Quiz 5

NAME:

Question 1.(5 points.) Find the third-degree Taylor polynomial at 0 for $f(x)=\ln (1+2 x)$.

Step 1 - Find Derivatives:
$f^{\prime}(x)=\frac{2}{1+2 x}, f^{\prime \prime}(x)=-\frac{4}{(1+2 x)^{2}}$ AND $f^{\prime \prime \prime}(x)=\frac{16}{(1+2 x)^{3}}$.
Step 2 - Find derivatives at 0:
$f(0)=0, f^{\prime}(0)=2, f^{\prime \prime}(x)=-4$ AND $f^{\prime \prime \prime}(x)=16$.
Step 3 - Find coefficients of Taylor polynomial:
$a_{0}=0, a_{1}=2, a_{2}=-2$ AND $a_{3}=\frac{8}{3}$.
Step 4 - Write down the Taylor polynomial:
$p_{3}(x)=2 x-2 x^{2}+\frac{8}{3} x^{3}$.

Question 2.(5 Points.) Given that the interval of convergence of the TAylor series $\ln (1-x)=-\sum_{n=1}^{\infty} \frac{1}{n} x^{n}$ at 0 is $-1<x<1$, find the Taylor Series of function $\ln \left(2-2 x+x^{2}\right)$ at 1 and interval of convergence.
$\ln \left(2-2 x+x^{2}\right)=\ln \left(1+(x-1)^{2}\right)=\sum_{n=1}^{\infty} \frac{1}{n}\left(-(x-1)^{2}\right)^{n}=\sum_{n=1}^{\infty} \frac{1}{n}(-1)^{n}(x-1)^{2 n}$ WHERE THE INTERVAL OF CONVERGENCE IS $-1<-(x-1)^{2}<1$, WHICH IS $0<x<2$.

