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An example of a coherent structure: a source

Time-periodic patterns in reaction-diffusion systems:

t

x

Experiment: chemical reaction
chlorite-iodite-malonic-acid (CIMA)

Numerical simulation:
reaction-diffusion equation

ut = Duxx + f (u)

[Perraud et. al., Phys. Rev. Lett. 1993]



Why study sources?

Diagram of a source:
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u(x,t)

Defect/Core

Defect/Core
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Importance in applications:

• Widely observed in experiments and numerics

• Defect created spontaneously; not caused by inhomogeneity

• Organize dynamics in rest of spatial domain

Mathematical interest:

• Linear stability: embedded zero eigenvalue; time-periodic linear operator

• Nonlinear stability: weighted spaces don’t work, estimates are delicate



Stability

Reaction diffusion equation:

ut = Duxx + f (u)

Stationary solution of interest: u(x , t) = u∗(x)

Ansatz: u(x , t) = u∗(x) + v(x , t)

vt = D(u∗xx + vxx) + f (u∗ + v)

= Dvxx + f ′(u∗(x))v︸ ︷︷ ︸
Lv

+ [f (u∗ + v)− f (u∗)− f ′(u∗(x))v ]︸ ︷︷ ︸
N(v)

Stability:

• Strong: v(t)→ 0 as t →∞
• Weak: v(t) stays small for all t ≥ 0.



Stability at the linear level

Ignore the nonlinear term:
vt = Lv

Two types of stability:

• Spectral stability: supReσ(L) < 0 (weak: supReσ(L) ≤ 0)

• Linear stability: v(t)→ 0 as t →∞ (weak: v(t) stays small ∀t ≥ 0)

In finite dimensions (L a matrix), spectral and linear stability are equivalent. In
infinite dimensions (L is a differential operator), they may not be!

Example: in X = H1(1,∞),

vt = x∂xv = Lv

• supReσ(L) ≤ −1/2

• ∃ solution v(t) ∼ et/2

For reaction diffusion equations, typically spectral and linear stability are
equivalent.



Stability at the linear level

Determine behavior of
vt = Lv

Take the Laplace transform v̂(λ) =
∫∞

0
e−λtv(t)dt

λv̂ − v0 = Lv̂ ⇒ v(t) =
1

2πi

∫
Γ

eλt(λ− L)−1v0dλ =: eLtv0

Stable Unstable Weakly Stable

C

�
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Linear estimates:

• Stable: ‖eLt‖ ≤ Ce−δt

• Weakly stable: ‖eLt‖ ≤ C



Nonlinear stability

vt = Lv + N(v)

Transfer linear decay to the nonlinear equation via

v(t) = eLtv0 +

∫ t

0

eL(t−s)N(v(s))ds

If ‖eLt‖ ≤ Ce−δt and |N(v)| ≤ |v |2, we can define

‖v‖ = sup
0≤t≤T

eδt |v(t)|

Then we find

‖v‖ ≤ C |v0|+
∫ T

0

Ce−δs‖v‖2ds.

If we now take T = sup{t : eδt |v(t)| ≤ M}, then in fact

‖v‖ ≤ C |v0|
1− C

δ
(1− e−δT )‖v‖

≤ C |v0|
1− C

δ
M

< M

if we take M and |v0| sufficiently small. So |v(t)| ≤ Me−δt for all t ≥ 0.



What about weak linear stability?

Expect zero eigenvalue:

0 = u∗xx + f (u∗(x)) ⇒ 0 = ∂2
x (u∗x ) + f ′(u∗(x))u∗x = Lu∗x

Weakly stable spectrum:

C
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Spectral gap: separate into stable (decaying) and center (bounded) part:

eLt =
1

2πi

∫
Γs

eλt(λ− L)−1dλ+
1

2πi

∫
Γc

eλt(λ− L)−1dλ

And show (nonlinearly) the solution converges to a spatial translate of u∗(x):

v(x , t) = pu∗x (x) +O(e−δt) ⇒ u(x , t) ∼ u∗(x) + pu∗x (x) ∼ u∗(x + p)

What if there is no spectral gap????



Pointwise semigroup estimates

Linear equation:

vt = Lv ⇒ v(t) =
1

2πi

∫
Γ

eλt(λ− L)−1v0dλ = eLtv0

Resolvent kernel: G(x , y , λ)

w(x) =

∫
R
G(x , y , λ)v0(y)dy ⇒ w = (λ− L)−1v0

Pointwise Green’s function: G(x , y , t)

v(x , t) =

∫
R
G(x , y , t)v0(y)dy , G(x , y , t) =

1

2πi

∫
Γ

eλtG(x , y , λ)dλ

Example: vt = Lv = ∂2
xv

G(x , y , λ) =
1

2
√
λ
e−
√
λ|x−y|, G(x , y , t) =

1√
4πt

e−
(x−y)2

4t .

In these kernels you can see:

• The spectrum σ(L) = (−∞, 0]

• Algebraic decay: |G(x , y , t)| ∼ 1/
√
t



Nonlinear stability via pointwise estimates

Solution to
vt = Lv + N(v)

is given by

v(x , t) =

∫
R
G(x , y , t)v0(y)dy +

∫ t

0

∫
R
G(x , y , t − s)N(v(s))dyds

Separate into decaying and non-decaying parts:

C
G(x, y, t) = E(x, y, t) + G̃(x, y, t)

G̃
E

Developed by Zumbrun and colleagues (see eg [Zumbrun, Howard 98])

v(x , t) =

∫
R
E(x , y , t)v0(y)dy +

∫ t

0

∫
R
E(x , y , t − s)N(v(s))dyds

+

∫
R
G̃(x , y , t)v0(y)dy +

∫ t

0

∫
R
G̃(x , y , t − s)N(v(s))dyds



Nonlinear stability via pointwise estimates

Adjust the Ansatz

ut = uxx + f (u), u(x + p(t), t) = u∗(x) + v(x , t)

vt = Lv + N(v) + ṗ[vx + u∗x ]

Actively translate the solution via p; use to remove the neutral direction!

v(x , t) =

∫
R
Gv0dy +

∫ t

0

∫
R
G[N(v) + ṗvy ]dyds + (p(t)− p(0))u∗x (x).

Choose p to be defined implicitly as

p(t)u∗x (x) = p(0)u∗x (x)−
∫
R
Ev0(y)dy −

∫ t

0

∫
R
E[N(v) + ṗvy ]dyds

so that v is governed by

v(x , t) =

∫
R
G̃v0dy +

∫ t

0

∫
R
G̃[N(v) + ṗvy ]dyds ⇒ decay!

Wave translation captured by p equation - as if there were a spectral gap!



Sources
Sources are solutions to

ut = Duxx + f (u), x ∈ R, u ∈ Rn

Time-periodic in a moving frame

u∗(x , t), x̃ = x − c∗t, WLOG c∗ = 0

u∗(x , t + 2π) = u∗(x , t)

Spatially asymptotic to wave trains:

uwt(y ; k) = uwt(kx − ω(k)t; k) = uwt(y + 2π; k)

Group velocity:

cg(k) =
dω

dk
(k), c−g < 0 < c+

g

x

u(x,t)

Defect/Core

c−g c+
g



Stability of sources
Linearize about source to get Floquet spectrum:

C

u∗
t (x, t)

u∗
x(x, t)position:

phase:

Double zero eigenvalue:

Difficulties for nonlinear stability:

• No spectral gap

• Linear operator is time-dependent: L(t)

• Outward motion means perturbations don’t stay localized

Anticipated effect of localized perturbation:



Time-periodicity of linear operator

Eigenvalue equation: vt = L(t)v for t ∈ (0, 2π), v(2π) = e2πσv(0)

Equivalently, v(t) = eσtu(t), u is spatially localized and solves

σu + ut = uxx + f ′(u∗(x , t))u, u(x , t) = u(x , t + 2π)

Two eigenfunctions for σ = 0: ūx(x , t) and ūt(x , t)

C
i

-i

Green’s function for periodic shocks [B., Sandstede, Zumbrun ’10]:

G(x , t, y) =
1

2πi

∫ µ+i∞

µ−i∞
eλtG(x , y , λ)dλ

=
1

2πi

∫ µ+ i
2

µ− i
2

eσt
∑
n∈Z

e intĜ n(x , y , σ)dσ

C
i

-i

i/2

-i/2



Effect of phase fronts

Anticipated effect of localized perturbation:

Model equation:

φt = φxx − ctanh
(cx

2

)
φx + φ2

x , c > 0.

Justification of model:

• Integrated Burgers captures phase dynamics [Howard and Kopell ’77],
[Doelman, Sandstede, Scheel, and Schneider ’09]

• Advection terms represents group velocities

Mathematical difficulties

• No spectral gap; zero “eigenvalue” is constant function

• Localized initial data; solutions don’t stay localized



Analysis of Model [B, Nguyen, Sandstede, Zumbrun ’12]

Linear part:

φt = φxx − c tanh
(cx

2

)
φx

Explicit Green’s function (erf(z) =
∫ z

−∞ e−s2

ds):

G(x , y , t) =

[
1√
4πt

e−
(x−y−ct)2

4t
1

1 + e−cy
+

1√
4πt

e−
(x−y+ct)2

4t
1

1 + e+cy

]
︸ ︷︷ ︸

Gaussians that decay algebraically

+
c

4

[
erf

(
y − x + ct√

4t

)
− erf

(
y − x − ct√

4t

)]
︸ ︷︷ ︸

outwardly spreading plateau→1

sech2
(cy

2

)

Separate into bounded and decaying pieces:

G(x , y , t) = E(x , y , t) + G̃(x , y , t),

E(x , y , t) =
c

4

[
erf

(
x + ct√

4t

)
− erf

(
x − ct√

4t

)]
sech2

(cy
2

)
Ansatz must remove non-decaying part; plateau height instead of translation!



Analysis of Model [B, Nguyen, Sandstede, Zumbrun ’12]

φt = φxx − c tanh
(cx

2

)
φx + φ2

x

Ansatz construction:

• Haven’t linearized about anything (ie no u∗)

• Use form of Green’s function to “guess” a good Ansatz

• Can solve model exactly via Cole-Hopf

φ(x , t) = log(1 + p(t)B(x , t))︸ ︷︷ ︸
φ∗(x,t,p(t))

+v(x , t), B(x , t) = G(x , 0, t + 1)

Note:

• φ∗(x , t, p0) exact solution for any fixed p0: nonlinear plateau, height p0!

• Really only need φ∗ to solve model with error ≤ O((t + 1)−1)

Theorem: For each γ ∈ (0, 1
2
), ∃ ε0, η0,C0,M0 > 0 such that, if φ0 ∈ C 1

satisfies ε := ‖ex
2/M0φ0‖C1 ≤ ε0, then ∃ p∞ with

|p(t)− p∞| ≤ εC0e
−η0t , |v(x , t)| ≤ εC0

(1 + t)γ

(
e
− (x+ct)2

M0(t+1) + e
− (x−ct)2

M0(t+1)

)



Sources in qCGL

Quintic complex Ginzburg-Laundau equation:

At = (1 + iα)Axx + A− (1 + iβ)A|A|2 + (γ1 + iγ2)A|A|4

Sources are known to exist and have the form

Asource(x , t) = r(x)e iϕ(x)e−iωt → ±r0(k0)e i [±k0x−ωt] as x → ±∞

Asymptotic wave trains and group velocities:

±r0(k0)e±ik0e−iω(k0)t , c±g =
dω

dk
|±k0 = ±cg , c−g > 0 > c+

g

Two eigenfunctions

• ∂xAsource : spatial translations

• ∂tAsource : phase modulations

Two key aspects of qCGL vs general reaction diffusion equation

• Gauge invariance: A→ Ae iφ0t allows one to remove the time-dependence

• Phase/amplitude coordinates: phase modulation is more transparent



Sources in qCGL

At = (1 + iα)Axx + A− (1 + iβ)A|A|2 + (γ1 + iγ2)A|A|4

Stability Ansatz

A(x + p(x , t), t) = [r(x) + R(x , t)]e i [ϕ(x)+φ(x,t)]

Non-decaying part due to spatial translation:

• Removed by p(x , t)

• Spatially dependent because it is plateau-like (source - outward motion)

Non-decaying part due to phase modulation:

• Remove by considering an appropriate phase modulation

Amod(x , t) = Asource(x , t)e iφ
a(x,t) = r(x)e i [ϕ(x)+φa(x,t)]

• Approximate phase modulation φa governed by a Burgers equation(
∂t +

cg
k0
ϕx∂x − d∂2

x

)
[φa ± k0p] = q[∂x(φa ± k0p)]2

where d , q are related to the essential spectrum and nonlinearity, respectively.



Sources in qCGL

Theorem [B., Nguyen, Sandstede, Zumbrun ’14]: Assume that the initial data
is of the form Ain(x) = Rin(x)e iφin(x) and Asource is spectrally stable. There
exists a positive constant ε0 such that, if

ε := ‖ex
2/M0 (Rin − r)(·)‖C3(R) + ‖ex

2/M0 (φin − ϕ)(·)‖C3(R) ≤ ε0,

then the solution A(x , t) to the qCGL equation exists globally in time. In
addition, there are constants η0,C0,M0 > 0 and appropriate solutions of
Burgers equation, p and φa, so that∣∣∣ ∂`

∂x`

[
A(x + p(x , t), t)− Amod(x , t)

]∣∣∣
≤ εC0(1 + t)κ−1/2[(1 + t)−`/2 + e−η0|x|]

(
e
− (x−cg t)2

M0(t+1) + e
− (x+cg t)2

M0(t+1)

)

for x ∈ R, t ≥ 0, and ` = 0, 1, 2 and for each fixed κ ∈ (0, 1
2
). In particular,

‖A(·+ p(·, t), t)− Amod(·, t)‖W 2,r → 0 as t →∞ for each fixed r > 1
1−2κ

.



Explanation of Ansatz

Two key mathematical difficulties:

• (1) Removal of non-decaying terms due to embedded zero eigenvalues

• (2) Dealing with quadratic nonlinearity

(1): resolved by now standard but nontrivial pointwise semigroup methods

(2) Even if G decayed like a Gaussian, quadratic terms can have a nontrivial
effect on the dynamics. Consider, eg,

ut = uxx − u2

Non-positive initial data lead to solutions that don’t decay to zero!

Ansatz involving functions that solve Burgers equation removes not only the
non-decaying pieces but also the leading order quadratic nonlinear terms, thus
allowing us to close our nonlinear estimates.



Explanation of Ansatz

At = (1 + iα)Axx + A− (1 + iβ)A|A|2 + (γ1 + iγ2)A|A|4

Where does the Burgers equation come from?

A(x + p(x , t), t) = (r(x) + R(x , t))e i [ϕ(x)+φ(x,t)]

Perturbation satisfies

∂t

(
R
rφ

)
≈

(
1− αβ∗ αr
−α(1 + β∗) r(1 + αβ∗)

)
∂2
x

(
R
φ

)
+

(
−2(α + β∗)ϕx 2rϕx

−2ϕx(1 + (β∗)2) 2rϕx(β∗ − α)

)
∂x

(
R
φ

)
+

(
−2r 2(1− 2γ1r

2) 0
0 0

)(
R
φ

)
+

(
O(R2, φ2

x ,Rφx)
qrφ2

x

)
,

where cg = 2k0(α− β∗), β∗ = β∗(r0, γ), and q = q(α, β, k0, γ).

Notice:

• R decays faster than φ.

• φ governed to leading order by Burgers equation.



Summary

GOAL: Understand nonlinear stability of sources:

x

u(x,t)

Defect/Core

Defect/Core

Perturbations Perturbations

x

t

Difficulties at the linear level:

• Embedded zero eigenvalues lead to nondecaying semigroup

• Pointwise Green’s function allows for separation of the nondecaying part,
similar to the situation with a spectral gap via a spectral projection

• Source creates outward motion of perturbations - perturbations don’t stay
localized

Difficulties at the nonlinear level:

• Quadratic nonlinearities potentially problematic

• Ansatz must remove leading order nonlinear terms



Summary
Resolution:

• Use now-standard pointwise methods to deal with linear difficulties

• Additional estimates at linear level needed to deal with outward motion

• Ansatz via Burgers equation to remove quadratic nonlinear terms

Future directions:

• Sources in general reaction-diffusion
equations

• Sources in higher spatial dimensions -
spiral waves

Spirals can undergo an interesting variety of instabilities and bifurcations

Core break-up Far-field break up Tip meander

[D. Barkley, U. of Warwick: http://www.warwick.ac.uk/staff/D.Barkley/]


