Lecture on July 10th, 2019
 Some Special Markov Chains

1 Two-State Model - See Chap 3.5.1

- Let $\left\{X_{n}\right\}$ be a MC with

$$
P=\left(\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right)
$$

where $0<a, b<1$.

- If $1-a=b, X_{n}$'s are i.i.d.
- If $1-a \neq b$, distribution of X_{n+1} depends on the value of X_{n}.
- Claim (Check by induction):

$$
P^{(n)}=\frac{1}{a+b}\left(\begin{array}{ll}
b & a \\
b & a
\end{array}\right)+\frac{(1-a-b)^{n}}{a+b}\left(\begin{array}{cc}
a & -a \\
-b & b
\end{array}\right) .
$$

- As $n \rightarrow \infty$,

$$
\lim _{n \rightarrow \infty} P^{(n)}=\frac{1}{a+b}\left(\begin{array}{ll}
b & a \\
b & a
\end{array}\right) .
$$

- The long-time limiting distribution doesn't depend on the initial distribution!

2 Markov Chains Defined by Random Variables

- Ex: independent r.v. $X_{n}=\xi_{n}$, where ξ_{n} 's are i.i.d. In this case, the transition matrix doesn't depends on initial states.
- Ex: Successive Maxima. $X_{n}=\max \left\{\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right\}$ for $n \geq 1$ and $X_{0}=0$. Check this is a M.C.
- Ex: Partial Sums. $X_{n}=\sum_{i=1}^{n} \xi_{i}$, for $n \geq 1$ and $X_{0}=0$. Check that this is a M.C.

3 Gambler's Ruin Problem

- Assume 0 and N are two absorbing states. Let u_{i} be the probability of reaching state 0 starting at fortune i.
- By first step analysis,

$$
\left\{\begin{array}{l}
u_{0}=1, u_{N}=0 \\
u_{i}=p u_{i+1}+q u_{i-1}, \quad i=1,2, \cdots, N-1
\end{array}\right.
$$

