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Motivation

Time-periodic patterns in reaction-diffusion systems:

Numerical simulation:
reaction-diffusion equation
us = Dug + f(u)

Experiment: chemical reaction
chlorite-iodite-malonic-acid (CIMA)

[Perraud et. al., Phys. Rev. Lett. 1993]



Motivation

Diagram of a source:

Perturbations Perturbations

u(x,t) t

Defect

Importance in applications:

e Widely observed in experiments and numerics

e Defect created spontaneously; not caused by inhomogeneity
e Organize dynamics in rest of spatial domain

Mathematical interest:

Defect
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e Linear stability: embedded zero eigenvalue; time-periodic linear operator

e Nonlinear stability: weighted spaces don't work, no current methods apply



Linear stability overview

uy = F(u)
Stability Ansatz:
ult)=o+v(t) — wve=Ff(0)v+ N(v)
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Stability of sources

Linear stability: two key issues
e Continuous spectrum up to imaginary axis; embedded zero eigenvalue
e Time-periodic operator; no Floquet theory

C
up = Dugy + f(u)
vy = Duvgg + fu(t(z,t))v+N(v)
L(t)w

Nonlinear stability:
e Source: perturbations moving outward
e Current methods can't be applied

Focus on linear issues: time-periodic shocks
e Same linear issues
e Nonlinearity can be dealt with



Time-periodic shocks

Parabolic system of conservation laws:
U = U — F(U)x, u(t) € X, u(x,t) e RY

Time-periodic shock: T(x, t), limx— 10 O(x, t) = ux, U(x,t) = u(x, t + 2m)
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Lax shock:

e Eigenvalues af < ... < ai of F,(u+) are real, distinct, nonzero.

e There is a number p € {1,..., N} so that
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ay_p, <0<ay_pi1, ay_pi1 <0< ay_pp0



Time-periodic shocks

Uy = U — F(u)x
Analyze stability: u(x,t) = u(x,t) + v(x,t)

ve = L(t)v + N(v)x, L(t)v = vix — (Fu(T(x, t))v)x

Assume spectrum of L(t):

e Double zero eigenvalue; eigenfunctions T, and

e Motivation: Hopf bifurcation
[Texier, Zumbrun 08], [Sandstede, Scheel 08]

Stability: solution converges to space and time translate of wave

lim u(x,t) =0(x—q",t—71")
t—oo



Time-Periodic Shocks: statement of result

Theorem [B., Sandstede, Zumbrun 08] Under appropriate spectral stability
assumptions, the profile & is nonlinearly asymptotically stable with respect to
perturbations vo with |[(1 + | - [)*/?vo(:)||ss < €. Also, 3 g(t),7(t),q", 7" so
that

_ " . Ce
HU(-7 t) - U(~ —q — q(t)7 t—7 — T(t))HLP(]R) S ﬁ
1+12:0-%)
for 1 < p < oo, where u is the solution to the conservation law with initial data
uo(x) = 1(x,0) + w(x), and

(" 7))+ (L + £)%|(q, 7)(2)] < Ce.

Proof:
i) Develop a contour integral representation of linear evolution and derive
pointwise bounds
ii) Extract neutral behavior due to zero eigenvalues
iii) Use fixed-point iteration scheme to prove nonlinear stability



Sketch of proof: i) contour integral and pointwise bounds

Recall contour integral for time-independent operators:
vi = Lv, v(0) =w

e Laplace transform: 0(x,\) = [~ e ™ v(x, t)dt
e Solve with resolvent
MN-—w=L) — t=0L-L)"w

e Invert Laplace transform

1 _
W(t) = e tvo = %/ref*(x — L) wdA
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Sketch of proof: i) contour integral and pointwise bounds

Pointwise estimates via resolvent kernel, G(x, y, A):

AG—6(-—y)=LG

so that
(A= £) " wo)(x) = / G(x,y, \vo(y)dy

This leads to the Green's function, G(x, t,y):

g(x> t,y) = %/ret)‘G(X,y,)\)d)\

V(x, 1) = / G(x. t.y)w(y)dy

Key points:
e Resolvent kernel still defined pointwise inside continuous spectrum

e Can deform contour I into spectrum to obtain sharp pointwise bounds

e Stationary shocks: [Zumbrun, Howard 98]



Sketch of proof: i) Floquet spectrum for contour integral

Floquet spectrum: ®,, is time 2w map for linear flow
Y ={0€C:e™ ¢ spectrum of .}

Eigenvalue equation: v; = L(t)v for t € (0,27), v(2r) = €*™v(0)

Equivalently, v(t) = e”*u(t), u is spatially localized and solves
ou+ uy = ue — (Fu(T(x, t))u)x, u(x,t) = u(x,t+2m)

Two eigenfunctions for o = 0: Tx(x, t) and T:(x, t)




Sketch of proof: i) definition of “resolvent kernel”

Recall: Green's function solved inhomogeneous eigenvalue equation:
(=00 =w, 90 = [ Gl Nw(dy
R

Floquet eigenvalue equation:

ov 4+ v = vix — (Fu(T)v)x, v(x,t) =v(x,t+ 2m)

Write as first-order spatial dynamical system:

Va = (8t+a+ Iguu(a)[ux,~] Fiu)) v V= <\\//>

Work in Y = H'(S*) x HY/?(SY).
Inhomogeneous equation:

V= (a ot P ] Futm) e



Sketch of proof: i) exponential dichotomies

lll-posed equation: Uy = (g é) U has eigenvalues im, keZ
t
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Define exponential dichotomies on Y [Sandstede and Scheel 01]:
0™ = A(x, 0, 0)0%",  ®%(x,y,0) € L(Y,Y)
|0°(x,y,0)V]y < Ke " |V]y, for x >y
©(x,y,0)V]y < Ke " V]y, for y > x

Solution operators in forwards and backwards “time”



Sketch of proof: i) definition of “resolvent kernel”

“Resolvent kernel” defines solutions, for arbitrary F, to

Vu = (at to+ fgw(u)[ux, ] Fin)) V+ 7

Solve using exponential dichotomies [Sandstede, Scheel 01]:

X

Vieo) = [ " 0 (xy, o) Fly)dy + [ o trarmy

“+o00

—o0

Work in Y = H*(S') x HY?(S?), so well defined Fourier series:

V(x,o,t) = Z eV (x,0)

This will give convergence of the contour integral.



Sketch of proof: i) contour integral

Recall time-independent case:

G — (- — y) = LG, Q&Jm%=£;/€“ﬂ&%AWA
r

Need to solve:

@G—<a+a+admmd awDG+A

for

A(x,t) = <5(t)5(0x - y))

Green's function:

1 ptioco \t
g(X7t7y):% € G(Xay7)‘)d)‘

p—ico

G(x,y,o,t) solves (x)




Sketch of proof: i) pointwise bounds

Green's function:
i

1 u+2 ot
Gx.ty) =50 [ € Glxy.0)do

ht

Meromorphically extend “resolvent
kernel” near o ~ 0:

G(x,y,0,t)~A+ B

o A:
— Zero eigenvalues
— Similar to a spectral projection
e B:
— Continuous spectrum
— Related to weak spatial decay of G



Sketch of proof: i) B, continuous spectrum

Recall G solves:

axc;:( 0

1
O: + 0 + Fuu(0)[x, ] Fu(ﬂ)) Gra

Asymptotic limits of operator:

(atia a(L)) - (3 Fu<1ui>)

Spatial eigenvalues for o ~ 0:

C C
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X [ ] X [}
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—0o0 +oc

e Weak decay becomes weak growth as o crosses into essential spectrum
e Leads to leading order decay of Green's function



Sketch of proof: i) A, eigenvalues

Meromorphically extend “resolvent
kernel” near o ~ 0:

G(x,y,o,t)~A+ B

A: eigenvalues, similar to a spectral projection
1_ 1_
AR TG (), ) + B D))

1_ o/a_ 1_ o/a_
=SB0 ) 2 a4 a0 Y ()
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Sketch of proof: i) pointwise bounds

Invert Laplace transform:

1 [rts

g(Xa t7y) = 277” . eth(X7y7Ua t)dO’
h—
1 [rts

= — ) e(rt(A—F B)do'

=3
= [&(x t,y) + E(x, t, )]+ G(x, t,y)
—_——

A B




Sketch of proof: i) pointwise bounds
Invert Laplace transform:

G(x,t,y)

Eigenfunction terms:

gilx,ty) = Tilxt)m(y,t)
_ ot [ YAt ) o [y a3t
mily ) Z{ ' (wm) f ( 4(r+1)>

2
e
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G(x,y,o,t)do
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Sketch of proof: i) pointwise bounds

Invert Laplace transform:

1 #+§'

G(x, t,y) P ’_ eUtG(X,y,U, t)do
H—3

1 [eth

= — e’ (A+ B)do
27 i

2

= [&(xty)+ &t y)]+G(x t,y)
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Sketch of proof: ii) neutral behavior, iii) nonlinear stability

Remove neutral part: define time-dependent phase shift for space and time

u(x, t) = a(x — q(t), t — 7(t)) + v(x, 1)
ve = L(t)v + N(v)x + §(0x + vi) + 70 + (O(T)v)x

Using variation of constants, solution must satisfy: G = tym + Trm2 + G

_/Rmvodyjtfot/R(m)y(N+c‘:v)dyds+/Ot/R(m)y(O(T)V)dyds
—/Rmvoder/Ot/R(m)y(N+év)dyds+/Ot/R(7T2)y(O(T)V)dyd5
vxit) = [ Gundy - / [ G+ avyayes - / [ 80
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Set up fixed point iteration scheme to prove existence and convergence result.



Summary and Extensions

Goal: prove nonlinear stability of time-periodic shocks
u(x,t) =o(x,t) + v(x,t), lim u(x,t)=0(x—q",t—7")
t—o0
Mathematical issues overcome

e Continuous spectrum up to imaginary axis; embedded zero eigenvalue
e Time-periodic operator; no Floquet theory

C

v = L(H)v + N(v)s

Extensions:
e Non-Lax shocks
e Real viscosity, ux — (B(u)uyx)x
e Sources...



Outlook: sources in reaction-diffusion systems

us = Dus + f(u)

Source:
Perturbations Perturbations
-— B —
u(x,t)
L. \l\\\l\\\l\\l\iﬂ \ SI\I\\I\I\\I\I\
Defect

Mathematical Issues:

e Similar spectral and linear stability issues

Defect

\
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e Spatial end states are spatially-periodic: spatial Floquet spectrum

e No conservation-law structure, F(u)x; used in nonlinear estimates



