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Abstract

We analyze the bifurcation diagrams of spatially localized stationary patterns that exhibit a long spatially

periodic interior plateau (referred to as localized rolls). In a wide variety of contexts, these bifurcation diagrams

consist of isolas or of intertwined s-shaped curves that are commonly referred to as snaking branches. These

diagrams have been rigorously analyzed by connecting the existence curves of localized rolls with the bifurcation

structure of fronts that connect the rolls to the trivial state. Previous work assumed that the stable and unstable

manifolds of rolls were orientable. Here, we extend these results to the nonorientable case and also discuss

topological barriers that prevent snaking, thus allowing only isolas to occur. The results are applied to the

Swift–Hohenberg system for which we show that nonorientable roll patterns cannot snake.

1 Introduction

A wide variety of physical systems support stationary spatially localized patterns, or localized rolls, that exhibit a

bifurcation structure known as snaking (see, for instance, [3, 4, 9, 11]). In one spatial dimension, such solutions

have a region of finite length, say 2L, in the interior of the domain where they are essentially spatially periodic, and

then decay to the background rest state exponentially fast outside of that region: Figure 1 shows an example of a

symmetric localized pattern. The snaking bifurcation diagram is typically characterized by a pair of curves that wind

back and forth as they extend vertically upward when they are plotted as a function of a bifurcation parameter, say

µ, against some measure of the size of the pattern, which is typically the L2 norm but can be intuitively thought

of as L. These curves are often accompanied by horizontal branches that correspond to accompanying asymmetric

localized patterns of corresponding length (see Figure 1). Due to the ubiquity of this phenomenon in seemingly

disparate physical models, a significant effort was made to explain snaking bifurcations mathematically. This work

builds upon that effort, and in particular on the results in [2]. There, the authors were able to analyze snaking by

viewing the localized patterns as being composed of fronts and backs that connect the rolls to the trivial state (see

Figure 2) and using assumptions about the structure of certain stable and unstable manifolds associated with the

fronts and backs to deduce the existence of snaking. The main goal of this paper is to conduct a similar analysis in
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Figure 1: Shown are the graph of a localized pattern with a roll plateau of length 2L as a function of space x [left

panel] and schematic depictions of bifurcation diagrams that exhibit snaking [center panel] and disconnected closed

curves (or isolas) [right panel]: in the rightmost two panels, the solid and dashed curves correspond to the separate

branches of symmetric pulses that have, respectively, a minimum and a maximum at their center, while the dotted

curves correspond to disconnected branches of asymmetric pulses. Note that, throughout the paper, we will not indicate

PDE stability in our bifurcation diagrams.

back

back front
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Figure 2: The left panel shows the graphs of a back and a front as functions of space x. The interpretation of these

patterns as heteroclinic orbits connecting the rest state to a periodic orbit is shown in the right panel. These heteroclinic

solutions can be glued together to form a homoclinic orbit to the rest state that spends much of its trajectory near the

periodic orbit, thus corresponding to a localized roll patterns.

the case where those stable and unstable manifolds are nonorientable and to determine to what extent snaking is

still possible in this case.

A concrete system that exhibits snaking is the Swift–Hohenberg equation

Ut = −(1 + ∂2x)2U − µU + νU2 − U3, x ∈ R, (1.1)

where ν > 0 is kept fixed and µ > 0 serves as the bifurcation parameter. The condition µ > 0 ensures that the

background state U = 0 is stable. Stationary solutions of (1.1) satisfy an equation of the form

ux = f(u, µ), u = (U,Ux, Uxx, Uxxx) ∈ R4, (1.2)

which has the conserved quantity

H(u, µ) = u2u4 −
1

2
u23 + u22 +

(1 + µ)

2
u21 −

ν

3
u31 +

1

4
u41.

The presence of the conserved quantity allows us to restrict attention to the three-dimensional zero level set of H.

System (1.2) is also reversible and possesses a family of periodic orbits denoted by γ(x, µ) that are contained in the

zero level set of H. The fronts and back in Figure 2 can be viewed as heteroclinic connections between u = 0 and

the periodic orbits γ(x, µ), and the localized patterns are homoclinic orbits that connect u = 0 to itself and spend

some amount of time (determined by L) near the periodic orbits; see Figure 2. We note that our results will apply

to any system of the form (1.2) in R4, not just to that associated with stationary solutions of (1.1), as long as it
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Figure 3: Shown are the periodic orbit γ(x, µ) and its two-dimensional unstable manifold within the three-dimensional

zero level set of the energy. The three panels indicate the cases where, from left to right, the unstable manifold is

orientable without twist (thus homeomorphic to a cylinder), nonorientable with a half twist (hence homeomorphic to

a Möbius band), and orientable with a full twist (again homeomorphic to a cylinder). Note that, in contrast to the

case without twist, the boundary of the rightmost unstable manifold forms a nontrivial knot with the periodic orbit.

satisfies the hypotheses in §2 and §3. We note that other works have considered the effects of removing some of the

assumptions such as reversibility or the existence of conserved quantities [6–8, 10].

A key assumption of [2] was that the nontrivial Floquet multipliers of the periodic orbits γ are positive, which implies

that the two-dimensional stable and unstable manifolds of γ are orientable, and therefore topological cylinders; see

Figure 3. In this case, depending on how the two-dimensional unstable manifold of the periodic orbits γ intersect the

two-dimensional stable manifold of the rest state u = 0 within the three-dimensional zero level set of the energy H,

the resulting bifurcation diagram of localized rolls either exhibits snaking or consists of infinitely many disconnected

closed curves (from now on referred to as isolas) as indicated in Figure 1. We remark that the difference between

snaking and isolas is visible only through the structure of the bifurcation diagram (and, specifically, boundedness

and connectedness of branches in the (µ,L)-plane): in particular, numerical continuation methods can distinguish

between these cases, but direct simulations are, in general, not capable of differentiating between them.

In this paper, we consider the case where the unstable manifolds of the periodic orbits are nonorientable, thus

topologically taking the form of Möbius bands. We also consider more general twisting, e.g. an orientable surface

with full twist; see Figure 3 for an illustration. Due to the fact that the phase space is not R3, but rather a three

dimensional submanifold of R4 given by the zero level set H−1(0) of the conserved quantity H, this general notion

of twisting must be defined relative to the topology of H−1(0). We will show that the geometric structure of a

certain set Γ that captures the existences of fronts and backs between the origin and the roll patterns determines

whether the bifurcation branches of symmetric localized rolls consist of isolas or of snaking branches. We will also

show that the topological structure of the zero level set of the conserved quantity can impose topological barriers for

snaking: more specifically, twisting as described above can cause linking of unstable manifolds with the underlying

periodic orbit and prevent snaking by restricting the possibilities for the geometric configuration of the set Γ. In

particular, we will show that rolls with nonorientable or more generally twisted unstable manifolds cannot lead to

snaking branches in the Swift–Hohenberg equation. We note that the nonorientable case was considered previously

in a related scenario in [6], but it was assumed there that the set Γ that captures how the strong unstable fibers of

the periodic orbit intersect the stable manifold of the homogeneous rest state could be represented as a graph: we

will show in this work that this hypothesis on Γ is not compatible with the nonorientability assumption.

The rest of the paper is organized as follows. In §2, we collect the hypotheses and results from [2] for systems with

orientable manifolds. In §3, we extend the framework from [2] to nonorientable manifolds and use the extended

framework in §4 to provide conditions that lead to the existence of snaking and isolas of symmetric pulses as well as

branches of asymmetric pulses. In §5, we then introduce a topological requirement that is necessary for the snaking

conditions of §4 to hold. We show in §6 that this requirement is not satisfied for periodic orbits with twisted Floquet

bundles in the Swift–Hohenberg equation and demonstrate numerically that indeed only isolas occur in this case.
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We conclude with a discussion in §7.

2 Setup for positive Floquet multipliers

In this section, we summarize the hypotheses and results from [2] for the orientable case that will be used in later

sections. Consider the ordinary differential equation

ux = f(u, µ), u ∈ R4, µ ∈ R, (2.1)

where f is some smooth function. Since we are interested in reversible systems, assume the following hypothesis.

Hypothesis 1. There exists a linear map R : R4 → R4 with R2 = 1 and dim FixR = 2, where FixR is the set of

fixed points of R, so that f(Ru, µ) = −Rf(u, µ) for all (u, µ).

It follows readily from Hypothesis 1 that the function ũ(x) = Ru(−x) satisfies (2.1) whenever u(x) does. We say a

solution u(x) is symmetric whenever u(x) = Ru(−x) or, equivalently, whenever u(0) ∈ FixR. Next, we assume that

the origin is a hyperbolic equilibrium for all values of µ.

Hypothesis 2. The origin u = 0 is a hyperbolic equilibrium of (2.1). Furthermore, fu(0, µ) has two eigenvalues

with strictly negative real part and two eigenvalues with strictly positive real part.

Note that the assumption on the spectrum is generic as Hypothesis 1 implies that the spectrum of fu(0, µ) is

invariant under multiplication by -1. To see this, note that Rf(u, µ) = −f(Ru, µ) implies Rfu(u, µ) = −fu(Ru, µ)R.

Multiplying by R−1 from the right, we arrive at

Rfu(u, µ)R−1 = −fu(Ru, µ) or, equivalently, −Rfu(Ru, µ)R−1 = fu(u, µ) for all u ∈ R4 (2.2)

and substituting u = 0 into the first equation proves our claim. Our next assumption deals with the existence of a

conserved quantity that is invariant under the reverser R.

Hypothesis 3. There is a smooth function H : R4 × R → R with H(Ru, µ) = H(u, µ) and 〈Hu(u, µ), f(u, µ)〉 = 0

for all (u, µ). We normalize H so that H(0, µ) = 0 for all µ.

We next assume that, for each µ in an appropriate interval, (2.1) has a symmetric periodic orbit in the zero energy

level set H−1(0). The term “periodic orbit” will be used for solutions with nonzero minimal period.

Hypothesis 4. We assume that there is a closed interval J ⊂ R with nonempty interior J̊ so that (2.1) has, for

each µ ∈ J , a periodic orbit γ(x, µ) with nonzero minimal period `(µ) which satisfies the following:

(i) The family γ(x, µ) depends smoothly on µ ∈ J ;

(ii) γ(x, µ) is symmetric: γ(0, µ) ∈ FixR for all µ ∈ J ;

(iii) γ(x, µ) has zero energy: for each µ ∈ J , H(γ(x, µ), µ) = 0 and Hu(γ(x, µ), µ) 6= 0 for one, and hence all, x.

(iv) γ(x, µ) is hyperbolic (so has precisely two Floquet multipliers at one, and no others on the unit circle).

Rescaling time appropriately, we can assume without loss of generality that all the minimal periods `(µ) are equal to

2π so that we can parametrize the periodic orbits by their phase ϕ ∈ S1 := [0, 2π]/∼. Next, consider the variational

equation

vx = fu(γ(x, µ), µ)v (2.3)

about γ(x, µ). Reversibility implies the following proposition.

Proposition 2.1. If v(x) satisfies (2.3), so does ṽ(x) = Rv(−x). In particular, whenever (2.3) has a solution of

the form v(x) = eαxp(x) for some α ∈ C and some nonzero 2π-periodic function p(x), then ṽ(x) = e−αxp̃(x) with

p̃(x) := Rp(−x) also satisfies (2.3): in particular, if α is a Floquet exponent, so is −α.
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Figure 4: Shown is a schematic of the geometry and the gluing construction near a periodic orbit with orientable stable

and unstable manifolds without twists within the three-dimensional energy level set. Also shown are backs and fronts

that correspond to intersections of Wu(0, µ) with W s(γ(x, µ), µ) and W s(0, µ) with Wu(γ(x, µ), µ), respectively, and

a zoom-in of the section Σout. Note that the sections Σin and Σout actually traverse all the way around the cylinders,

but this is not drawn for clarity.

Proof. Let v(x) be a solution to (2.3) and define ṽ(x) := Rv(−x). We then have

ṽx(x) = −Rvx(−x)
(2.3)
= −Rfu(γ(−x, µ), µ)v(−x) = −Rfu(Rγ(x, µ), µ)R−1Rv(−x)

(2.2)
= fu(γ(x, µ), µ)ṽ(x),

and we conclude that ṽ(x) also satisfies (2.3). The remaining claim follows immediately.

The preceding proposition implies that, whenever α ∈ C is a Floquet exponent of γ(x, µ), then so is −α. Our next

hypothesis assumes that the nontrivial Floquet multipliers of the periodic orbits γ(x, µ) are positive or, equivalently,

that the nontrivial Floquet exponents are real (and negatives of each other by Proposition 2.1).

Hypothesis 5. γ(x, µ) has two positive nontrivial Floquet multipliers e±2πα(µ) with α(µ) > 0 for all µ ∈ J .

Consider the variational equation (2.3) about γ(x, µ). Due to Hypothesis 5, it has two nontrivial solutions vs and

vu of the form

vs(x) = e−α(µ)xps(x, µ), vu(x) = eα(µ)xpu(x, µ), α(µ) > 0, (2.4)

where ps(x, µ) and pu(x, µ) are real valued and 2π-periodic in x. Proposition 2.1 implies that we can set pu(x, µ) :=

Rps(−x, µ) for all x and µ ∈ J . In particular, the local stable and unstable manifoldsW s(γ(x, µ), µ) andWu(γ(x, µ), µ)

of the periodic orbits are diffeomorphic to an annulus as illustrated in Figure 4, and we will therefore refer to this

case as the orientable case.

In [2], Fenichel coordinates were used locally to straighten out the strong stable and unstable fibers of γ, which

results in a coordinate system of the form

v̂ = (v̂c, v̂s, v̂u) ∈ V := S1 × I × I, I = [−δ, δ]

near the periodic orbits. In these coordinates, v̂c corresponds to the phase along the periodic orbit, and the sets {v̂u =

0} and {v̂s = 0} correspond to the stable and unstable manifolds of the periodic orbit, respectively. Furthermore,

the strong unstable fiber Wuu(γ(ϕ, µ), µ) of the point γ(ϕ, µ) on the periodic orbit corresponds to the set {v̂ : v̂c =

ϕ, v̂s = 0} and analogously for the strong stable fibers. In these coordinates, we can then define the sections Σout

and Σin by

Σin = S1 × {v̂ : v̂s = δ} × I, Σout = S1 × I × {v̂ : v̂u = δ}.
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As indicated in Figure 4, generically, W s(0, µ) will intersect Σout in a one-dimensional curve, and intersections of

W s(0, µ) with Wu(γ(x, µ), µ) correspond to front solutions. These intersections are encoded in the set

Γ := {(ϕ, µ) ∈ S1 × J : W s(0, µ) ∩Wuu(γ(ϕ, µ), µ) ∩ Σout 6= ∅}

that keeps track of the specific unstable fibers in which the fronts lie. In [2], it was shown that the global structure of

the bifurcation diagrams of localized patterns can be deduced entirely from the structure of the set Γ. In particular,

under some mild nondegeneracy conditions, it was shown that snaking of symmetric pulses will occur whenever Γ

can be represented as a graph µ = z(ϕ) for ϕ ∈ S1: note that this requires that, for each fixed phase ϕ, there is

a parameter value µ for which the strong unstable finger of γ(ϕ, µ) intersects the stable manifold of the origin. In

§5, we will show that the set Γ cannot be represented as a graph when the stable and unstable manifolds of γ are

nonorientable or, more generally, twisted.

When Γ cannot be represented as a graph over S1, other bifurcation diagrams can arise. In particular, it was shown

in [2] that the bifurcation diagram can consist of a sequence of disconnected closed curves, or isolas, comprised of

symmetric localized patterns that spend arbitrarily long times near the periodic orbit γ. We show in §4 that this

behavior can also occur regardless of twisting.

3 Setup for negative Floquet multipliers

We now consider the case of negative Floquet multipliers. We assume that Hypotheses 1-4 that we stated in §2 and

that were used in [2] are met, but replace Hypothesis 5 with the following assumption:

Hypothesis 6. The periodic orbits γ(x, µ) have two nontrivial negative Floquet multipliers e±2π(α(µ)+i/2) = −e±2πα(µ)

with α(µ) > 0 for each µ ∈ J .

Note that Proposition 2.1 implies that Floquet exponents come in pairs, related by multiplication by −1. The primary

outcome of Hypothesis 6 is that the stable and unstable manifolds of γ(x, µ) are topologically Möbius bands. To see

this, we first state the following lemma.

Lemma 3.1. Assume that Hypotheses 1-4 and 6 are met. The variational equation

vx = fu(γ(x, µ), µ)v (3.1)

then has two nontrivial solutions vs(x) and vs(x) of the form

vs(x) = e−α(µ)xps(x, µ), vu(x) = eα(µ)xpu(x, µ) = eα(µ)xRps(−x, µ), α(µ) > 0, (3.2)

where ps(x, µ) and pu(x, µ) are real valued, 4π-periodic in x, and satisfy

ps(x+ 2π, µ) = −ps(x, µ), pu(x+ 2π, µ) = −pu(x, µ) (3.3)

for all x and µ ∈ J .

Proof. Using Floquet theory, Hypothesis 6 implies that the variational equation (3.1) has a nontrivial solution of the

form v(x) = e−(α(µ)+i/2)xp(x, µ), where α(µ) > 0 and the complex-valued function p(x, µ) satisfies p(x + 2π, µ) =

p(x, µ) for all x. We set

ps(x, µ) := Re
(

e−ix/2p(x, µ)
)

so that ps(x+ 2π, µ) = −ps(x, µ) and ps(x+ 4π, µ) = ps(x, µ) for all x, and conclude that the function

vs(x) := Re v(x) = e−α(µ)xps(x, µ)

satisfies (3.1)-(3.3). It remains to show that vs(x) does not vanish identically: if it did, we repeat the arguments

above for Im v(x), which can then not vanish identically as we assumed that v(x) is not the zero solution. Finally,

Proposition 2.1 implies that vu(x) := Rvs(−x) satisfies (3.1)-(3.3).
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Figure 5: Shown is an illustration of the stable and unstable manifolds of the periodic orbit γ in the nonorientable

case: the vectors in black represent ps(x, µ) and pu(x, µ), and it is indicated how they change direction after 2π time

units. Considering the phase in the interval [0, 4π] allows us to match the vector directions and visualize the stable

and unstable manifolds of the periodic orbit as two Möbius bands glued together.

Visually, we can see that (3.3) implies that the stable and unstable manifolds of the periodic orbit are Möbius bands

as illustrated in Figures 5 and 6. When following a solution along the periodic orbit, the trajectory will be on the

other side of the manifold after 2π time units due to the half-twist. This is reflected in the rotation of the vectors pu

and ps as they move along the periodic orbit. In the following lemma, we will set up Fenichel coordinates near γ(x, µ)

by gluing together two copies of the stable and unstable manifolds and consider the local coordinate describing the

phase along γ to be 4π-periodic: see Figure 5.

Lemma 3.2. Assume that Hypotheses 1-4 and 6 are met. There exists a δ > 0, a smooth reversible change of

coordinates near γ(·, µ), and smooth real-valued functions hc, hsj , and huj for j = 1, 2 with the following properties.

Let I = [−δ, δ] and S1 := [0, 4π]/∼, then (2.1) restricted to the zero energy level set is of the form

v̂cx = 1 + hc(v̂, µ)v̂sv̂u

v̂sx = −[α(µ) + hs1(v̂, µ)v̂s + hs2(v̂, µ)v̂u]v̂s

v̂ux = [α(µ) + hu1 (v̂, µ)v̂s + hu2 (v̂, µ)v̂u]v̂u

(3.4)

for all µ ∈ J and v̂ = (v̂c, v̂s, v̂u) ∈ V := S1 × I × I/∼, where the equivalence relation ∼ in V is defined by

(v̂c, v̂s, v̂u) ∼ (v̂c + 2π,−v̂s,−v̂u).

Furthermore, (3.4) is reversible with the reverser R acting on v̂ as

Rv̂ = R(v̂c, v̂s, v̂u) = (−v̂c, v̂u, v̂s). (3.5)

Proof. The proof is analogous to the construction of Fenichel coordinates in [2, Lemma 2.1] via a transformation of

the form

(v̂c, v̂s, v̂u) ∈ S1 × I × I 7−→ γ(v̂c, µ) + v̂sps(v̂c, µ) + v̂upu(v̂c, µ) + h.o.t.

except that we have v̂c ∈ S1. The nonorientability of the Floquet bundles is reflected in the fact that

γ(v̂c, µ) + v̂sps(v̂c, µ) + v̂upu(v̂c, µ) = γ(v̂c + 2π, µ)− v̂sps(v̂c + 2π, µ)− v̂upu(v̂c + 2π, µ).

Thus, under the above mapping, the points (v̂c, v̂s, v̂u) and (v̂c + 2π,−v̂s,−v̂u) would be sent to the same point in

the neighborhood of the periodic orbit, and the equivalence relation in the definition of V reflects this symmetry.

The action of the reverser on these coordinates can be checked using the relations Rγ(x) = γ(−x) and pu(x, µ) =

Rps(−x, µ).
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Figure 6: Shown is a three-dimensional schematic of the gluing construction for systems with negative Floquet multipli-

ers, where, for clarity, only Wu(γ(x, µ), µ), the section Σout, and a heteroclinic orbit corresponding to an intersection

of W s(0, µ) with Wu(γ(x, µ), µ) are shown. The setup is nearly identical to the orientable case, except that the phase

coordinate ϕ ∈ [0, 4π] traverses γ twice.

The equivalence relation on V implies that we can restrict our forthcoming analysis to v̂s > 0 and v̂u > 0. As

explained in §2, the sets {v̂ : v̂s = 0} and {v̂ : v̂c = ϕ, v̂s = 0} correspond, respectively, to the unstable manifold

of γ(·, µ) and the strong unstable fibers Wuu(γ(ϕ, µ), µ), and analogously for the stable manifold and the strong

stable fibers. The variables v̂c parametrize a double cover of the periodic orbit γ(x, µ). The sections Σin and Σout

are defined via

Σin = S1 × {v̂s = δ} × I, Σout = S1 × I × {v̂u = δ}.
Our goal is to track solutions that enter a neighborhood of the periodic orbit near a back that lies in the intersection

of the unstable manifold Wu(0, µ) of the equilibrium and a strong stable fiber W ss(γ(ϕ, µ), µ) of the periodic orbit

and leave the neighborhood near a front that lies in the intersection of a strong unstable fiber Wuu(γ(ϕ, µ), µ) and

the stable manifold W s(0, µ); see Figure 6. To capture the locations of backs and fronts, we define the set Γ via

Γ := {(ϕ, µ) ∈ S1 × J : W s(0, µ) ∩Wuu(γ(ϕ, µ), µ) ∩ Σout 6= ∅}. (3.6)

Note that, compared to the orientable setup, the only change is that we use S1 = [0, 4π]/∼ instead of S1 = [0, 2π]/∼.

The following lemma shows how solutions that pass near the periodic orbit can be tracked.

Lemma 3.3. There exist positive constants L0 and η such that, for all L > L0 and ϕ ∈ S1, there exists a unique

solution v̂(x) of (3.4) that is defined for x ∈ [−L,L] such that

v̂(−L) ∈ Σin, v̂(L) ∈ Σout, v̂c(0) = ϕ, v̂(x) ∈ V ∀x ∈ [−L,L].

In addition, we have

v̂(−L) =
(
ϕ− L+ O(e−ηL), δ, δe−2α(µ)L(1 + O(e−ηL))

)
v̂(L) =

(
ϕ+ L+ O(e−ηL), δe−2α(µ)L(1 + O(e−ηL)), δ

)
v̂(0) =

(
ϕ, δe−α(µ)L(1 + O(e−ηL)), δe−α(µ)L(1 + O(e−ηL))

)
.

(3.7)

The solution v̂(x) is smooth in (ϕ, µ, L), and the error estimates in (3.7) are differentiable. Moreover

v̂(x,−ϕ) = Rv̂(−x, ϕ) (3.8)

for all ϕ and x. In particular, the solution v̂(x, ϕ) is R-reversible, with v̂(0) ∈ FixR, if and only if ϕ ∈ {0, 2π}.

Proof. The proofs for existence and uniqueness of solutions as well as for obtaining (3.7) and (3.8) proceed as in [2,

Lemma 3.1]. Finally, (3.8) implies that v̂(0) ∈ FixR if and only if ϕ = −ϕ. Using that −ϕ = 4π − ϕ, we find that

ϕ = −ϕ if and only if ϕ ∈ {0, 2π} as claimed.
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Figure 7: Panels (1) and (2) show example sets Γ that are 1-loops and 0-loops, respectively. Panel (3) shows the set

Γlift = Γ + (0, 4πZ) (dotted) resulting from the 0-loop shown in panel (2), with the vertical axis variable ϕ replaced by

L. Panels (4) and (5) show Γlift (dotted) together with the isolas Γ0
sym (solid) and Γ2π

sym (dashed), respectively, that

correspond to symmetric pulses; see Lemma 4.1. Panel (6) shows the sets Γ0
sym (solid) and Γ2π

sym (dashed), whose

union constitutes the full bifurcation diagram of symmetric pulses.

4 Snaking and isolas for nonorientable Floquet bundles

In this section, we construct branches of symmetric and asymmetric pulses: our arguments will not depend on whether

these branches are isolas or connected snaking branches. Since the case of orientable Floquet bundles has already

been considered in [2], we restrict our analysis to the nonorientable case when the stable and unstable manifolds are

topological Möbius bands.

We impose the following structural definition on the set Γ that describes heteroclinic connections between the origin

and the periodic orbits:

Hypothesis 7. There exists some smooth function G : S1 × I × J → R such that G(ϕ, v̂s, µ) = 0 if, and only if,

(ϕ, v̂s) ∈W s(0, µ) ∩ Σout. In particular,

Γ := {(ϕ, µ) ∈ S1 × J : Wuu(γ(ϕ, µ), µ) ∩W s(0, µ) ∩ Σout 6= ∅} = {(ϕ, µ) ∈ S1 × J : G(ϕ, 0, µ) = 0},

and we assume that Γ ⊂ S1 × J̊ and that

∇(ϕ,µ)G(ϕ, 0, µ) 6= 0 ∀(ϕ, µ) ∈ Γ. (4.1)

Throughout the remainder of this paper, we refer to one-dimensional manifolds that are diffeomorphic to circles as

loops. In other words, loops are closed smooth curves that do not have self-intersections.

With this notation, the preceding hypothesis implies that Γ is the union of finitely many disjoint loops that do not

intersect S1 × ∂J . We pick one such loop and parametrize it by (ϕ(s), µ(s)) with s ∈ [0, 1], where we consider ϕ(s)

in the cover R of S1. Since we have ϕ(0) = ϕ(1) mod 4π, and we trace out a loop, we have either (i) ϕ(0) = ϕ(1) or

(ii) ϕ(0) = ϕ(1)± 4π: we refer to the loop as a 0-loop in case (i) and a 1-loop in case (ii). Figure 7 shows examples

of sets Γ that are 1-loops and 0-loops.

We now denote by Γlift ⊂ R × J̊ the preimage of Γ under the natural covering projection from R × J̊ to S1 × J̊ .

Any 0-loop in Γ will be lifted to an infinite number of disjoint copies of the 0-loop, while a 1-loop will be lifted to

an unbounded connected curve in Γlift. Below, we will show that the bifurcation curves of symmetric pulses will be

close to Γlift so that we have snaking if Γ is a 1-loop, while the bifurcation diagram consists of isolas if Γ contains

only 0-loops; see Figure 7 for an illustration.
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Figure 8: Shown are sample bifurcation diagrams consisting of isolas in the orientable (left) and nonorientable (right)

case: solid and dashed curves correspond to the branches Γ0
sym and Γϕ0

sym, respectively, of symmetric pulses with ϕ0 = π

in the orientable and ϕ0 = 2π in the nonorientable case, while dotted curves correspond to branches of asymmetric

pulses.

4.1 Symmetric 1-pulses

In this section, we will construct symmetric solutions v̂(x) that are reversible homoclinic orbits to the equilibrium

u = 0 and spend time 2L� 1 near the periodic orbit γ(·, µ). Here, by definition, a symmetric 1-pulse v̂(x) satisfies

v̂(x) ∈ V for x ∈ [−L,L]

v̂(L) ∈W s(0, µ) ∩ Σout

v̂(0) ∈ Fix(R)

(4.2)

for sufficiently large L� 1.

Lemma 4.1. Assume that Hypotheses 1-4 and 6-7 are met. There exist an η > 0 and submanifolds Γϕ0
sym ⊂ R × J

for ϕ0 = 0, 2π such that the following is true:

1. There is a symmetric 1-pulse of length 2L if, and only if, (L, µ) ∈ Γϕ0
sym for ϕ0 = 0 or ϕ0 = 2π.

2. Fix ϕ0 = 0, 2π, then the manifolds Γlift − (ϕ0, 0) and Γϕ0
sym are, for each fixed k ≥ 2, O(e−ηL)-close to each

other in the Ck-sense near any point (L, µ) ∈ Γϕ0
sym.

The lemma implies that the bifurcation diagram of symmetric pulses is close to the set Γlift shifted by ϕ0 upwards

with ϕ0 ∈ {0, 2π}; see Figure 8. In particular, we obtain snaking if Γ is a 1-loop; if Γ consists of 0-loops, the

bifurcation diagram consists of isolas.

Proof. Lemma 3.3 implies that (4.2) is met if, and only if,

v̂(L) = (v̂c(L,ϕ0, µ), v̂s(L,ϕ0, µ), δ) ∈W s(0, µ)

for ϕ0 ∈ {0, 2π}, and Hypothesis 7 implies that this condition is equivalent to

G(v̂c(L,ϕ0, µ), v̂s(L,ϕ0, µ), µ) = 0 (4.3)

for any sufficiently large L� 1. Using again Lemma 3.3, we see that (4.3) becomes

G(L+ ϕ0 + O(e−ηL),O(e−ηL), µ) = 0. (4.4)

For each 0-loop in Γ, we parametrize the loop by 4π-periodic functions (L(s), µ(s)) with 0 ≤ s ≤ 4π so that

Γlift = {(L(s) + 4πk, µ(s)) : 0 ≤ s ≤ 4π, k ∈ N}.
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(ii)

(i)

Figure 9: Shown are two curve segments inside a sample set Γ = {(µ, ϕ) : G(ϕ, 0, µ) = 0}. The upper segment

violates Hypothesis 8(i) at the filled circle with label (i) at which Gϕ(ϕ0, 0, µ0) = Gϕϕ(ϕ0, 0, µ0) = 0: Γ is not locally

a nondegenerate parabola near the point (ϕ0, µ0) that corresponds to the vertical tangent. The lower segment violates

Hypothesis 8(ii) at the two filled circles with label (ii) at which two vertical tangents arise at the same value of µ so

that Gϕ(ϕj , 0, µ1) = 0 for j = 1, 2.

If Γ is a 1-loop, we can parametrize Γlift by a curve (L(s), µ(s)) with s ≥ 0, where (L(s + 4π), µ(s + 4π)) =

(L(s) + 4π, µ(s)) for all s. Next, let

n(s) :=
1

|∇(ϕ,µ)G(L(s), 0, µ(s))|∇(ϕ,µ)G(L(s), 0, µ(s))

and note that n(s) is well defined and normal to Γlift for all s by Hypothesis 7. We now set

(L, µ) = (L(s)− ϕ0 + n1(s)a, µ(s) + n2(s)a)

and note that there is an open interval I so that (s, a) ∈ R× I parametrize a uniform neighborhood of Γlift in R×J .

Let

F (s, a) := G(L+ ϕ0 + O(e−ηL),O(e−ηL), µ) = G(L(s) + n1(s)a, 0, µ(s) + n2(s)a) + O(e−ηL(s))

and we have

F (s, a) = O(|a|+ e−ηL(s)), Fa(s, a) = 1 + O(|a|+ e−ηL(s)).

In particular, we can solve F (s, a) = 0 uniquely for a for all sufficiently large s. The remaining claims now follow

easily.

4.2 Asymmetric 1-pulses

Next, we focus on asymmetric (that is, not symmetric) 1-pulses, which, by definition, satisfy

v̂(x) ∈ V for x ∈ [−L,L]

v̂(−L) ∈Wu(0, µ) ∩ Σin

v̂(L) ∈W s(0, µ) ∩ Σout

(4.5)

for sufficiently large L � 1. Throughout the remainder of this section, we assume that Hypotheses 1-4 and 6-

7 are met. In addition, we assume the following nondegeneracy condition and refer to Figure 9 for a geometric

interpretation:

Hypothesis 8. If (ϕ, µ) ∈ Γ with Gϕ(ϕ, 0, µ) = 0, then (i) Gϕϕ(ϕ, 0, µ) 6= 0 and (ii) Gϕ(ϕ̃, 0, µ) 6= 0 for all

(ϕ̃, µ) ∈ Γ with ϕ̃ 6= ϕ.

Lemma 3.3 and Hypothesis 7 imply that

v̂(L) ∈ Σout ∩W s(0, µ) ⇐⇒ G(v̂c(L,ϕ, µ), v̂s(L,ϕ, µ), µ) = 0.

11



Applying the reverser to v̂(−L), and explicitly indicating the dependence of v̂(x, ϕ, µ) on the variables (ϕ, µ), we

conclude from Lemma 3.3 that v̂(−L,ϕ, µ) ∈ Σin ∩Wu(0, µ) if, and only if,

v̂(L,−ϕ, µ)
(3.8)
= Rv̂(−L,ϕ, µ) ∈ Σout ∩W s(0, µ).

Thus, we see that 1-pulses that spend time 2L in V are in 1:1 correspondence with solutions (L,ϕ, µ) of the system

G(L,ϕ, µ) :=

(
G(v̂c(L,ϕ, µ), v̂s(L,ϕ, µ), µ)

G(v̂c(L,−ϕ, µ), v̂s(L,−ϕ, µ), µ)

)
= 0.

Denoting by κ the map given by κ(u, v) = (v, u), we see that

G(L,−ϕ, µ) = κG(L,ϕ, µ), ∀(L,ϕ, µ)

so that G is Z2-equivariant with respect to this action: in particular, since ϕ = −ϕ in S1 = [0, 4π]/∼ precisely when

ϕ ∈ {0, 2π}, we recover the symmetric 1-pulses constructed in Lemma 4.1 as solutions in the fixed-point space of

this action. Next, setting

L = `+ 4πn = `+
4π

ε
, ` ∈ S1, ε ∈ A := {0} ∪

{
1

n
; n ∈ N

}
and using the expansions given in Lemma 3.3, we obtain

G(L,ϕ, µ) =

(
G(L+ ϕ+ O(e−ηL),O(e−ηL), µ)

G(L− ϕ+ O(e−ηL),O(e−ηL), µ)

)
=

(
G(`+ ϕ, 0, µ)

G(`− ϕ, 0, µ)

)
+ O(e−η/ε). (4.6)

We will now set ε = 0 and construct asymmetric 1-pulses for the ε = 0 case: our construction involves only the

implicit function theorem and therefore extends immediately to the case 0 < ε � 1. due to the error estimates in

(4.6). For simplicity, and with a slight abuse of notation, we write G(ϕ, µ) := G(ϕ, 0, µ) from now on, thus omitting

the second component, which is zero.

We therefore need to find (`, ϕ, µ) ∈ Q := S1 × S1 × J for which

G(L,ϕ, µ) =

(
G(`+ ϕ, µ)

G(`− ϕ, µ)

)
= 0,

which we write equivalently as

G̃(`, ϕ, µ) :=

(
G1(`, ϕ, µ)

G2(`, ϕ, µ)

)
:=

(
G(`+ ϕ, µ) +G(`− ϕ, µ)

G(`+ ϕ, µ)−G(`− ϕ, µ)

)
= 0 (4.7)

and note that this system is Z2-symmetric under the action ϕ → −ϕ and (G1, G2) 7→ (G1,−G2). We begin by

investigating pitchfork bifurcations from symmetric pulses.

Lemma 4.2. Assume that Hypotheses 1-4 and 6-8 are met. Assume that (`0, µ0) ∈ Γ (so that G(`0, µ0) = 0) with

Gϕ(`0, µ0) = 0, then precisely two branches of asymmetric 1-pulses (related by x→ −x symmetry) bifurcate from the

symmetric 1-pulse corresponding to (`0, µ0) in a pitchfork bifurcation.

Proof. Since G(`0, µ0) = 0, we have G̃(`0, 0, µ0) = 0, Furthermore, since Gϕ(`0, µ0) = 0, we find that

DG̃(`0, 0, µ0) =

(
2Gϕ(`0, µ0) 0 2Gµ(`0, µ0)

0 2Gϕ(`0, µ0) 0

)
=

(
0 0 2Gµ(`0, µ0)

0 0 0

)
.

Hypothesis 7 implies that Gµ(`0, µ0) 6= 0, and we can therefore solve G1(`, ϕ, µ) = 0 near (`0, 0, µ0) uniquely for

µ = µ∗(`, ϕ) as a function of (`, ϕ). Writing (`, µ) = (`0, µ0) + (˜̀, µ̃) and using the Z2-symmetry that guarantees

that G2 is odd in ϕ, we can expand the function G2(`, ϕ, µ) and find that

G2(`, ϕ, µ∗(`, ϕ)) = 2Gϕϕ(`0, µ0)˜̀ϕ+ O(ϕ3),

where Gϕϕ(`0, µ0) 6= 0 by Hypothesis 8(i). Dividing by ϕ, we can therefore solve G2(`, ϕ, µ∗(`, ϕ)) = 0 near (`0, 0, µ0)

uniquely for ` as a function of ϕ. This proves the claim.
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Figure 10: We illustrate the curvature in the µ-direction at the points in Γ that correspond to pitchfork bifurcations.

Next, let

Λs := {(`, ϕ, µ) ∈ Q : ϕ = 0, G(`, µ) = 0}
Λbif
s := {(`, ϕ, µ) ∈ Q : ϕ = 0, G(`, µ) = 0, Gϕ(`, µ) = 0, }
Λa := {(`, ϕ, µ) ∈ Q : ϕ 6= 0, G(`+ ϕ, µ) = 0, G(`− ϕ, µ) = 0}

to be the sets corresponding to symmetric 1-pulses, symmetric 1-pulses at pitchfork bifurcation points, and asym-

metric 1-pulses. The following lemma characterizes the set Λa of asymmetric 1-pulses.

Lemma 4.3. Assume that Hypotheses 1-4 and 6-8 are met. We have Λ̄a = Λa ∪ Λbif
s , and Λ̄a consists of a finite

union of smooth isolas (sets that are diffeomorphic to circles) and smooth curves with boundaries in Λbif
s .

Proof. We already proved in Lemma 4.2 that precisely two branches of asymmetric 1-pulses emanate as smooth

curves from each point in the discrete set Λbif
s .

Next, take any (`, ϕ, µ) ∈ Γa with ϕ /∈ {0, 2π}. In particular, G(`, ϕ, µ) = 0 and the associated Jacobian is given by

DG(`, ϕ, µ) =

(
Gϕ(`+ ϕ, µ) Gϕ(`+ ϕ, µ) Gµ(`+ ϕ, µ)

Gϕ(`− ϕ, µ) −Gϕ(`− ϕ, µ) Gµ(`− ϕ, µ)

)
. (4.8)

It follows readily from Hypothesis 7 that the Jacobian has rank strictly less than two if and only if Gϕ(`±ϕ, µ) = 0.

However, for ϕ /∈ {0, 2π} and (` ± ϕ, µ) ∈ Γ, this is ruled out by Hypothesis 8. Hence, the Jacobian has full rank,

and the solution set of G(`, ϕ, µ) = 0 is given locally by a smooth curve.

Since Q is compact and zero is a regular value of G(`, ϕ, µ) when we restrict it to a complement of a small neighborhood

of Γs, this implies that Γa is the union of smooth isolas and of branches that begin and end in Λbif
s as claimed.

Finally, we show that branches of asymmetric 1-pulses that emerge at pitchfork bifurcations begin and end at points

in Γ of opposite curvature in µ. Take any element (ϕ0, µ0) ∈ Γ for which Gϕ(ϕ0, µ0) = 0. Since then Gµ(ϕ0, µ0) 6= 0

by Hypothesis 7, we can parametrize Γ locally near (ϕ0, µ0) as µ = µ∗(ϕ) so that G(ϕ, µ∗(ϕ)) ≡ 0. Taking derivatives,

we find that

signµ′′(ϕ0) = − sign (Gµ(ϕ0, µ0)Gϕϕ(ϕ0, µ0)) , (4.9)

where the right-hand side is not zero due to Hypothesis 8. Note also that these signs are independent of the specific

parametrization.

Lemma 4.4. Assume that Hypotheses 1-4 and 6-8 are met. The branches of asymmetric 1-pulses described in

Lemma 4.2 begin and end at points in Λbif
s at which µ′′ has opposite sign.

Proof. Pick a branch of asymmetric 1-pulses that begins and ends at pitchfork bifurcation points and parametrize

the branch (`, ϕ, µ)(s) by s ∈ [0, 1] so that (`, ϕ, µ)′(s) never vanishes. It follows from the analysis in Lemma 4.2 that

(`, µ)′(s) = 0 and ϕ′(s) 6= 0 for s = 0, 1. Noting that the rows of the Jacobian in (4.8) are linearly independent and

that the vector (`, ϕ, µ)′(s) lies in the null space of this Jacobian, we conclude that scalar product of (`, ϕ, µ)′(s) with

the cross product of the two rows of the Jacobian in (4.8) has constant nonzero sign. Expanding the cross product of
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Figure 11: From left to right: the boundary curve of a Möbius band (black) and its central circle (green) can be

deformed to a pair of circles that have linking number one [1].

the two rows at s = 0, 1 we see that this scalar product is given by Gµ(`(0), µ(0))Gϕϕ(`(0), µ(0))ϕ′(0)2 at s=0 and

by −Gµ(`(1), µ(1))Gϕϕ(`(1), µ(1))ϕ′(1)2 at s = 1. This implies that the signs of GµGϕϕ at the start and end points

of the branch must be opposites of each other, and inspecting (4.9) completes the proof.

5 Topological barriers to snaking

In the previous section, we proved that the structure of the set

Γ = {(ϕ, µ) ∈ P × J : W s(0, µ) ∩Wuu(γ(ϕ, µ), µ) ∩ Σout 6= ∅}, P :=

{
[0, 2π]/∼ orientable manifolds

[0, 4π]/∼ nonorientable manifolds

determines whether the bifurcation diagram of symmetric pulses consists of an unbounded snaking branch or of the

union of isolas. Specifically, if Hypothesis 7 is met, then snaking occurs if Γ is a 1-loop in P × J . In this section, we

discuss topological barriers that prevent Γ from being a 1-loop and that therefore preclude snaking to occur.

5.1 Motivation

We begin with outlining our initial intuition and motivation for topological barriers to snaking. Consider a generic

differential equation in R3 (we imagine that this system represents the differential equation inside the level set H−1(0)

of the conserved quantity H) and neglect dependence on parameters in the following arguments. Assume that this

system has a hyperbolic periodic orbit γ and suppose furthermore that the invariant manifold Wu(γ) of the periodic

orbit γ is a Möbius band. In this case, the section Σout is a cylinder with one full twist: Indeed, the boundary of the

Möbius band Wu(γ) is a loop w that winds twice around the meridian circle given by the periodic orbit γ (see also

Figure 11). The section Σout intersects Wu(γ) along the entire loop w and makes a half twist each time it traverses

the periodic orbit once, thus ending up with one full twist since w traverses γ twice.

To obtain snaking in the nonorientable case, we need that the intersection of the stable manifold W s(0) of the

equilibrium with the section Σout forms a loop g along γ: in contrast to the orientable case, the loop g now winds

twice around γ as it traverses Σout along the boundary loop w. The key is now that the loops g and γ link, where

linking is defined as follows: The fundamental group of R3 \ γ is given by Z, and each loop g in R3 that does not

intersect γ can therefore be mapped to a unique integer in Z via its equivalence class in the fundamental group

R3 \ γ. This integer is the linking number of the pair (γ, g). Figure 11 shows that the linking number of (γ, g) is not

zero. On the other hand, since g ⊂W s(0), we can deform g inside R3 \ γ to a small neighborhood of the origin, thus

unlinking the loops γ and g. This is impossible as the linking number is a homotopy invariant for homotopies in

R3 \ γ. Therefore, linking of loops can create the topological barrier to snaking. We note that by similar arguments,

one expects that additional twists in the Floquet bundles of γ (see, e.g. Figure 1) generate similar topological barriers

due to linking in R3.

However, the above notion of linking rests on the fact that the fundamental group of R3 \γ is Z. We need to consider

the case where E = H−1(0), and this set is a three-dimensional manifold (if we remove critical points of H) whose
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topology can be arbitrarily complex. In particular, it is not clear how linking arguments can be used in this context,

or whether there is an intrinsic notion of twisting within H−1(0). For this reason, we therefore focus on arguments

involving the fundamental group.

5.2 Barriers in reversible, conservative systems

We focus on reversible, conservative systems in R4 that satisfy Hypotheses 1-4. Instead of using linking, we will

utilize homotopies of loops. We will make the following assumptions on the conserved quantity H : R4 × J → R.

Hypothesis 9. We assume that H : R4 × J → R satisfies the following assumptions:

1. Hu(u, µ) = 0 if, and only if, f(u, µ) = 0.

2. If Hu(u, µ) = 0, then the Hessian Huu(u, µ) is invertible.

3. There is a bounded set K ⊂ R4 such that Hu(u, µ) 6= 0 for all (u, µ) /∈ K × J .

We say that (u, µ) is a critical point of H if Hu(u, µ) = 0. The preceding hypothesis implies that the set of critical

points is diffeomorphic to the cross product of a finite set with J and in 1 : 1 correspondence with the set of equilibria.

Furthermore, each critical point is nondegenerate, and we can therefore use the Morse lemma to characterize the

level sets of H near each equilibrium for each fixed µ. We now define

C := {(u, µ) ∈ R4 × J : Hu(u, µ) = 0}, Cµ := C ∩ (R4 × {µ}) ⊂ R4,

E := H−1(0) \ Uδ(C) ⊂ R4 × J, Eµ := E ∩ (R4 × {µ}) ⊂ R4,

where 0 < δ � 1 is so small that the Morse lemma applies in the δ-neighborhood of each equilibrium in C. Note

that E is a four-dimensional manifold with boundary given by ∂Uδ(C) and, similarly, each slice Eµ is a three-

dimensional manifold with boundary given by ∂Uδ(Cµ). Finally, let wµ be the loop that corresponds to the intersection

Wu(γ(·, µ), µ) ∩ Σout of the local unstable manifold of the periodic orbit γ(·, µ) with the boundary of the tubular

Fenichel neighborhood.

Theorem 5.1. Assume that Hypotheses 1-4, 7, and 9 are met. If wµ cannot be deformed continuously to a curve

in ∂Uδ(0) inside Eµ \ {γ(·, µ)} for some µ ∈ J̊ , then Γ cannot be a 1-loop and snaking is precluded in this situation.

Proof. Hypothesis 9 implies that the manifolds Eµ with µ ∈ J are diffeomorphic to each other. We fix some µ0 ∈ J̊
and denote by Tµ the Fenichel tubular neighborhoods Tµ introduced in §2-3. These coordinates provide an isotopy

of ⋃
µ∈J
Tµ × {µ} ⊂ E

with Tµ0
× J that maps each periodic orbit γ(·, µ) onto γ(·, µ0). We can then use the isotopy extension theorem

[5, Theorem 1.4 in Chapter 8] to extend this isotopy to an isotopy of E to Eµ0
× J : we remark that the openness

assumption needed in the isotopy extension theorem is automatically met as the tubular Fenichel neighborhoods Tµ
do not intersect ∂Eµ. We can therefore work in the framework where E = Eµ0

×J and γ(·, µ) = γ(·, µ0) for all µ ∈ J .

We now argue by contraposition: we assume that Γ is a 1-loop and need to show that wµ0
can be deformed to a

curve in ∂Uδ(0) in Eµ0
\ {γ(·, µ0)}.

We identify Γ ⊂ P × J with the one-dimensional manifold

g := {(u, µ) ∈ E = Eµ0 × J : u ∈W s(0, µ) ∩Wuu(γ(ϕ, µ), µ) ∩ Σout for some (ϕ, µ) ∈ Γ}.

Note that g ⊂ Eµ0
\ {γ(·, µ0)} × J and, using Fenichel coordinates, we can deform the loop wµ0

into the loop g in

(Eµ0 \ {γ(·, µ0)})×J . Let Φt(u, µ) be the flow of the differential equation u̇ = f(u, µ) in the coordinates E = Eµ0 ×J
given by the isotopy and note that the set {γ(·, µ0)} is invariant under Φt(·, µ) for each µ. We define the differentiable
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function h(t, θ) := Φt(uθ, µθ), where t ≥ 0 and θ ∈ S1. Note that h(0, θ) parametrizes the projection of g onto Eµ0

and that h(t, θ) ∈ Eµ0 \ {γ(·, µ0)} for all (t, θ). Furthermore, since (uθ, µθ) ∈ W s(0, µθ) for all θ ∈ S1, we see that

h(t, θ) → 0 as t → ∞ uniformly in θ. Possibly after introducing a new µ-dependent norm, we can assume that

W s
loc(0, µ) ∩ ∂Uδ(0) is transverse to the flow for all µ ∈ J so that W s

loc(0, µ) ∩ Uδ(0) is forward invariant for all µ.

In particular, for each θ ∈ S1, there is a unique Tθ > 0 such that h(Tθ, θ) ∈ ∂Uδ(0), and Tθ is continuous in θ.

Redefining h as the continuous function

h(t, θ) := Φmin(t,Tθ)(uθ, µθ)

and setting T := maxθ Tθ shows that h(T, θ) ∈ ∂Uδ(0) for each θ. The composition of the homotopy from wµ0
to the

projection of g into Eµ0
combined with the homotopy h(t, θ) of the the projection of g into Eµ0

into ∂Uδ(0) provides

the desired homotopy of wµ0 into ∂Uδ(0): note that we avoid {γ(·, µ0)} through both homotopies as needed. This

completes the proof of the theorem.

Remark 5.2. To connect our theorem to the discussion in §5.1, assume that E = R3 and that γ(·) is a hyperbolic

periodic orbit in E with nonorientable invariant manifolds. It follows, in particular, that Wu
loc(γ(·)) ∩ Uδ(γ(·)) is a

loop that cannot be contracted to a point in E \ {γ(·)}, and we conclude from Theorem 5.1 that Γ cannot be a 1-loop.

We remark that this scenario was considered in [6], where it was assumed that Γ is a 1-loop: our results show that

this case cannot occur.

6 Application to the Swift–Hohenberg equation

In this section, we apply our results to the Swift–Hohenberg equation, and we present numerical computations that

illustrate our results. Specifically, we identify a regime in the Swift–Hohenberg equation in which there are both

orientable and nonorientable periodic orbits. We also show that the nonorientable periodic orbits cannot lead to

snaking branches but only to isolas: this finding is again corroborated using numerical computations.

We consider the steady-state equation

−(1 + ∂2x)2U − µU + U2 − U3 = 0, x ∈ R, (6.1)

associated with the Swift–Hohenberg equation, where we have set ν = 2. Bifurcating from the rest state U = 0 at

µ = 0 is a family of stationary periodic orbits with zero energy shown in Figure 12. The nontrivial Floquet multipliers

of these solutions are shown in the insets: they lie on the unit circle at onset, then become real and negative, then

switch back to the unit circle before finally becoming real and positive after crossing the fold. In particular, for

a range of values of the parameter µ, there exist two periodic orbits with zero energy, one with positive Floquet

multipliers, and one with negative Floquet multipliers.

Recall that (6.1) has the conserved quantity

H(u, µ) = u21 + u1u3 −
1

2
u22 +

(1 + µ)

2
u20 −

2

3
u30 +

1

4
u40, u = (u0, u1, u2, u3) = (U,Ux, Uxx, Uxxx).

For a fixed small δ > 0, we set

Eµ := {u ∈ R4 : |u| ≥ δ, H(u, µ) = 0}.

We then have the following result on the structure of the zero-energy level sets Eµ of H.

Lemma 6.1. For each µ ≥ 0, the set Eµ is diffeomorphic to S1×S1× [δ,∞) with fundamental group π1(Eµ) = Z×Z.

Proof. We need to characterize the set of u ∈ R4 for which H(u, µ) = 0. Using the expression for H, we obtain

0 = u21 + u1u3 −
1

2
u22 +

(1 + µ)

2
u20 −

2

3
u30 +

1

4
u40 =

(
u1 +

1

2
u3

)2

− 1

4
u23 −

1

2
u22 +

(1 + µ)

2
u20 −

2

3
u30 +

1

4
u40. (6.2)
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Figure 12: Shown is the family of periodic orbits with zero energy emerging from µ = 0 in the Swift–Hohenberg

equation (1.1) with nontrivial Floquet multipliers indicated in the insets. Note that, for a range of values of µ, there

exist both orientable (positive Floquet multipliers) and nonorientable (negative Floquet multipliers) periodic orbits. At

the value of µ = 0.35, the profiles of the periodic orbits are shown: the orientable and nonorientable orbits are shown

in solid and dashed blue, respectively.

Setting

ũ0 := u0

√
(1 + µ)

2
− 2

3
u0 +

1

4
u20, ũ1 := u1 +

1

2
u3, ũ2 :=

1√
2
u2, ũ3 =

1

2
u3, (6.3)

where we note that the function u0 7→ ũ0 is a diffeomorphism for µ ≥ 0, we see that the equation describing Eµ
becomes

ũ20 + ũ21 = ũ22 + ũ23.

Thus, (ũ0, ũ1) and (ũ2, ũ3) live on circles of the same radius r ≥ δ, which proves the claim.

Next, we calculate the element in the fundamental group of Eµ associated with the periodic orbits found in Figure 12.

Lemma 6.2. Assume that γ(·, s) is a continuous family of periodic orbits of (6.1) for µ = µ(s) ≥ 0 with s > 0 so

that (i) H(γ(·, s), µ(s)) = 0, (ii) γ(·, s)→ 0 and µ(s)→ 0 as s→ 0, and (iii) the Floquet multipliers of γ(·, s) at one

has multiplicity two for all s > 0. Then the element [γ(·, s)] corresponding to the periodic orbits in the fundamental

group π1(Eµ(s)) ∼= Z× Z of Eµ(s) is given by (−1,−1) using the coordinates (6.3).

Proof. The periodic orbits that bifurcate from u = 0 when µ = 0 and lie in the zero energy level set are of the form

u = ε(cosx,− sinx,− cosx, sinx) + O(ε2)

for 0 < ε� 1. Using the coordinates (6.3), we find that

ũ = ε

(
1√
2

cosx,
−1

2
sinx,

−1√
2

cosx,
1

2
sinx

)
+ O(ε2)

and we see that both (ũ0, ũ1) and (ũ2, ũ3) traverse a circle clockwise precisely once as x varies through one period.

This proves the claim for 0 < µ � 1. Our assumption on the multiplicity of the trivial Floquet multiplier at one

allows us to continue the branch of periodic orbits in a locally unique way as fixed points of appropriate Poincare

maps. This, together with the fact that the topological type of Eµ does not change by Lemma 6.1, completes the

proof.
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Figure 13: Shown are the location of the periodic orbit γ in Eµ (left panel) and the generators a, b, z of the deformation

retract (S1 ∨ S1)× S1 of M that form a basis of the fundamental group π1(M).

Next, we use Theorem 5.1 to show that symmetric pulses that connect to the nonorientable periodic orbits shown in

Figure 12 cannot snake.

Proposition 6.3. If, in addition to the hypotheses made in Lemma 6.2, the nontrivial Floquet multipliers of γ(·, s)
are negative for some s > 0, then the loop w := Wu

loc(γ(·, s), µ(s)) ∩ Uδ(γ(·, s)) cannot be deformed to a curve in

Uδ(0) inside Eµ(s) \ {γ(·, s)}. In particular, Theorem 5.1 precludes snaking involving these periodic orbits.

Proof. Consider the manifold M := Eµ \ (Uδ(0) ∪ Uδ(γ)). As illustrated in Figure 13, M deformation retracts onto

(S1 ∨ S1) × S1 and the fundamental group π1(M) is therefore given by π1(M) = (Z ∗ Z) × Z and each element in

π1(M) can be written as (w, n), where w is an arbitrary word in the loops a and b that surround γ and 0, respectively,

and n ∈ Z measures the winding number in the z-direction; see Figure 13 for these definitions. In particular, any

curve that lies completely in ∂Uδ(0) ⊂ M is represented by (bm1 , n1) where m1, n1 ∈ Z. If γ is nonorientable, then

the loop w ∈ ∂Uδ(γ) ⊂ M that corresponds to the intersection of the local unstable manifold Wu
loc(γ) with ∂Uδ(γ)

corresponds to an element of the form (am2 , n2) in π1(M), where m2 6= 0 is odd as w links with γ in Uδ(γ) since the

unstable manifold is nonorientable. In particular, w cannot be deformed inM to an element in ∂Uδ(0). This proves

the result.

Remark 6.4. From the proof of Proposition 6.3, we see that there is in fact a barrier to snaking whenever m2 6= 0

in the element (am2 , n2) of π1(M) corresponding to the intersection of the local unstable manifold Wu
loc(γ) with the

boundary ∂Uδ(γ) of a tubular neighborhood of the periodic orbit γ. The integer m2 can be thought of as measuring

the degree to which Wu
loc(γ) twists relative to the ambient manifold M while traversing γ, and hence in the case of

Swift-Hohenberg, we think of Wu
loc(γ) as being twisted whenever m2 6= 0. Proposition 6.3 demonstrates that this is

always the case when Wu
loc(γ) is nonorientable.

Finally, we report on numerical computations of the bifurcation diagrams of stationary localized patterns associated

with the orientable and nonorientable periodic orbits shown in Figure 12. First, we consider the orientable periodic

orbits associated with the upper branch of the curve of periodic solutions and, using auto, find snaking branches of

symmetric solutions: the resulting bifurcation diagram is shown in Figure 14. Note that the solutions near µ = 0.35

exhibit a plateau of roll patterns whose amplitude matches that of the orientable periodic orbit shown in the inset

of Figure 12 for µ = 0.35.

Next, we computed the localized solutions associated with the nonorientable periodic orbits associated with the lower

branch in Figure 12. The results are shown in Figure 15: localized symmetric solutions exist for arbitrary length,

but these are now found to form a family of disjoint isolas rather than a connected snaking branch, in line with the

statements proved in Proposition 6.3. A comparison of the amplitude of the roll patterns for µ = 0.35 with that of

the periodic orbits shown in Figure 12 confirms that the roll pattern matches the nonorientable periodic orbit.
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Figure 14: Snaking of orientable localized rolls in the Swift–Hohenberg equation.
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Figure 15: Isolas of nonorientable localized rolls in the Swift–Hohenberg equation.
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7 Discussion

In this paper, we analyzed localized roll solutions in four-dimensional conservative, reversible dynamical systems

that admit periodic orbits whose stable and unstable manifolds may be orientable or nonorientable, thus extending

previous work [2] in which the orientable case was considered. The orientability of these manifolds is related to

the sign of the nontrivial Floquet multipliers associated with the periodic orbit, and the structure of the set Γ of

intersections between the unstable manifold of the periodic orbits and the stable manifold of the rest state are proved

to be key to understanding the global structure of the associated bifurcation diagrams.

Generically, the set Γ is a one-dimensional curve that lives on a cylinder. We developed topological criteria that

result in different bifurcation diagrams: informally, in order to have snaking of symmetric pulses, Γ should take the

form of a nontrivial loop on this cylinder, whilst, in order to see isolas of symmetric pulses, Γ should take the form of

a null-homotopic loop. We made these arguments precise and proved the existence of isolas and snaking under these

conditions in §4 and also constructed branches of asymmetric pulses, proceeding in a similar manner as in previous

work [2]. We emphasize that these arguments extend in a straightforward way to higher-dimensional systems.

As already mentioned, in order for snaking to occur, Γ needs to correspond to a loop g that can be deformed to the

loop w that corresponds to the intersection of the unstable manifold of the periodic orbit with the boundary of a

fixed neighborhood of the periodic orbit. Since g lives in the stable manifold of the homogeneous rest state, it can be

deformed to a loop that lies entirely near the origin without passing through the periodic orbit. Thus, the same needs

to be true for the loop w, which results in a topological condition for w that is necessary for snaking. We applied

these results to the Swift–Hohenberg equation and showed that nonorientable unstable manifolds of roll patterns that

arise from bifurcations from the rest state cannot satisfy this topological condition, thus precluding snaking. We also

note that more general twisting which violates this topological condition can be defined relative to the fundamental

group of the phase space in Swift–Hohenberg, regardless of orientability. Our numerical computations of bifurcation

diagrams for rolls with orientable and nonorientable unstable manifolds corroborated these findings as they showed

that bifurcation diagrams of localized patterns associated with an orientable periodic orbit exhibit snaking, while

those associated with a nonorientable periodic orbit break up into a sequence of isolas.

We note that the topological barrier we elucidated here is also present in three-dimensional non-conservative systems

such as the one considered in [6], and we expect that snaking is impossible in such a system when the nontrivial

Floquet multipliers of the periodic orbit are negative.

Our topological argument regarding the nonexistence of snaking relies heavily on the structure of the fundamental

group of the energy level set minus the periodic orbit. One advantage of using the fundamental group instead of

the linking argument that we mentioned in §5.1 is that linking of loops is traditionally defined in three-dimensional

Euclidean space, while the fundamental group is defined regardless of the dimension or topology of the underlying

manifold. It is not clear to us though whether there are topological barriers in higher dimensions or whether snaking

can happen regardless of the orientability of the unstable manifolds.

The reason why nonorientability is an obstruction for snaking in the Swift–Hohenberg equation is that the periodic

orbit can be deformed to the neighborhood of the origin as the periodic orbits bifurcates from the origin. It would

be interesting to see whether there are examples where the periodic orbit forms a loop that cannot be deformed to a

neighborhood of the homogeneous rest state: in this case, snaking could not occur if the invariant manifolds of the

periodic orbit are orientable, while nonorientability may make them deformable to the origin.
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