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Localised Patterns
Experiments: Oscillons in Colloidal Suspension

[Lioubashevski et al. 99]

Numerics: Stationary solutions of 2D Swift-Hohenberg Equation

[Lloyd, Sandstede, Avitabile, Champneys 08]



Motivation

• GOAL: Determine sufficient conditions that guarantee “snaking” in the
formation of localized patterns

Ut = −(1 + ∂2
x )

2U − µU + νU2 − U3
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Fronts vs Localised Patterns

One way to view localised patterns:
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• Heteroclinic connection: front

• Homoclinic orbit: localised pattern

Main idea: Assume we know bifurcation diagram for fronts; use it to
determine that of localised patterns



Set-up in 1D

Main example: Swift-Hohenberg

0 = −(1 + ∂2
x )

2U − µU + νU2 − U3

Stationary solutions solve first-order ODE: u = (U,Ux ,Uxx ,Uxxx)

ux = f (u, µ), u(x) ∈ R4

Key properties:

• Conservation of energy: ∃ H such that

d

dx
H(u(x), µ) = 0

• Reversibility: x → −x

• Background state: u(x) ≡ 0, f (0, µ) = 0, H(0, µ) = 0

• Periodic orbits: γ(x , µ), symmetric, H(γ, µ) = 0



Description of Results
Assume bifurcation structure of fronts is known:

Hypothesis: Fronts exist for µ = z(ϕ) for an appropriate function z .



Description of Results
Bifurcation structure of fronts determines that of localised patterns:

Leads to snaking curves:



Description of Results
How to see this:

• Bifurcation equations:

Symmetric: µ = z(L + ϕ) +O(e−ηL)

Asymmetric: z(L + ϕ) = z(L− ϕ)

• Use to trace out snaking curve



2D Patterns

Analysis of 2D patterns localised in x , periodic in y :

0 = −(1 +&)2U − µU + νU2 − U3 → ux = f (u, µ)

Infinite dimensional dynamical system:

u(x) = (U,Ux ,Uxx ,Uxxx)(x) ∈ H3(S1)× H2(S1)× H1(S1)× L2(S1)

For each x , u is periodic function of y .



Open problems and future directions
• Stability of localised patterns: Numerics [Burke, E Knobloch]

• Analysis of 2D patches:

• Boundary effects in bifurcations: Taylor vorticies

[R Tagg, CU Denver] [A Weisberg, Princeton]


