Quiz 6

NAME:

Question 1.(4 points.) Find the general solution of $y^{\prime}=(2 x+4)(y-3)$ using the method of "Separation of Variables".

$$
\frac{1}{y-3} y^{\prime}=2 x+4
$$

Then, by the theorem of separation of variables,

$$
\begin{gathered}
\int \frac{1}{y-3} d y=\int 2 x+4 d x \\
\ln |y-3|=x^{2}+4 x+C \\
y=C e^{x^{2}+4 x}+3
\end{gathered}
$$

Question 2.(4 points.) Find the general solution of $y^{\prime}=(2 x+4)(y-3)$ Using the method for solving "First-Order Linear Differential Equations".

Standard Form:

$$
y^{\prime}-(2 x+4) y=-3(2 x+4)
$$

Integrating factor: $I(x)=e^{\int-(2 x+4) d x}=e^{-x^{2}-4 x}$
Multiply both sides by $I(x)$ and integrate both sides:

$$
\begin{gathered}
e^{-x^{2}-4 x} y=-3 \int e^{-x^{2}-4 x}(2 x+4) d x=3 e^{-x^{2}-4 x}+C \\
y=-3 \int e^{-x^{2}-4 x}(2 x+4) d x=3+C e^{x^{2}+4 x}
\end{gathered}
$$

Question 3. (2 points.) Using the result for Question 1 or Question 2, FIND THE PARTICULAR SOLUTION OF $y^{\prime}=(2 x+4)(y-3)$ SATISFYING $y(0)=2$.

Plugging $y(0)=2$ into the general solution, you'll have

$$
2=3+C e^{0}
$$

This implies $C=-1$, so particular solution is $y=3-e^{x^{2}+4 x}$

