Lecture on July 11th, 2019 Some Special Markov Chains II

1 Gambler's Ruin Problem (See 3.5)

- Assume 0 and N are two absorbing states. Let u_{i} be the probability of reaching state 0 starting at fortune i.
- By first step analysis,

$$
\left\{\begin{array}{l}
u_{0}=1, u_{N}=0, \\
u_{i}=p u_{i+1}+q u_{i-1}, \quad i=1,2, \cdots, N-1
\end{array}\right.
$$

- After some calculations, ...

$$
u_{i}= \begin{cases}\frac{N-i}{N}, & \text { if } p=q \\ \left.\left.\frac{(q}{p}\right)^{i}-\frac{q}{p}\right)^{N} \\ 1-\left(\frac{q}{p}\right)^{N} & \text { if } p \neq q\end{cases}
$$

- In the limiting case as $N \rightarrow \infty$,

$$
u_{i}= \begin{cases}1 & \text { if } p \leq q \\ \left(\frac{q}{p}\right)^{i} . & \text { if } p>q\end{cases}
$$

2 Success Runs (See 3.5)

A special case: Consider successive trials with 2 outcomes: S, F. X_{n} represents the length of success runs at current time n . Then we have only two cases to update X_{n} 's.

- If next trial success (with probability q): $X_{n+1}=X_{n}+1$
- If next trial fails (with probability p): $X_{n+1}=0$

3 Renewal Process (See 3.5.4)

- Suppose the lifetime for each light bulb is i.i.d. positive integer valued r.v. Each light bulb is replaced by a new one once it burns out. Let X_{n} to be the age of light bulb currently in service at time n .
- Find the transition probabilities.

4 Branching Process (See 3.8)

- An individual at the end of lifetime has random number of offsprings ξ taking non-negative integer values. All offsprings are independent of each other and follow the same distribution to propagate species. Let X_{n} be the size of population at time $n \geq 1$ and $X_{0}=1$.
- Find the mean and variance of X_{n} using conclusions in partial sums.

