviscid N-wave with values p and g determined
by the initial data wo(£) € L>(m). Given any § > 0, there exists a p sufficiently
small and a T = O(|log p|) so that

[w( T) = Nog ()l 2my < 6.

Proof: Calculation (lengthy) using the formulas for w (Cole-Hopf) and N 4.

Remarks:
e p, g determined at 7 = 0, but estimateisat 7 =T
e This is because p, g evolve slowly.
e Timescale O(|log 1|) unexpected; similar to gradient systems.
e Timescale matches numerics of [Kim & Tzavaras 01]



Rates of Change of p(7) and q(7)

[Kim & Tzavaras 01]: Estimate p and ¢ within {wy}

p = -—2inf, /y wn(€)dE
y 13 —7/2
-2 infy/7 {—2/185 Iog< - 5—; 1 wo(z)dz — 61627“300(5))} d¢

y -7/2
4y sup, log (1 - 2%/ po(z)dz — 6192” sOo(y))

—o0

Compute y = y* for which this is attained. If M > 0:

ey
2

Bre

et —1< — po(y™) < efi —e %

Use this to show
p(t) = O(ur)

Timescale for wy — Ay is same as for p — 0.



Geometry of Phase Space

We now have:

Arbitrary
trajectory\

L*(m) N/;\

Fast transient
7= 0(|log pl)

Diffusive N-waves

~ {wy}

- T=00/p)

)

Self-similar
Diffusion waves

e

T—‘

Need to show:
e Existence of the metastable region



Local Attractivity

Theorem: Fix m > 5/2. There exists a ¢ sufficiently small such that, for any
solution w(-,7) of Burgers equation with initial data

W(£7 0) = W’V(fv 0) + ¢0(£)7 ||¢0HL2(m) <a
there exists a constant Cy such that
w(&, ) = wn(§, ) + 06, 7), (100, 7)lizm) < Coe™"

Proof: Calculation (short) using Cole-Hopf and the spectral properties of L.

Remarks:
e Rates of change of p, g determine decay rate to Auy
e The constant C, can be large with respect to p

T

e Rate e™ " seems optimal based on numerics in [Kim & Ni 02]



Summary and discussion

We have shown:

Arbitrary

trajectory\ Diffusive N-waves

Invariant, normally attractive manifold

/

Fast transient
7= O(|log ul)

Metastable region

— T7=0(1/p)

Self-similar
. Diffusion waves

Center manifold of fixed points

Remarks:
e Metastability is not caused by dependence of (L) on p
e Would be nice to not use Cole-Hopf



Towards understanding metastability in Navier-Stokes

fluid velocity = u

vorticity = w = curl u

ow
— =plAw—u-V
5 = MOwW u-Vw

o<kl

[Matthaeus et. al., Physica D, 91]

e Unbounded domains:

— Single Oseen vortex globally stable [Gallay & Wayne 05]
— Analysis of initial vortex motion and deformation [Gallay 09]
e Numerically observed metastability [Matthaeus et. al., 91]:

— Solutions rapidly approach solutions to Euler equations (= 0)
— Large time needed for all vortices to coalesce



Towards understanding metastability in Navier-Stokes

Recall results of [Gallay & Wayne 02, 05]:

ow 1 (X_Y)L
— = plAw —u-Vuw, u(x) = o /}R2 FEvE w(y)dy

ot
Scaling variables:

1 X
w(x,7) = = 1)W (m,log(t—i— 1))

wr = uAw + %(f'V)W+W—(V~V)W

Lw

1D global center manifold:
Loo=0,  Lpo— (v -V)po=0
Oseen vortices {apo} are globally stable.

e Is there a global foliation?
e What causes the separation in time scales?



Separation in time scales
Carr/Pego example:
U = € Uy — u(u2 -1 - u= —u(u2 -1).

e Limit is ODE; exponential growth/decay towards fixed points u = +1.
e Time for gradients of size 1/¢ is

ef~1l/e — t=—loge.
Burgers:
Ur = iy — Uy — —  Ur = —Uly.
e Limit is PDE; dynamics determined by motion along characteristics.

e Similarity variables induce exponential rates along them - same timescale.

Navier-Stokes:

L
wr=plAw—-u-Vw — wt:f(l/uw(y)dy)-Vw

2 R X —yP

e Limit is PDE; nonlinearity nonlocal
e Similarity variables again induce exponential behavior - how to analyze?



