Lecture on July 10th, 2018
 Some Special Markov Chains

1 Markov Chains Defined by Random Variables

- Ex: independent r.v. $X_{n}=\xi_{n}$, where ξ_{n} 's are i.i.d. In this case, the transition matrix doesn't depends on initial states.
- Ex: Successive Maxima. $X_{n}=\max \left\{\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right\}$ for $n \geq 1$ and $X_{0}=0$. Check this is a M.C.
- Ex: Partial Sums. $X_{n}=\sum_{i=1}^{n} \xi_{i}$, for $n \geq 1$ and $X_{0}=0$. Check that this is a M.C.

2 Gambler's Ruin Problem

- Assume 0 and N are two absorbing states. Let u_{i} be the probability of reaching state 0 starting at fortune i.
- By first step analysis,

$$
\left\{\begin{array}{l}
u_{0}=1, u_{N}=0, \\
u_{i}=p u_{i+1}+q u_{i-1}, \quad i=1,2, \cdots, N-1
\end{array}\right.
$$

- After some calculations, ...

$$
u_{i}= \begin{cases}\frac{N-i}{N}, & \text { if } p=q \\ \frac{\left(\frac{q}{p}\right)^{i}-\left(\frac{q}{p}\right)^{N}}{1-\left(\frac{q}{p}\right)^{N}} . & \text { if } p \neq q\end{cases}
$$

- In the limiting case as $N \rightarrow \infty$,

$$
u_{i}= \begin{cases}1 & \text { if } p \leq q \\ \left(\frac{q}{p}\right)^{i} . & \text { if } p>q\end{cases}
$$

3 Success Runs

A special case: Consider successive trials with 2 outcomes: S, F. X_{n} represents the length of success runs at current time n. Then we have only two cases to update X_{n} 's.

- If next trial success (with probability q): $X_{n+1}=X_{n}+1$
- If next trial fails (with probability p): $X_{n+1}=0$

