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Abstract
Time-periodic shocks in systems of viscous conservation laws are shown to be non-
linearly stable. The result is obtained by representing the evolution associated to
the linearized, time-periodic operator using a contour integral, similar to that of
strongly continuous semigroups. This yields detailed pointwise estimates on the
Green’s function for the time-periodic operator. The evolution associated to the em-
bedded zero eigenvalues is then extracted. Stability follows from a Gronwall-type
estimate, proving algebraic decay of perturbations.

Introduction
Consider a parabolic system of conservation laws

ut + F (u)x = uxx, x ∈ R, u ∈ Rn. (1)

Recently, it has been shown that time-periodic shocks of the form

u(x, t) = ūper(x− ct, t), lim
ξ→±∞

ūper(ξ, t) = u±, ūper(ξ, t + 2π) = ūper(ξ, t),

can result from Hopf bifurcations of stationary shocks [TZ08, SS08]. Physically,
their study is motivated by detonation waves. We focus on Lax shocks, but the
results can be extended to over-, under-compressive, and mixed type waves.
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Figure 1: Both stationary and time-periodic viscous shocks, shown in a co-moving
frame, have asymptotic limits u±. On the right, the interior can vary periodically.

GOAL: Prove, under appropriate spectral stability assumptions, that solutions of
the form ūper are nonlinearly stable.

Assume, WLOG, that c = 0. Linearization about ūper shows that perturbations satisfy

vt = L(t)v + Q(v, vx)x, L(t)v = vxx − (Fu(ū
per(x, t))v)x. (2)

Mathematical challenges:

• Time-dependent linear operator; no standard spectral or semigroup theory

• No spectral gap: two zero eigenvalues embedded in continuous floquet spectrum

Strategy:

• Develop contour integral representation of linear evolution, similar to semigroups

• Define time-periodic Green’s function and obtain pointwise estimates

• Prove nonlinear stability via integral representation of solutions

Background: stationary shocks
Consider first stationary shocks of the form

u(x, t) = ūst(x− ct), lim
ξ→±∞

ūst(ξ) = u±.

Assume, WLOG, that c = 0. Linearization about ūst shows that perturbations satisfy

vt = Lv + Q(v, vx)x, Lv = vxx − (Fu(ū
st(x))v)x.

Assume the spectrum is as in figure 2, with simple zero eigenvalue and eigenfunc-
tion ūst

x . The linear evolution can be understood by using the Laplace transform:

v̂(x, λ) =

∫ ∞
0

e−λtv(x, t)dt

vt = Lv =⇒ λv̂ − v0 = Lv̂

Solve with the resolvent operator and invert the Laplace transform to obtain the
standard contour integral representation of the semigroup:

v(t) = etLv0 =
1

2πi

∫
Γ

etλ(λ− L)−1v0 dλ.
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Figure 2: Spectrum Σ for stationary shocks and the contour Γ, used in (4).

The resolvent kernel, G(x, y, λ), satisfies

λG− δ(· − y) = LG, ((λ− L)−1v0)(x) =

∫
R
G(x, y, λ)v0(y)dy (3)

and leads to the pointwise Green’s function

G(x, t, y) =
1

2πi

∫
Γ

etλG(x, y, λ)dλ. (4)

By expanding G(x, y, λ) near λ = 0, this representation has been used to obtain
large-time asymptotics for G(x, t, y) and prove stability of stationary shocks [HZ06].

Contour integral representation of the linear evolution
To study time-periodic shocks, we seek a representation similar to (4). Because L(t)
is time-periodic, we use the Floquet spectrum, defined as

Σ = {σ ∈ C : e2πσ ∈ spectrum of Φ2π},

where Φ2π is the time 2π map for linear flow. The eigenvalue equation is vt = L(t)v
for t ∈ (0, 2π), and v(2π) = e2πσv(0). Equivalently, u(t) = eσtv(t), where u solves

σu + ut = uxx − (Fu(ū(x, t))u)x, u(x, t) = u(x, t + 2π) (5)

and is spatially localized. We assume the spectrum is as in figure 3 (recall the
nonuniqueness of the floquet spectrum), with a double eigenvalue at zero and
eigenfunctions ūper

x and ūper
t .
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Figure 3: Spectrum Σ for time-periodic shocks and the contour Γ, used in (6).

Take the Laplace transform of (2) and utilize the Fourier expansion

Fu(ū
per(x, t)) =

∑
k∈Z

Fk(x)eikt

to obtain

λv̂(x, λ)− v0(x) = ∂2
xv̂(x, λ)− ∂x

(∑
k∈Z

Fk(x)v̂(x, λ− ik)

)
.

The equations at λ1 and λ2 couple only if λ1 − λ2 ∈ iZ. To exploit this, define σ via

λ = σ + in, − 1

2
< Im(σ) ≤ 1

2
, n ∈ Z

v̂n(x, σ) = v̂(x, σ + in),

which is motivated by [CCL04] and similar to a Bloch wave decomposition. Thus,

(σ + in)v̂n − v0 = ∂2
xv̂

n − ∂x

(∑
k∈Z

Fkv̂
n−k

)

If we could prove the existence of a solution with a well defined Fourier series,∑
n∈Z e

intv̂n(x, σ), then we would have the contour integral representation

v(x, t) =
1

2πi

∫ µ+i∞

µ−i∞
eλtv̂(x, λ)dλ =

1

2πi

∫ µ+i/2

µ−i/2
eσt
∑
n∈Z

eintv̂n(x, σ)dσ. (6)

To show that such a solution exists, we will use exponential dichotomies, which
play the role of the resolvent kernel in the stationary case.

Writing (5) as a first order system, we see that the equation corresponding to (3) in
the time-periodic case is

∂xG =

(
0 1

∂t + σ + Fuu(ū)[ūx, ·] Fu(ū)

)
G + ∆, ∆(x− y, t) =

(
0

δ(t)δ(x− y)

)
,

which we pose on the space Y = H1+ε(S1)×H1/2+ε(S1).

Using the exponential dichotomy, Φs and Φu, of the above equation [SS01] and a
Birman-Schwinger type argument, we prove the solution can be written

G(x, t, y, σ) ∼
∫ x

−∞
Φs(x, t, z, σ)∆(z − y, t)dz +

∫ x

+∞
Φu(x, t, z, σ)∆(z − y, t)dz.

The dichotomy yields solutions that are asymptotic to the stable and unstable sub-
spaces of the asymptotic matrices, which, without the ∂t, are(

0 1
σ Fu(u±)

)
. (7)

These are the same for stationary shocks and determine the leading order temporal
decay of perturbations. Therefore, the large-time behavior for both types of shocks
is essentially the same.
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Figure 4: The so-called spatial eigenvalues of (7). Those circled correspond to the
decaying directions, picked out by the exponential dichotomy. By (9), the weak

eigenvalues, denoted by µ(σ), determine the leading order decay of perturbations.

Using the theory of exponential dichotomies in [SS01], we prove that the following
representation, which should be compared with (4), is well defined:

G(x, t, y) =
1

2πi

∫ µ+i/2

µ−i/2
eσtG(x, t, y, σ)dσ =

1

2πi

∫ µ+i/2

µ−i/2
eσt
∑
n∈Z

eintĜn(x, t, y, σ)dσ. (8)

Pointwise estimates for the Green’s function
We use the dichotomy to obtain an expansion of G(x, t, y, σ), for σ ∼ 0:

G(x, t, y, σ) ≈ −1

σ
ūper
x (x, t)

∑
a−in

cin,1e
−µ−in(σ)y − 1

σ
ūper
t (x, t)

∑
a−in

cin,2e
−µ−in(σ)y

+



∑
a+
out,a

−
in

c1e
µ+
out(σ)x−µ−in(σ)y for y ≤ 0 ≤ x∑

a−out,a
−
in,out

c2e
µ−out(σ)x−µ−in,out(σ)y for x ≤ y ≤ 0

∑
a−in,out,a

−
in

c3e
µ−in,out(σ)x−µ−in(σ)y for y ≤ x ≤ 0

(9)

The constants a±in,out are the characteristic speeds associated to the incoming and
outgoing directions at x = ±∞, and µ±in,out(σ) denote the corresponding weak
spatial eigenvalues in figure 4. The poles at σ = 0 correspond to the 0 eigenvalues.

Inserting this expansion into (8), we obtain an expansion of the Green’s function as
t→∞ of the form G(x, t, y) = E1(x, t, y) + E2(x, t, y) + G̃(x, t, y), where

E1(x, t, y) = ūper
x (x, t)e1(y, t), E2(x, t, y) = ūper

t (x, t)e2(y, t)

ei(y, t) ≈
∑
a−in

cin

(
errfn(

y + a−int√
4t

)− errfn(
y − a−int√

4t
)

)
, (10)

and

G̃(x, t, y) ≈
∑
a−out

c1√
4πt

e−
(x−y−a−outt)

2

4t +
∑
a−out,a

−
in

c2√
4πt

e−
(x−a−out(t−|y/a

−
in|))

2

4t

+
∑
a−in,a

+
out

c3√
4πt

e−
(x−a+

out(t−|y/a
−
in|))

2

4t , (11)

which is essentially the same as the expansion in [HZ06].

Intuition behind expansion:

• Zero eigenvalues associated to incoming directions; perturbation moves towards
shock and determines to which translate (time and space) the solution converges

• As t→∞, E1(x, t, y) ∼ ūper
x (x) · 1 (see figure 5); product of the eigenfunction and

its adjoint, which is just a constant; like a generalized spectral projection

• Leading order decay determined by G̃; consists of Gaussians that move along out-
going characteristics (see figure 5); determined by the weak eigenvalues (see fig-
ure 4), which are related to the continuous spectrum at the origin.
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Figure 5: Left: The term e1 in (10) converges to the constant 1, the adjoint
eigenfunction for spatial translation. Right: The 3 pieces of G̃ in (11) track the

motion of the perturbation along the characteristics in the 3 depicted ways.

Nonlinear Analysis
The following Ansatz for equation (1) allows one to exploit the above expansion

u(x, t) = ūper(x− ρ(t), t− τ (t)) + v(x− ρ(t), t)

vt = L(t)v + Q(v, vx)x + ρ̇(ūx + vx) + τ̇ ūt + (O(τ )v)x.

Upon writing the integral form of solutions, appropriate choices of ρ(t) and τ (t)
remove the non-decaying terms, E1,2. Thus, the evolution of the perturbation v is
governed only by the decaying term, G̃, allowing one to prove nonlinear stability.

Conclusions
The above analysis leads to the following theorem:

Theorem [BSZ] Under appropriate spectral stability assumptions, the profile ūper

is nonlinearly asymptotically stable with respect to initial perturbations u0 satisfying
‖(1+ | · |2)3/4u0(·)‖H3 ≤ ε sufficiently small. More precisely, there exist functions (ρ, τ )(t)
and constants (ρ∗, τ ∗) such that

||u(·, t)− ūper(· − ρ∗ − ρ(t), t− τ ∗ − τ (t))||Lp ≤ Cε(1 + t)−
1
2(1−1

p), 1 ≤ p ≤ ∞
|(ρ∗, τ ∗)| + (1 + t)1/2|(ρ, τ )(t)| ≤ Cε,

where u(x, t) is the solution to (1) satisfying u(x, 0) = ūper(x, 0) + u0(x).

Outlook
Nonlinear stability of other types of time-periodic solutions could be analyzed using
similar techniques. For example, sources are solutions to reaction-diffusion systems
that are spatially asymptotic to two different spatially periodic solutions:

Defect Wave TrainWave Train

cg
+

gc−

In that case, additional difficulties would result from the spatially periodic, rather
than constant, asymptotic matrices in (7). Also, the conservation-law structure of
(1) would be absent, and this is crucial for the nonlinear estimates used above.
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