Nonlinear stability of coherent structures via pointwise estimates

Margaret Beck Boston University

joint work with T. Nguyen (Penn State), B. Sandstede (Brown), and K. Zumbrun (Indiana)

NJIT, November 21, 2014

An example of a coherent structure: a source

Time-periodic patterns in reaction-diffusion systems:

Experiment: chemical reaction chlorite-iodite-malonic-acid (CIMA)

Numerical simulation: reaction-diffusion equation $u_t = Du_{xx} + f(u)$

[Perraud et. al., Phys. Rev. Lett. 1993]

Why study sources?

Importance in applications:

- Widely observed in experiments and numerics
- Defect created spontaneously; not caused by inhomogeneity
- Organize dynamics in rest of spatial domain

Mathematical interest:

- Linear stability: embedded zero eigenvalue; time-periodic linear operator
- Nonlinear stability: weighted spaces don't work, estimates are delicate

Stability

Reaction diffusion equation:

$$u_t = Du_{xx} + f(u)$$

Stationary solution of interest: $u(x, t) = u^*(x)$

Ansatz: $u(x, t) = u^{*}(x) + v(x, t)$ $v_{t} = D(u_{xx}^{*} + v_{xx}) + f(u^{*} + v)$ $= \underbrace{Dv_{xx} + f'(u^{*}(x))v}_{\mathcal{L}v} + \underbrace{[f(u^{*} + v) - f(u^{*}) - f'(u^{*}(x))v]}_{N(v)}$

Stability:

- Strong: $v(t) \rightarrow 0$ as $t \rightarrow \infty$
- Weak: v(t) stays small for all $t \ge 0$.

Stability at the linear level

Ignore the nonlinear term:

$$v_t = \mathcal{L}v$$

Two types of stability:

- Spectral stability: sup $\operatorname{Re}\sigma(\mathcal{L}) < 0$ (weak: sup $\operatorname{Re}\sigma(\mathcal{L}) \leq 0$)
- Linear stability: $v(t) \rightarrow 0$ as $t \rightarrow \infty$ (weak: v(t) stays small $\forall t \ge 0$)

In finite dimensions (\mathcal{L} a matrix), spectral and linear stability are equivalent. In infinite dimensions (\mathcal{L} is a differential operator), they may not be!

Example: in $X = H^1(1, \infty)$,

$$v_t = x \partial_x v = \mathcal{L} v$$

- sup $\operatorname{Re}\sigma(\mathcal{L}) \leq -1/2$
- \exists solution $v(t) \sim e^{t/2}$

For reaction diffusion equations, typically spectral and linear stability are equivalent.

Stability at the linear level

Determine behavior of

$$v_t = \mathcal{L}v$$

Take the Laplace transform $\hat{v}(\lambda) = \int_0^\infty e^{-\lambda t} v(t) dt$

$$\lambda \hat{v} - v_0 = \mathcal{L} \hat{v} \qquad \Rightarrow \qquad v(t) = \frac{1}{2\pi i} \int_{\Gamma} e^{\lambda t} (\lambda - \mathcal{L})^{-1} v_0 d\lambda =: e^{\mathcal{L} t} v_0$$

Linear estimates:

- Stable: $\|e^{\mathcal{L}t}\| \leq Ce^{-\delta t}$
- Weakly stable: $\|e^{\mathcal{L}t}\| \leq C$

Nonlinear stability

 $v_t = \mathcal{L}v + N(v)$

Transfer linear decay to the nonlinear equation via

$$v(t) = e^{\mathcal{L}t}v_0 + \int_0^t e^{\mathcal{L}(t-s)} N(v(s)) ds$$

If $\|e^{\mathcal{L}t}\| \leq Ce^{-\delta t}$ and $|N(v)| \leq |v|^2$, we can define

$$\|v\| = \sup_{0 \le t \le T} e^{\delta t} |v(t)|$$

Then we find

$$\|v\| \leq C|v_0| + \int_0^T Ce^{-\delta s} \|v\|^2 ds.$$

If we now take $\mathcal{T} = \sup\{t: e^{\delta t} | v(t)| \leq M\}$, then in fact

$$\|v\| \leq \frac{C|v_0|}{1 - \frac{C}{\delta}(1 - e^{-\delta T})\|v\|} \leq \frac{C|v_0|}{1 - \frac{C}{\delta}M} < M$$

if we take M and $|v_0|$ sufficiently small. So $|v(t)| \leq Me^{-\delta t}$ for all $t \geq 0$.

What about weak linear stability?

Expect zero eigenvalue:

$$0 = u_{xx}^* + f(u^*(x)) \implies 0 = \partial_x^2(u_x^*) + f'(u^*(x))u_x^* = \mathcal{L}u_x^*$$

Weakly stable spectrum:

Spectral gap: separate into stable (decaying) and center (bounded) part:

$$e^{\mathcal{L}t} = \frac{1}{2\pi i} \int_{\Gamma_s} e^{\lambda t} (\lambda - \mathcal{L})^{-1} d\lambda + \frac{1}{2\pi i} \int_{\Gamma_c} e^{\lambda t} (\lambda - \mathcal{L})^{-1} d\lambda$$

And show (nonlinearly) the solution converges to a spatial translate of $u^*(x)$:

 $v(x,t) = pu_x^*(x) + \mathcal{O}(e^{-\delta t}) \qquad \Rightarrow \qquad u(x,t) \sim u^*(x) + pu_x^*(x) \sim u^*(x+p)$

What if there is no spectral gap????

Pointwise semigroup estimates

Linear equation:

$$v_t = \mathcal{L}v \qquad \Rightarrow \qquad v(t) = \frac{1}{2\pi i} \int_{\Gamma} e^{\lambda t} (\lambda - \mathcal{L})^{-1} v_0 d\lambda = e^{\mathcal{L}t} v_0$$

Resolvent kernel: $G(x, y, \lambda)$

$$w(x) = \int_{\mathbb{R}} G(x, y, \lambda) v_0(y) dy \qquad \Rightarrow \qquad w = (\lambda - \mathcal{L})^{-1} v_0$$

Pointwise Green's function: G(x, y, t)

$$v(x,t) = \int_{\mathbb{R}} \mathcal{G}(x,y,t) v_0(y) dy, \qquad \mathcal{G}(x,y,t) = \frac{1}{2\pi i} \int_{\Gamma} e^{\lambda t} \mathcal{G}(x,y,\lambda) d\lambda$$

Example: $v_t = \mathcal{L}v = \partial_x^2 v$

$$G(x, y, \lambda) = \frac{1}{2\sqrt{\lambda}}e^{-\sqrt{\lambda}|x-y|}, \qquad \mathcal{G}(x, y, t) = \frac{1}{\sqrt{4\pi t}}e^{-\frac{(x-y)^2}{4t}}$$

In these kernels you can see:

- The spectrum $\sigma(\mathcal{L}) = (-\infty, 0]$
- Algebraic decay: $|\mathcal{G}(x,y,t)| \sim 1/\sqrt{t}$

Nonlinear stability via pointwise estimates

Solution to

$$v_t = \mathcal{L}v + N(v)$$

is given by

$$v(x,t) = \int_{\mathbb{R}} \mathcal{G}(x,y,t) v_0(y) dy + \int_0^t \int_{\mathbb{R}} \mathcal{G}(x,y,t-s) N(v(s)) dy ds$$

Separate into decaying and non-decaying parts:

Developed by Zumbrun and colleagues (see eg [Zumbrun, Howard 98])

$$\begin{split} v(x,t) &= \int_{\mathbb{R}} \mathcal{E}(x,y,t) v_0(y) dy + \int_0^t \int_{\mathbb{R}} \mathcal{E}(x,y,t-s) \mathcal{N}(v(s)) dy ds \\ &+ \int_{\mathbb{R}} \tilde{\mathcal{G}}(x,y,t) v_0(y) dy + \int_0^t \int_{\mathbb{R}} \tilde{\mathcal{G}}(x,y,t-s) \mathcal{N}(v(s)) dy ds \end{split}$$

Nonlinear stability via pointwise estimates

Adjust the Ansatz

$$u_{t} = u_{xx} + f(u), \qquad u(x + p(t), t) = u^{*}(x) + v(x, t)$$
$$v_{t} = \mathcal{L}v + N(v) + \dot{p}[v_{x} + u_{x}^{*}]$$

Actively translate the solution via p; use to remove the neutral direction!

$$v(x,t) = \int_{\mathbb{R}} \mathcal{G}v_0 dy + \int_0^t \int_{\mathbb{R}} \mathcal{G}[N(v) + \dot{p}v_y] dy ds + (p(t) - p(0))u_x^*(x).$$

Choose p to be defined implicitly as

$$p(t)u_x^*(x) = p(0)u_x^*(x) - \int_{\mathbb{R}} \mathcal{E}v_0(y)dy - \int_0^t \int_{\mathbb{R}} \mathcal{E}[N(v) + \dot{p}v_y]dyds$$

so that v is governed by

$$v(x,t) = \int_{\mathbb{R}} \tilde{\mathcal{G}} v_0 dy + \int_0^t \int_{\mathbb{R}} \tilde{\mathcal{G}}[N(v) + \dot{p} v_y] dy ds \quad \Rightarrow \quad \text{decay!}$$

Wave translation captured by p equation - as if there were a spectral gap!

Sources

Sources are solutions to

$$u_t = Du_{xx} + f(u), \qquad x \in \mathbb{R}, \qquad u \in \mathbb{R}^n$$

Time-periodic in a moving frame

$$u^{*}(x,t),$$
 $\tilde{x} = x - c^{*}t,$ WLOG $c^{*} = 0$
 $u^{*}(x,t+2\pi) = u^{*}(x,t)$

Spatially asymptotic to wave trains:

$$u_{\mathrm{wt}}(y;k) = u_{\mathrm{wt}}(kx - \omega(k)t;k) = u_{\mathrm{wt}}(y + 2\pi;k)$$

Group velocity:

$$c_{
m g}(k) = rac{d\omega}{dk}(k), \qquad c_{
m g}^- < 0 < c_{
m g}^+$$

Stability of sources

Linearize about source to get Floquet spectrum:

Difficulties for nonlinear stability:

- No spectral gap
- Linear operator is time-dependent: $\mathcal{L}(t)$
- Outward motion means perturbations don't stay localized

Anticipated effect of localized perturbation:

Time-periodicity of linear operator

Eigenvalue equation: $v_t = \mathcal{L}(t)v$ for $t \in (0, 2\pi)$, $v(2\pi) = e^{2\pi\sigma}v(0)$

Equivalently, $v(t) = e^{\sigma t}u(t)$, u is spatially localized and solves

$$\sigma u + u_t = u_{xx} + f'(u^*(x,t))u, \quad u(x,t) = u(x,t+2\pi)$$

Two eigenfunctions for $\sigma = 0$: $\bar{u}_x(x, t)$ and $\bar{u}_t(x, t)$

Green's function for periodic shocks [B., Sandstede, Zumbrun '10]:

$$\begin{aligned} \mathcal{G}(x,t,y) &= \frac{1}{2\pi i} \int_{\mu-i\infty}^{\mu+i\infty} e^{\lambda t} \mathcal{G}(x,y,\lambda) d\lambda \\ &= \frac{1}{2\pi i} \int_{\mu-\frac{i}{2}}^{\mu+\frac{i}{2}} e^{\sigma t} \sum_{n\in\mathbb{Z}} e^{int} \hat{\mathcal{G}}^{n}(x,y,\sigma) d\sigma \end{aligned}$$

Effect of phase fronts

Anticipated effect of localized perturbation:

Model equation:

$$\phi_t = \phi_{xx} - c \tanh\left(\frac{cx}{2}\right)\phi_x + \phi_x^2, \qquad c > 0.$$

Justification of model:

- Integrated Burgers captures phase dynamics [Howard and Kopell '77], [Doelman, Sandstede, Scheel, and Schneider '09]
- Advection terms represents group velocities

Mathematical difficulties

- No spectral gap; zero "eigenvalue" is constant function
- · Localized initial data; solutions don't stay localized

Analysis of Model [B, Nguyen, Sandstede, Zumbrun '12]

Linear part:

$$\phi_t = \phi_{xx} - c \tanh\left(rac{cx}{2}
ight)\phi_x$$

Explicit Green's function ($\operatorname{erf}(z) = \int_{-\infty}^{z} e^{-s^2} ds$):

$$\mathcal{G}(x,y,t) = \underbrace{\left[\frac{1}{\sqrt{4\pi t}}e^{-\frac{(x-y-ct)^2}{4t}}\frac{1}{1+e^{-cy}} + \frac{1}{\sqrt{4\pi t}}e^{-\frac{(x-y+ct)^2}{4t}}\frac{1}{1+e^{+cy}}\right]}_{\text{Gaussians that decay algebraically}} + \frac{c}{4}\underbrace{\left[\operatorname{erf}\left(\frac{y-x+ct}{\sqrt{4t}}\right) - \operatorname{erf}\left(\frac{y-x-ct}{\sqrt{4t}}\right)\right]}_{\text{outwardly spreading plateau}\to 1}\operatorname{sech}^2\left(\frac{cy}{2}\right)$$

Separate into bounded and decaying pieces:

$$\begin{array}{lll} \mathcal{G}(x,y,t) &=& \mathcal{E}(x,y,t) + \tilde{\mathcal{G}}(x,y,t), \\ \mathcal{E}(x,y,t) &=& \frac{c}{4} \left[\mathrm{erf} \left(\frac{x+ct}{\sqrt{4t}} \right) - \mathrm{erf} \left(\frac{x-ct}{\sqrt{4t}} \right) \right] \mathrm{sech}^2 \left(\frac{cy}{2} \right) \end{array}$$

Ansatz must remove non-decaying part; plateau height instead of translation!

Analysis of Model [B, Nguyen, Sandstede, Zumbrun '12]

$$\phi_t = \phi_{xx} - c \tanh\left(\frac{cx}{2}\right)\phi_x + \phi_x^2$$

Ansatz construction:

- Haven't linearized about anything (ie no u^*)
- Use form of Green's function to "guess" a good Ansatz
- Can solve model exactly via Cole-Hopf

$$\phi(x,t) = \underbrace{\log(1+p(t)\mathcal{B}(x,t))}_{\phi^*(x,t,p(t))} + v(x,t), \qquad \mathcal{B}(x,t) = \mathcal{G}(x,0,t+1)$$

Note:

- $\phi^*(x, t, p_0)$ exact solution for any fixed p_0 : nonlinear plateau, height p_0 !
- Really only need ϕ^* to solve model with error $\leq \mathcal{O}((t+1)^{-1})$

Theorem: For each $\gamma \in (0, \frac{1}{2})$, $\exists \epsilon_0, \eta_0, C_0, M_0 > 0$ such that, if $\phi_0 \in C^1$ satisfies $\epsilon := \|e^{x^2/M_0}\phi_0\|_{C^1} \le \epsilon_0$, then $\exists p_{\infty}$ with

$$|p(t) - p_{\infty}| \leq \epsilon C_0 e^{-\eta_0 t}, \qquad |v(x,t)| \leq rac{\epsilon C_0}{(1+t)^{\gamma}} \left(e^{-rac{(x-ct)^2}{M_0(t+1)}} + e^{-rac{(x-ct)^2}{M_0(t+1)}}
ight)$$

Sources in qCGL

Quintic complex Ginzburg-Laundau equation:

$$A_t = (1 + i\alpha)A_{xx} + A - (1 + i\beta)A|A|^2 + (\gamma_1 + i\gamma_2)A|A|^4$$

Sources are known to exist and have the form

$$A_{\textit{source}}(x,t) = r(x)e^{i\varphi(x)}e^{-i\omega t} \to \pm r_0(k_0)e^{i[\pm k_0x - \omega t]} \quad \text{as} \quad x \to \pm \infty$$

Asymptotic wave trains and group velocities:

$$\pm r_0(k_0) e^{\pm i k_0} e^{-i \omega(k_0) t}, \qquad c_g^\pm = rac{d \omega}{d k} |_{\pm k_0} = \pm c_g, \qquad c_g^- > 0 > c_g^+$$

Two eigenfunctions

- $\partial_x A_{source}$: spatial translations
- $\partial_t A_{source}$: phase modulations

Two key aspects of qCGL vs general reaction diffusion equation

- Gauge invariance: $A
 ightarrow A e^{i \phi_0 t}$ allows one to remove the time-dependence
- Phase/amplitude coordinates: phase modulation is more transparent

Sources in qCGL

$$A_{t} = (1 + i\alpha)A_{xx} + A - (1 + i\beta)A|A|^{2} + (\gamma_{1} + i\gamma_{2})A|A|^{4}$$

Stability Ansatz

$$A(x + p(x, t), t) = [r(x) + R(x, t)]e^{i[\varphi(x) + \phi(x, t)]}$$

Non-decaying part due to spatial translation:

- Removed by p(x, t)
- Spatially dependent because it is plateau-like (source outward motion)

Non-decaying part due to phase modulation:

• Remove by considering an appropriate phase modulation

$$A_{mod}(x,t) = A_{source}(x,t)e^{i\phi^a(x,t)} = r(x)e^{i[\varphi(x)+\phi^a(x,t)]}$$

• Approximate phase modulation $\phi^{\rm a}$ governed by a Burgers equation

$$\left(\partial_t + \frac{c_g}{k_0}\varphi_x\partial_x - d\partial_x^2\right)\left[\phi^a \pm k_0p\right] = q\left[\partial_x(\phi^a \pm k_0p)\right]^2$$

where d, q are related to the essential spectrum and nonlinearity, respectively.

Sources in qCGL

Theorem [B., Nguyen, Sandstede, Zumbrun '14]: Assume that the initial data is of the form $A_{in}(x) = R_{in}(x)e^{i\phi_{in}(x)}$ and A_{source} is spectrally stable. There exists a positive constant ϵ_0 such that, if

$$\epsilon := \| e^{x^2/M_0} (R_{\mathrm{in}} - r)(\cdot) \|_{C^3(\mathbb{R})} + \| e^{x^2/M_0} (\phi_{\mathrm{in}} - \varphi)(\cdot) \|_{C^3(\mathbb{R})} \le \epsilon_0,$$

then the solution A(x, t) to the qCGL equation exists globally in time. In addition, there are constants η_0 , C_0 , $M_0 > 0$ and appropriate solutions of Burgers equation, p and ϕ^a , so that

$$\begin{split} & \left| \frac{\partial^{\ell}}{\partial x^{\ell}} \Big[A(x + p(x, t), t) - A_{\text{mod}}(x, t) \Big] \right| \\ & \leq \epsilon C_0 (1 + t)^{\kappa - 1/2} [(1 + t)^{-\ell/2} + e^{-\eta_0 |x|}] \left(e^{-\frac{(x - c_g t)^2}{M_0(t + 1)}} + e^{-\frac{(x + c_g t)^2}{M_0(t + 1)}} \right) \end{split}$$

for $x \in \mathbb{R}$, $t \ge 0$, and $\ell = 0, 1, 2$ and for each fixed $\kappa \in (0, \frac{1}{2})$. In particular, $\|A(\cdot + p(\cdot, t), t) - A_{\text{mod}}(\cdot, t)\|_{W^{2,r}} \to 0$ as $t \to \infty$ for each fixed $r > \frac{1}{1-2\kappa}$.

Explanation of Ansatz

Two key mathematical difficulties:

- (1) Removal of non-decaying terms due to embedded zero eigenvalues
- (2) Dealing with quadratic nonlinearity

(1): resolved by now standard but nontrivial pointwise semigroup methods

(2) Even if $\mathcal G$ decayed like a Gaussian, quadratic terms can have a nontrivial effect on the dynamics. Consider, eg,

$$u_t = u_{xx} - u^2$$

Non-positive initial data lead to solutions that don't decay to zero!

Ansatz involving functions that solve Burgers equation removes not only the non-decaying pieces but also the leading order quadratic nonlinear terms, thus allowing us to close our nonlinear estimates.

Explanation of Ansatz

$$A_t = (1 + i\alpha)A_{xx} + A - (1 + i\beta)A|A|^2 + (\gamma_1 + i\gamma_2)A|A|^4$$

Where does the Burgers equation come from?

$$A(x + p(x, t), t) = (r(x) + R(x, t))e^{i[\varphi(x) + \phi(x, t)]}$$

Perturbation satisfies

$$\partial_t \begin{pmatrix} R \\ r\phi \end{pmatrix} \approx \begin{pmatrix} 1 - \alpha\beta^* & \alpha r \\ -\alpha(1+\beta^*) & r(1+\alpha\beta^*) \end{pmatrix} \partial_x^2 \begin{pmatrix} R \\ \phi \end{pmatrix} \\ + \begin{pmatrix} -2(\alpha+\beta^*)\varphi_x & 2r\varphi_x \\ -2\varphi_x(1+(\beta^*)^2) & 2r\varphi_x(\beta^*-\alpha) \end{pmatrix} \partial_x \begin{pmatrix} R \\ \phi \end{pmatrix} \\ + \begin{pmatrix} -2r^2(1-2\gamma_1r^2) & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} R \\ \phi \end{pmatrix} + \begin{pmatrix} \mathcal{O}(R^2, \phi_x^2, R\phi_x) \\ qr\phi_x^2 \end{pmatrix},$$

where $c_g = 2k_0(\alpha - \beta^*)$, $\beta^* = \beta^*(r_0, \gamma)$, and $q = q(\alpha, \beta, k_0, \gamma)$.

Notice:

- *R* decays faster than ϕ .
- ϕ governed to leading order by Burgers equation.

Summary

GOAL: Understand nonlinear stability of sources:

Defect/Core

Difficulties at the linear level:

- Embedded zero eigenvalues lead to nondecaying semigroup
- Pointwise Green's function allows for separation of the nondecaying part, similar to the situation with a spectral gap via a spectral projection
- Source creates outward motion of perturbations perturbations don't stay localized

Difficulties at the nonlinear level:

- Quadratic nonlinearities potentially problematic
- Ansatz must remove leading order nonlinear terms

Summary

Resolution:

- Use now-standard pointwise methods to deal with linear difficulties
- Additional estimates at linear level needed to deal with outward motion
- Ansatz via Burgers equation to remove quadratic nonlinear terms

Future directions:

- Sources in general reaction-diffusion equations
- Sources in higher spatial dimensions spiral waves

Spirals can undergo an interesting variety of instabilities and bifurcations

Core break-up

Far-field break up

Tip meander