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Setting: semi-discrete conservation laws

Semi-discrete conservation law: j € Z, vj(t) € RY

dv; 1
T Wity Via) = PG Yirg-1)] = 0

Discretization of: x € R, v(x,t) € RY
vi + F(v)x =0, f(u) = f(u,...,u)

e Spatial step size h
e Size of discretization stencil: p, g

v_2(t) y_y (1)




Traveling waves

dv; 1
7; + E[f(‘/j*PJrlv EER ‘/j+‘7) - f(vj,p, B W+q*1)] =0

Traveling wave: speed o

vi(t) = u. (j—%t), u R—RY

Traveling wave equation: x = j — ot/h

oul(x) = flu(x —p+1),...,ux+q)) = Fu(x = p),..., tu(x + g — 1))

e FDE of mixed type
e Dynamics depend on past (p) and future (q)

We will assume:
o limy oo Ui(X) = ut
e u. is a Lax shock: (1) ordered eigenvalues af < --- < ai of f,(u+);
(2 a_,<o<ag;a <o<aj,
e u(x) does not vanish on any interval of length at least p + ¢



[ll-posed equation

FDEs of mixed type are generally ill-posed: (p =g =1)

U(x) =u(x+1)+u(x—1), w(x)|1y=1

Related to spectrum:

ux)=e™ = A=ée +e

e Solutions with ReA — +o00
e Solutions grow arbitrarily fast in forwards and backwards “time’

1

o No semiflow

Solve with exponential dichotomies: [Harterich, Sandstede, Scheel 02]
[Mallet-Paret, Verduyn-Lunel, Preprint]



Candidates for nonlinear stability

GOAL: given existence and spectral stability, prove nonlinear stability

= Spectral stability: roughly speaking ,
e No spectrum in right half plane '
e Minimal multiplicity zero eigenvalue: u)
e Continuous spectrum is parabolic,
generated solely by characteristics

continuous spectrum; characteristics

= Our results will apply to weak shocks: |u; —u_| <1

e Existence
— Upwind [Benzoni-Gavage 98], mixed [Benzoni-Gavage, Huot 02]
— Constructed using a center manifold

e Spectral stability
— Essentially in [Benzoni-Gavage, Huot, Rousset 03]
— No spectrum in unstable half-pane: energy estimates
— Minimal multiplicity of zero eigenvalue: from existence construction



Spectral stability of TW

Semi-discrete equation in moving coordinate:

Ev:Uv'(x)—f(v(x—p+1),...7v(x+q))+f(v(x—p)7...,v(x+q—1))

Linearized operator: £ : L*(R,CV) — [*(R,C")

(Lu)(x) ou'(x) = D A(x)ulx +J)

j==r

Oif(u(x —p+1),...,u(x+q))
OhaF(a(x — )y e+ g — 1))

Aj(x)

Floquet-like spectral structure:

L(e*™u) = ™ (27io + L)u

e Spectrum invariant under shifts by 27ic

e Lattice doesn't feel oscillations on scale small than distance in lattice



Linear Evolution: two perspectives

(1) Moving coordinate frame:

v =Lv, v(t)e A(R,C")
(2) Coordinates of Lattice:

. . " h
ow = FWl (O =u (= 51). v (e+2) =yl

e TW is relative periodic orbit
e Linearization:
Oev = Fu(v¥(t))v)
= For analysis it's convenient to
— Use (1) for spectral assumptions and resolvent kernel construction
— Use (2) for pointwise Green's function and nonlinear analysis



Linear Evolution: connecting the two perspectives
(1) Moving coordinate frame:
Bev="Lyv, (L—-NG=05—y)

e Spectral assumptions on £
e Resolvent kernel G(x,y, )

(2) Coordinates of Lattice:

Orv = (R (v()V) + N(v),  v(t) = {vi(t)}jez
e Green's function
vi(t) = G(j,i,t,0)v(0) /Zgu:,ts)/\/ v(s))ids
i€Z iE€Z
e Relationship [Benzoni-Gavage, Huot, Rousset '03]
- s, O, . O
g(.jal7t7s)7g(,/ ht,/ hs,t 5)

y+imo

1 T
g(X:)@T):_%/ e G(X,y,)\)d)\
Yy

—imo



General strategy for nonlinear stability

e Assume: existence, spectrum of £ in moving frame

N local parabolas
- continuous spectrum —___
- characteristics
e Construct resolvent kernel

(L=XNG=6(—-y) = G(xy,N)

e Connect to behavior on lattice

.. . o, . O
g(‘/,/,t,s)fg(J—zt,l—Zs,t—s)
yHiwo N
g(xv)/ﬂ—):_% N e G(X,_y7>\)d)\

e Determine pointwise bounds on G sufficient for nonlinear stability.



Previous results and new challenges

Upwind schemes: nonlinear stability proven
— Under assumptions similar to above [Benzoni-Gavage, Huot, Rousset 03]
— Spectrum unbounded in one direction; resolvent kernel via Evans function

Mixed type schemes:

— Can't use Evans function for resolvent kernel

— lll-posed equation requires exponential dichotomies

— Dichotomies constructed [Harterich, Sandstede, Scheel 02] [Mallet-Paret,
Verduyn-Lunel, Preprint]

Related analysis:
— Similar analysis for time-periodic viscous shocks [B., Snadstede, Zumbrun 10]
— Pointwise Greens function estimates [Zumbrun and colleagues]

e New analysis required:
— Construct resolvent kernel using dichotomy and get pointwise bounds
— Relationship between dichotomy for £ and its adjoint
— Regularity of dichotomy in y



Exponential dichotomies
Recall setting for non-discrete case:

A= U + a(x)ux + b(x)u, a(x) — ax, b(x) — bx

Lu

Spatial dynamical system

di)'( (5) = A(x; \) (5) v AN = (,\ —Ob(x) —al(X))

Solve on L*(R, R?V) using dichotomy:

£ aen(e) -

<5> (x) = [ :o °(x,z,\)F(2)dz + / ) ®Y(x, 2z, \)F(z)dz

+o0o
Resolvent kernel comes from dichotomy:

7 ®i(x, 2, \)F(z)dz x>y

0
CleyA) = {_ [1 08,2, \)F(z)dz  x<y’ Fle) = (5(2 - y)>



Exponential dichotomies

Semi-discrete case:

Au(x) = ou'(x) — Z Ai(X)u(x+j), Ai(x)— Aji

j=-p

Lu

To get spatial dynamical system:
e Already first order in x
e Need to deal with advance/delay

o (2) =400 (2) = (a9 -0 52 aoun) )

Think of:
u(x) € L*(R,C") —  eigenfunction
#(x,2) = u(x+ z) € L*([-p,q],C") — local piece of u at x
a(x) = ¢(x,0) e CV —  eigenfunction

Solve (%) on L*(R,Y), Y := L*([-p, q],C") x CV



Resolvent kernel bounds

To get resolvent kernel:

e Construct dichotomy using [Hartereich, Sandstede, Scheel 02] for

= (2) — A(xN) (2)

e Meromorphic extension of ®°“ into neighborhood of A = 0.
e Using spectral assumptions and adjoint relationship find

+ ~
Gy N) = 3uL(0 22 e B VP + By )
where

1 _x . .
XUL(X) Z e mMp, o records effects leading to translation
in

G(x,y,N) — higher order terms, including effects

of characteristics/continuous spectrum

Technical issues: relationship involving adjoint; regularity of dichotomies



Pointwise Green's function

Use relationship between lattice and moving coordinate:

.o . g . [0}
g(./7’7t75)_g(./_Etv’_z57t_s>

G(x,y,7) =

1 yHiwo
eAT |: 1
A

’ —vENp, >
_% 7“*(X)Ze P111+G(X7y7>\) d\

y—imo in

= E(xy,7)+6(x,y,7)
Pieces of Greens function:

/ X + ainT X — ainT
u*(x)%: [errfn (4(7__’_1)> — errfn (\/m>

records translation due to neutral eigenvalue

E(x,y,T)

G(x,y, 1) = Gaussians moving along outgoing characteristics



Pointwise Green's function

Shock and characteristics:

t

shock location

xT
v(z,t)

outgoing incoming outgoing

Spectrum and Green's function:

C

E(@,y,t) ~ Cintl ()

-~

(z—y—agyuet)?
""> 1‘ y7 T

Z\/H

out

Remark: equation is hyperbolic, discretization induces dissipation



Nonlinear stability

Original semi-discrete equation:

dv;
dt{ + h[f(VJ*PJrh cees ‘/j+Q) - f(VJ'*Pv R Vj+q71)] =0

Solution Ansatz:
v(t + p(t)) = vi(t) + u(t), u = perturbation, p = phaseshift

Perturbation satisfies

w(t) = 36,1, t,0wi(0) / G0, i, t, S)N(w(s))ids + v ()p(t)ds
i€Z 0 ez
Chose p to cancel nondecaying &:

=> G, i,t,0)wi( 0)+/ > G, ist, s)N(w(s))ids

i€EZL i€Z



Theorem

A nondegenerate Lax shock that satisfies the spectral stability conditions is
nonlinearly stable as follows. There is an ¢, K > 0 so that for each {v;(0)}jez
with [{v;(0) — uc(j)}jez|r < e thereis a p: RT — R with

sup (1o(8)] + (1 + e |a(1)]) < Ke

such that the solution {v;(t)}cz satisfies
. Ke
{vi(t) — v + p(t) — ot/h)}jezl o) < L nie-1) t>0
(1 +e)2"

for each o > 1, where
a N a 1o
L*(Z) =qv:Z—R :|V\La(z)::[2|vj|] < oo,
=

If the initial condition satisfies |v;(0) — u.(j)| < e(1 4 jh)~>/2 for j € Z, then
there exists a poo With |poo| < Ke for which

[p(t) = pool (14 [t)"2 + 5(t)| (1 + [¢]) < Ke.



Summary

Studied Lax shock solutions of

dv; 1
7; + E[f(vjfpﬂv oo Vi) = F(Vimps oo Vig-1)] = 0

Proved nonlinear stability under assumptions: (eg weak Lax shocks)
e Existence and nondegeneracy
e Spectral stability

Key aspects of analysis
e Resolvent kernel constructed with dichotomy, not Evans function
e Technical issues resolved: regularity, adjoints



Spectral stability assumptions

Assumptions on £ with domain H*(R,CM):

(S1) No spectrum in {ReX > 0} \ 27icZ
(S2) u. only solution of Lu =10
(S3) Minimal multiplicity: det[r; ..., r_q, [uy —u_], r,:_l, L #0
(S4) Nonresonance: for £ € R\ {0},
det [105 — 9 (9 — Bje1)F(us, ..., ui)eiéf] £0

j=—p

(S5) Scheme is dissipative: (I, B*rf) >0, n=1,...,N

Notation:

e Left/right eigenvectors of f,(ut): ri, £

e Outgoing characteristic if eigenvalue:
a,..,a8_1 <0< a;f“,...,ax

e Viscosity matrix:

q .
Bj: = (1/2) Z (1 - zj)alf(ui7 Tt Ui) N l(‘}cal parabolas

j=—p continuous spectrum; characteristics




