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We study the recently observed phenomena of torus canards. These are a higher-dimensional
generalization of the classical canard orbits familiar from planar systems and arise in fast-slow
systems of ordinary differential equations in which the fast subsystem contains a saddle-node
bifurcation of limit cycles. Torus canards are trajectories that pass near the saddle-node and
subsequently spend long times near a repelling branch of slowly varying limit cycles. In this article,
we carry out a study of torus canards in an elementary third-order system that consists of a rotated
planar system of van der Pol type in which the rotational symmetry is broken by including a phase-
dependent term in the slow component of the vector field. In the regime of fast rotation, the torus
canards behave much like their planar counterparts. In the regime of slow rotation, the phase
dependence creates rich torus canard dynamics and dynamics of mixed mode type. The results of
this elementary model provide insight into the torus canards observed in a higher-dimensional
neuroscience model.VC 2011 American Institute of Physics. [doi:10.1063/1.3592798]

Rhythms, and the transitions between different types of
rhythms, are central objects of study in biology, chemis-
try, and neuroscience. Often these systems exhibit multi-
ple time scales, resulting in so-called fast-slow systems.
Rhythms in fast-slow systems typically consist either of
alternating fast and slow segments or of fast oscillations
whose amplitudes are modulated on longer time scales.
In this article, we study the latter, specifically slow ampli-
tude modulation of rapid oscillations in fast-slow systems
which possess a family of attracting limit cycles and a
family of repelling limit cycles. Normally, the attracting
limit cycles are of primary importance, since they are the
attractors for these systems. However, the repelling limit
cycles also play crucial roles, in that they serve as boun-
daries between the basins of attraction of different attrac-
tors. Also, repelling limit cycles turn out to be crucial to
the recently discovered phenomenon of torus canards.
Torus canards spend long times near slowly varying fam-
ilies of attracting limit cycles and then near slowly vary-
ing families of repelling limit cycles, in alternation. They
are the natural analog to the classical canards, which
arise in the van der Pol equation and other planar, bista-
ble models. The key ingredient for torus canards to occur
is that the families of attracting and repelling limit cycles
meet in a fold curve, also referred to as a saddle-node
bifurcation of limit cycles. Torus canards have been
observed in a mathematical model of action potential
generation in Purkinje cells. Stable torus canard solu-
tions exist for open sets of parameter values, correspond
to amplitude-modulated spiking of the neural dynamics,
and arise exactly in the transition region between rapid
spiking and bursting in this model. Torus canards may
appear in other bistable systems relevant to science and

engineering, such as in nonlinear optics, and may further
understanding of mixed-mode oscillations (MMO) and
the dynamics in the transition region between different
types of oscillations.

I. INTRODUCTION

Canards are ubiquitous in systems exhibiting multiple
time scales, see Refs. 2, 3, 6, 8, 14, 17–19, 27, 36–38, 43, 44,
and 53 for some of the references. They were originally dis-
covered3,14 in the van der Pol equation and arise generically
when systems undergo Hopf bifurcations from spiral fixed
points to full-blown periodic orbits of relaxation oscillation
type. These canard solutions are periodic orbits that exist in
narrow intervals of parameter values near the Hopf bifurca-
tion point, and, most interestingly, these orbits spend long
times near repelling slow manifolds.2,13,18,37 Other planar
systems possessing canards include the FitzHugh-Nagumo
equation,29 the Bonhoffer-van der Pol equation,5 and the Kal-
dor equation.25

Canards also play central roles in systems exhibiting
mixed-mode oscillations, see Refs. 7, 8, 12, 19, 26, 27, 44,
and 53, as well as articles in the focus issue of Chaos.7 Pri-
mary and secondary canards in these systems are the bounda-
ries demarcating the regimes corresponding to periodic orbits
with different numbers of small-amplitude oscillations (SAO)
and large-amplitude oscillations (LAO). For example, these
equations possess periodic orbits with a certain number of
SAO followed by one LAO, as well as periodic orbits with
the same number of SAO followed by two LAO, and the
boundary between these two parameter regimes is given by a
family of canards. Moreover, it is worth noting that these
canards must exist in order for the property of continuous
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dependence of solutions on parameters to be preserved, just
as for the van der Pol equation.3,14

In essentially all planar systems in which canards are
known to occur, the critical underlying structure is that of a
curve of attracting fixed points in the fast subsystem which
merges with a curve of repelling fixed points at a fold (a.k.a.,
saddle-node) bifurcation. Indeed, in the van der Pol and other
bistable planar systems, the cubic-like fast null-clines are the
curves of fixed points, with the outer branches being attract-
ing and the middle one repelling. Canard solutions spend
long times near the middle, repelling branch. In systems with
two slow variables and one fast variable, there are surfaces of
attracting fixed points that merge with surfaces of repelling
fixed points in curves of fold points, such as arise in the sys-
tems with MMO. There can also be MMO in systems with
one slow and two fast variables, see for example Ref. 27.

In this article, we examine the geometrically more com-
plex situation in which families of attracting and repelling
limit cycles (rather than fixed points) merge in a fold of limit
cycles. The canards that arise are torus canards. They spend
long times near the families of both attracting and repelling
limit cycles, and they possess two frequencies, one intrinsic
to the limit cycles and the other intrinsic to the alternation of
fast jumps and slow segments.

Torus canards were recently identified in a biophysical
model of the Purkinje cell,36 which is a neuron found in the
cerebellar cortex (other mathematical models exploring bifur-
cations in Purkinje cells include Refs. 22–24). This model,
briefly reviewed in Sec. II, consists of five first-order ordinary
differential equations (ODEs), for the voltage, three gating
variable corresponding to fast ionic currents, and one gating
variable corresponding to a slow ionic current. Torus canards
manifest themselves as quasi-periodic oscillations and appear
during the transition between the bursting and rapid spiking
states of the Purkinje cell model. As discussed in Ref. 36, the
presence of torus canards may suggest some biophysical
mechanisms that govern the activity in more realistic models
of Purkinje cells. In many neural models, complicated dy-
namics often appears in the transition interval between burst-
ing and rapid spiking states, so a better understanding of
torus canards may contribute to the general study of these
transitions, as well.

Our main contribution here is to analyze an example of
torus canards in a more rudimentary setting, which allows
us to develop new insights into the results of Ref. 36. We
begin with an extremely simple third-order system of ODEs
which is obtained by rotating a planar system of van der Pol
type about the axis corresponding to the slow recovery vari-
able. As expected, we find that these torus canards are sim-
ply rotations of the classical canards of the planar problem,
so all the known results from the planar case carry over in a
straightforward way. In particular, the family of canards
exists here in an exponentially narrow interval of the bifur-
cation parameter.

We now introduce the main model of interest in this arti-
cle. It is obtained by breaking the rotational symmetry in a
rotated planar system of van der Pol type,

_r ¼ rðz # f ðrÞÞ ; (1a)

_h ¼ x ; (1b)

_z ¼ e a #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 # 2rb cos h þ b2

p" #
; (1c)

where f(r)¼ 2r3 – 3r2 þ 1, and e, x, a, b are parameters with
0 < e & 1. The symmetry breaking term in system (1) is
specifically chosen to shift the null-surface of the slow z vari-
able by a distance b in the Cartesian x-direction. The volt-
age-like variable in this system is the cartesian y coordinate,
so r measures the amplitude or envelope of the underlying
oscillation. In what follows, we show that the symmetry
breaking term is the key feature that gives rise to nontrivial
torus canards and MMO. In particular, we will show that the
parameter regime in which torus canards exist in system (1)
is measurably larger than in the rotationally symmetric case,
and the alternations between LAO and SAO are rich, since
these transitions now also depend on orbital phase.

We will show that the dynamics of torus canards in the
third-order system (1) depends critically on x, the rate of
rotation. For fast rotations, the canards exist only in narrow
intervals of parameter values, similar to the rotationally sym-
metric case. In contrast, it is in the regimes of intermediate
and slow rotations that we find a wide range of dynamics of
torus canards and MMO. We present a combination of ana-
lytical and numerical results to explore the behavior of torus
canards in these different regimes.

The results we obtain for system (1) also yield new
insight into the dynamics of the torus canards observed in the
Purkinje cell model of Ref. 36. Specifically, we will show
that in system (1) torus canards and MMO become more ro-
bust when the rotation rate x decreases, and we find a similar
result when we decrease the spike frequency for the fifth-
order Purkinje cell model. We refer the reader to Refs. 1, 11,
32, 33, 40, 46, 50, and 52 for general treatments of bursting
in mathematical models in neuroscience, as well as to Refs.
47 and 48 for canards in maps, another class of problems for
which the analysis here may have further implications.

It is possible to convert system (1) into a two-dimen-
sional forced oscillator by integrating the _h component. The
results presented here for system (1) complement those pre-
sented earlier in Refs. 4 and 27, where a different class of
forced van der Pol oscillators is studied. In those works, the
forcing replaces the parameter a from the planar system with
an effective value of a sinðxtÞ, so the amplitude of the forcing
is large and the slow null-cline moves back-and-forth between
the two outer (attracting) branches of the fast null-cline each
period. The analogous forcing term in the system studied here
is, for small b, given by a þ b cosðxtÞ, so the slow null-cline
remains in the neighborhood of a fold of the fast null-cline.

This article is organized as follows. In Sec. II, we review
the torus canard phenomena as observed in Ref. 36. In
Sec. III, we briefly present results for the simple rotated pla-
nar system. In Sec. IV, we present the main third-order
model studied in this article and describe the torus canards
that it possesses. The analyses of the regimes of fast rotation
and slow rotation are given in Secs. V and VI, respectively.
In Sec. VII, we show that our conclusions carry over to a
large class of systems with general phase-dependent
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symmetry breaking terms. Finally, in Secs. VIII and IX, we
present some of the implications of our main results for the
Purkinje model, and we discuss some other conclusions and
open questions.

II. MOTIVATION: PURKINJE MODEL

In this section, we briefly describe the torus canard phe-
nomenon as observed in an elementary biophysical model of
a Purkinje cell.36 This single-compartment model consists of
five ODEs that describe the dynamics of the membrane poten-
tial (V) and four ionic gating variables (m

CaH
, h

NaF
, m

KDR
, and

m
KM
)

C _V ¼ #J # g
L
ðV # V

L
Þ # g

CaH
m2

CaH
ðV # V

CaH
Þ

# g
NaF
m3

NaF;1h
NaF

ðV # V
NaF

Þ
# g

KDR
m4

KDR
ðV # V

KDR
Þ # g

KM
m4

KM
ðV # V

KM
Þ; (2a)

_m
CaH

¼ a
CaH

ð1 # m
CaH

Þ # b
CaH

m
CaH

; (2b)

_h
NaF

¼ a
NaF

ð1 # h
NaF

Þ # b
NaF
h

NaF
; (2c)

_m
KDR

¼ a
KDR

ð1 # m
KDR

Þ # b
KDR

m
KDR

; (2d)

_m
KM

¼ a
KM

ð1 # m
KM

Þ # b
KM
m

KM
: (2e)

The parameter J represents an externally applied current,
with decreased values corresponding to excitation and
increased values to inhibition. The forward and backward
rate functions (aX and bX for X¼CaH, NaF, KDR, KM) and
fixed parameters in Eq. (2a) are defined in Appendix. The
gating variable m

KM
for the muscarinic receptor suppressed

potassium current (a.k.a., M-current) evolves on a much
slower time scale than the other variables. As such, the dy-
namics in this five-dimensional model can be understood in
part by studying the four-dimensional fast subsystem, which
is defined by setting _m

KM
¼ 0 and treating m

KM
as a bifurca-

tion parameter in the remaining equations.
Figure 1 shows the behavior of the full Purkinje model

at three different values of J, corresponding to examples of
rapid spiking, amplitude modulated spiking, and bursting. In
each case, the figure includes a time series of the voltage
from the full model and the bifurcation diagram for the fast
subsystem. The former are computed by numerically inte-
grating system (2) with an arbitrary initial condition and dis-
regarding the transient. The latter are traced out by
continuation methods using AUTO (Ref. 15). Each bifurca-
tion diagram includes a branch of attracting fixed points
which merges with a branch of repelling fixed points in a

FIG. 1. (Color online) Behavior of the Purkinje cell model (2) at three different values of J: (a) rapid spiking, at J¼ #34 nA; (b) amplitude modulated spiking,
at J¼ #32.94 nA; (c) bursting, at J ' #32:93 nA. In each case, the left panel shows the time-series of the voltage, and the right panel shows the bifurcation
diagram of the corresponding fast subsystem with the trajectory from the full system superimposed. In the fast subsystem, the branches of attracting (solid
line) and repelling (dotted line) fixed points merge in a fold ((). The branches of attracting (solid line) and repelling (dashed line) limit cycles merge in a fold
of limit cycles ((). The branch of repelling limit cycles terminates on the branch of repelling fixed points in a homoclinic bifurcation (D). Two curves are plot-
ted for each branch of limit cycles, indicating the maximum and minimum values of V over the period.
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fold of fixed points and a branch of attracting limit cycles
which merges with a branch of repelling limit cycles in a
fold of limit cycles. Topologically, the branches of limit
cycles are cylinders but for simplicity we plot only the maxi-
mum and minimum values of V over the period. In each
case, the solution of the full system is also shown superim-
posed on the bifurcation diagram of the fast subsystem, and
it is this composition which provides the most insight into
the dynamics in each regime.

For J sufficiently small (excitatory), trajectories of the
full system approach a stable limit cycle which corresponds to
rapid spiking of the neuron (Fig. 1(a)). The slow variable m

KM

is nearly constant in this state, and the trajectory of the full
system closely resembles an orbit from the branch of stable
limit cycles of the fast subsystem. At a larger value of J, the
system undergoes amplitude modulated spiking (Fig. 1(b)). In
this case, the trajectory closely follows the branch of attract-
ing limit cycles of the fast subsystem as m

KM
slowly increases

to the fold point, then follows the branch of repelling limit
cycles as mKM slowly decreases beyond the fold. Eventually,
the trajectory leaves this repelling branch and quickly transi-
tions back to the attracting branch of limit cycles, restarting
the sequence. Further increase in J introduces an interval of
quiescence in the full dynamics (Fig. 1(c)). This occurs when
the trajectory leaves the fast subsystem’s branch of repelling
limit cycles and approaches the branch of attracting fixed
points (rather than the branch of attracting limit cycles). The
quiescence ends when the trajectory reaches the fold of fixed
points and quickly transitions back to the branch of attracting
limit cycles. This pattern of quiescence and rapid spiking
repeats to generate bursting activity in the full system. Finally,
we note that for J sufficiently large (inhibitory) the Purkinje
cell model exhibits unmodulated quiescence corresponding to
a stable fixed point of the system (not shown).

The transition from stable rapid spiking to stable ampli-
tude modulated spiking occurs via a supercritical torus bifur-
cation in the full system, as shown in Ref. 36. The growth of
amplitude modulated spiking and the eventual transition to
bursting in this model involves torus canards. These arise at
precisely those J values for which certain invariant mani-
folds intersect. In particular, Fenichel theory yields that out-
side a neighborhood of the fold of limit cycles, the cylinders
of attracting and repelling limit cycles in the fast subsystem
persist as attracting and repelling invariant manifolds when
m

KM
evolves slowly, say _m

KM
¼ Oð!Þ. These persistent invar-

iant manifolds are smooth and located a small Oð!Þ distance
away from the cylinders of the fast subsystem. The persistent
invariant manifolds can be extended into the neighborhood
of the fold of limit cycles by flowing orbits on them forward
and backward in time. A torus canard is a trajectory that
spends long time near the attracting manifold, passes through
the fold, then spend long time near the repelling manifold;
thus, torus canards occur whenever the attracting and repel-
ling manifolds intersect.

III. THE ROTATED PLANAR SYSTEM

In this section, we introduce one of the simplest third-
order systems that possesses torus canards, namely we con-

sider a planar system of van der Pol type, rotated about the
axis corresponding to the slow recovery variable

_r ¼ r z # f ðrÞð Þ ; (3a)

_h ¼ x ; (3b)

_z ¼ e a # rð Þ ; (3c)

where f(r)¼ 2r3 – 3r2 þ 1 and e, a, x are parameters with
0 < e & 1. The parameter a is the control parameter that is
important for canard behavior. Away from r¼ 0 and for any
fixed choice of h, the resulting planar cross section of the full
system (3) has null-clines which resemble those of the classi-
cal van der Pol oscillator. Furthermore, the h-dynamics
decouples from the r – z system, so in the full system one
sees the usual dynamics of a van der Pol oscillator except
that the fast variable r is interpreted as the amplitude or en-
velope of an underlying oscillation with frequency x. The
torus canards in Eq. (3) are therefore a trivial extension of
planar canards to a three dimensional system, and the impor-
tant properties of these torus canards (e.g., range of exis-
tence) are identical to those in the planar case, as described
below.

The phase space of the r – z system (in the relevant do-
main r > 0) is sketched in Fig. 2. The z-null-cline consists of
the vertical line r¼ a. The r-null-cline consists of two
branches—the vertical line r¼ 0 and the curve z¼ f(r),
which has a local maximum at (r, z)¼ (0, 1) and a local min-
imum at (r, z)¼ (1, 0). In general, the flow circulates clock-
wise around the fixed point at the intersection of the null-
clines, at (r, z)¼ (a, f(a)).

Within the fast subsystem z is a fixed parameter, so the
r-dynamics exhibits a subcritical bifurcation at (r, z)¼ (0, 1),
with the nontrivial branch restabilized by the cubic term at
large amplitude. Thus, trajectories flow away from the

FIG. 2. (Color online) Sketch of the phase space of the r – z system from
Eq. (3), including the null-clines for a¼ 1.1. The z-null-cline is plotted as a
dot-dashed line. The r-null-cline is plotted as a solid (dashed) line where it
corresponds to a stable (unstable) fixed point of the fast subsystem. The
null-clines intersect at the fixed point (r, z)¼ (a, f(a)), marked with the (

symbol. The two-dimensional flow across the null-clines is indicated by sin-
gle arrows, and the one-dimensional flow in the fast subsystem is indicated
by double arrows. Only r > 0 is considered.
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repelling branches of the r-null-cline (r¼ 0 in z > 1 and the
segment of the f(r) curve in 0 < r < 1), rapidly converging
to the attracting branches (r¼ 0 in z < 1 and the outer seg-
ments of the f(r) curve).

The fixed point at (r, z)¼ (a, f(a)) of the r – z system
undergoes a Hopf bifurcation at a¼ 1. This may be seen
from linear stability analysis. Let R and Z be defined by
(r, z)¼ (a, f(a))þ (R, Z). The linearization is

_R
_Z

$ %
¼ L R

Z

$ %
; where L ) #6a2ða # 1Þ a

#e 0

$ %
; (4)

so that TrL ¼ #6a2ða # 1Þ and DetL ¼ ea, and the eigen-
values r which determine the linear growth rate of perturba-
tions from the fixed point satisfy 0 ¼ r2 # rTrL þ DetL.
When a is sufficiently greater than one, both eigenvalues are
real (ðTrLÞ2 > 4DetL) and negative (TrL < 0). At ðTrLÞ2 ¼
4DetL, corresponding to a ' 1 þ e1=2=3, the eigenvalues
become complex with Rer < 0 so the fixed point remains
stable. At a¼ 1, we have TrL ¼ 0 and r ¼ 6ie1=2 as the
eigenvalues cross the Imr axis. In a < 1, the eigenvalues
have Rer > 0, and the fixed point is unstable. Thus, the fixed
point undergoes a Hopf bifurcation at a¼ 1. Note that this
corresponds in the phase space diagram to the instant when
the z-null-cline crosses the local minimum of the r-null-cline
at (r, z)¼ (1, 0). Using standard techniques of normal-form
analysis, one can show that this Hopf bifurcation is always
supercritical, so stability is transferred to the branch of small
amplitude periodic orbits in a < 1.

To illustrate the dynamics of this model, various orbits
from the branch of limit cycles are shown in Fig. 3, plotted
in the r – z phase space. The amplitude of the limit cycles is
small near onset and grows as a decreases. Eventually, the
periodic orbit undergoes a rapid jump in amplitude corre-
sponding to the canard explosion. The bifurcation diagram in
Fig. 4(a) summarizes the growth of the periodic orbit. A sim-
ple geometric argument explains these results. First, note
that Fig. 3 also includes the r-null-cline, which consists of
the branches of attracting and repelling fixed points of the
fast subsystem. Fenichel theory yields that outside a neigh-
borhood of the fold at (r, z)¼ (1, 0), these critical manifolds
persist as attracting and repelling slow manifolds when e is
small but nonzero. These persistent slow manifolds are one-
dimensional, so each corresponds to a single trajectory that
can easily be extended into the neighborhood of the fold by
following the orbit forward or backward in time. Near the
Hopf bifurcation, the attracting slow manifold spirals
directly in to the small amplitude periodic orbit, so the
attracting slow manifold must lie above the repelling slow
manifold. At smaller values of a, where the stable periodic
orbit is instead a large amplitude relaxation oscillation, the
attracting slow manifold must lie below the repelling slow
manifold. Continuity requires that these manifolds pass
through each other as a decreases, and it is this crossing that
creates the canard explosion. Canard orbits only occur in the
narrow range of a values for which these manifolds are suffi-
ciently close as to allow a single trajectory to spend consid-
erable time in the neighborhood of both. The maximal
canard occurs at the unique a value at which the attracting

and repelling slow manifolds intersect and can be identified
in Fig. 4(b) as the limit cycle with the maximum period.
Both the location in a and the abruptness of the explosion
are functions of e: for smaller e, the canard explosion occurs
closer to a¼ 1 (i.e., closer to the Hopf point) and in a smaller
range of values of a. Under an appropriate change of varia-
bles, the r – z system from Eq. (3) can be put into the canoni-
cal form given by Ref. 37, and the results from that paper
predict the maximal canard occurs at a ' 1 # e=18. For
completeness, we note that some of the solutions also have
long segments near the repelling branch of the z-axis, see,
for example, the two outermost orbits in Fig. 3(b). Hence,
they are also canards because they are near a repelling slow
manifold for a long time, although we do not focus on this
aspect of the solutions in this work.

The behavior of torus canards in the full three-dimen-
sional system (3) is now clear. In a > 1, the system contains
a stable limit cycle with frequency x and radius r¼ a. At
a¼ 1, the limit cycle becomes unstable in a supercritical torus
bifurcation. The tori in a < 1 resemble donut-shaped

FIG. 3. (Color online) Collection of representative periodic orbits associated
with the canard explosion at (a) e ¼ 0:1 and (b) e ¼ 0:02. In each panel, the
orbits shown represent the limit cycles for a range of a values rather than
solutions at a particular value of a. The canard explosion shown in (b) is al-
ready sufficiently abrupt that all the unlabeled orbits in this panel occur at
nearly identical a values, a ' 0:9988723.

023131-5 An elementary model of torus canards Chaos 21, 023131 (2011)

Downloaded 18 Feb 2012 to 168.122.67.168. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



rotations of the periodic orbits from the planar system shown
in Fig. 3. The first frequency identified with the tori is fixed at
x, while the second frequency varies with a and is associated
with motion in the r – z cross-section (Fig. 4(b)). The location
in a and abruptness of the torus canard explosion are identical
to the planar case for the same e. Near the torus bifurcation,
the orbits around the tori are SAO which remain in the neigh-
borhood of r¼ 1. Beyond the torus canard explosion (i.e.,
smaller a), the orbits around the tori are LAO which include
periods of quiescence as the trajectory passes near r¼ 0.

Therefore, small and large amplitude oscillations in sys-
tem (3) occur in mutually exclusive ranges of the parameter
a, and as a result this system does not include any MMO.
For MMO to exist, one would need a trajectory to alternate
between SAO and LAO at a fixed value of a. In what fol-
lows, we show that breaking the rotational symmetry of sys-
tem (3) generates MMO by creating a region where SAO
and LAO coexist, depending on the phase of the orbit.

Remark: System (3) is similar to the equations used in
Refs. 30 and 31 to model elliptic bursters—i.e., a two dimen-
sional fast-slow system that exhibits canard behavior, trivi-
ally extended to three dimensions by rotation about a slow
null-cline. The resulting dynamics of a single elliptic burster
is consistent with the description presented here for the dy-
namics of system (3). Those works focus on the synchroniza-
tion properties of networks of bursters, where the rotational
symmetry of the individual burster is effectively broken by
phase dependent coupling to the rest of the network.

Remark: For orbits on the torus, there is the possibility
of resonance between the two frequencies associated with

the motion. In the regime of large x, these are higher order
resonances—i.e., Oðe#1Þ : 1—and do not have a noticeable
effect on the dynamics. However, these resonances may play
an important role in the regime of small x; see Ref. 39 for a
discussion of this effect in the context of a mechanical self-
oscillator.

IV. THE MAIN THIRD-ORDER SYSTEM AND ITS
TORUS CANARDS

In this section, we introduce the main third-order system
that we study and show the torus canards that it possesses.
As stated in the Introduction, we obtain the main system (1)
by adjusting the _z equation to shift the z-null-surface a dis-
tance b in the cartesian x-direction, thereby breaking the
phase invariance of the rotated planar system (3). The equa-
tions are

_r ¼ rðz # f ðrÞÞ ; (5a)

_h ¼ x ; (5b)

_z ¼ e a #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 # 2rb cos h þ b2

p" #
; (5c)

where b > 0 is the parameter that controls the strength of the
symmetry breaking, and we recall that f(r)¼ 2r3 – 3r2 þ 1. In
Cartesian coordinates, this system is

_x ¼ xðz # f ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ÞÞ # xy ; (6a)

_y ¼ yðz # f ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ÞÞ þ xx ; (6b)

_z ¼ e a #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx # bÞ2 þ y2

q& '
: (6c)

The vector field is not analytic at fðx; y; zÞjx ¼ b; y ¼ 0g due
to the branch point of the square root in the _z equation, but
this does not affect the torus bifurcation or the creation of
torus canards which are of interest here. Furthermore, while
we focus on a general choice of f ðrÞ here, one can assume
analyticity also at r ¼ 0 by choosing f ðrÞ to be a function of
r2 only. Generalizations of this system that include arbitrary
symmetry breaking terms and do not suffer from this branch
point are presented in Sec. VII.

Notice that system (5) includes three time scales,
because the OðxÞ dynamics of the h-variable is now coupled
to the fast Oð1Þ and slow OðeÞ dynamics familiar from the
planar case. In the analysis that follows, we focus on the two
regimes where x is comparable to either the fast or the slow
dynamics. In the former, x ¼ Oð1Þ so system (5) includes
one slow and two fast variables. In the latter, x ¼ OðeÞ so
system (5) includes two slow and one fast variables. We also
present numerical results for intermediate values of x.

We begin with a brief description of the wide range of
dynamics exhibited by system (5), as shown in Fig. 5. At suf-
ficiently large a > 1, the system exhibits stable, uniform am-
plitude spiking at frequency x. As a decreases, uniform
amplitude spiking becomes unstable, and stability is trans-
ferred to SAO (Fig. 5(a), where the envelope r(t) remains
close to r¼ 1). At different values of a, the system exhibits
LAO (Fig. 5(c), where r(t) spends some time in the

FIG. 4. (Color online) (a) Bifurcation diagram of the r – z system from Eq.
(3) for several values of e. The branch of fixed points undergoes a Hopf
bifurcation at a¼ 1; this branch is plotted as a solid (dotted) line where it is
stable (unstable). Each branch of limit cycles (one per e value) is plotted as
two curves, corresponding to the maximum and minimum values of r over
the cycle. (b) The period of the orbits for each of the three values of e. The
period at onset is T ¼ 2p=

ffiffi
e

p
and is indicated with the * symbol.

023131-6 Benes et al. Chaos 21, 023131 (2011)

Downloaded 18 Feb 2012 to 168.122.67.168. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



neighborhood of r¼ 0) and MMO (Fig. 5(b), where the tra-
jectory alternates between large and small amplitude oscilla-
tions). As shown in Fig. 5(e), the MMO occur over a range
of intermediate a values between the regions of SAO and
LAO, and this range in a varies with x. The MMO are more
robust for small x (i.e., the two slow and one fast regime)
but persist for large x (i.e., the one slow two fast regime). In
what follows, we show that torus canards are responsible for
creating the MMO region.

We now proceed with the analysis of system (5). It is
useful to define two surfaces in the three dimensional phase
space of this system,

N r ¼ ðr; h; zÞjz ¼ f ðrÞf g ;
N z ¼ ðx; y; zÞja2 ¼ ðx # bÞ2 þ y2

n o
:

(7)

These are plotted in Fig. 6. The surface N z is the z-null-
surface of Eq. (5). It is a cylinder of radius a with axis
fðx; y; zÞjx ¼ b; y ¼ 0g. Inside the cylinder, _z is positive, and
outside it is negative. The surface N r is the main branch of
the r-null-surface of Eq. (5)—above the surface _r is positive
and below it is negative; the other branch of the r-null-sur-
face is the z-axis. The curve C

SN
¼ fðr; h; zÞjr ¼ 1; z ¼ 0g

traces out the fold at the local minimum of N r, and the point
P0 ¼ fðr; h; zÞjr ¼ 0; z ¼ 1g is a local maximum of this
surface.

The surface N r, excluding a small neighborhood of C
SN

and P0, is a normally hyperbolic invariant manifold of sys-
tem (5) when e ¼ 0, as is N z with a neighborhood of P0

excluded. In the remainder of this section, we briefly exam-
ine how these manifolds persist for 0 < e & 1, using Feni-
chel theory,21,34 following in particular the presentation of
Ref. 35. We exclude small neighborhoods of the ring C

SN
and

the point P0, where the manifolds are not normally hyper-
bolic. We label the different segments of these manifolds
according to whether they are attracting or repelling in the
fast subsystem, with the subscripts a and r denoting attract-
ing and repelling, respectively. Let S0

a;1 denote the portion of
the z-axis with z < 1, which is the attracting portion of this
critical set, and include the superscript zero to denote e ¼ 0.
Let S0

r;1 be the portion of the z-axis with z > 1, which is the
repelling portion. Next, let S0

a;2 denote the attracting portion
of the null-cline N r, i.e., that portion with r > 1, and, let
S0
r;2 be that portion with 0 < r < 1 which is repelling. So at

FIG. 5. (Color online) (a–c) Behavior of system (5) at three different values
of the parameter a: (a) SAO, at a¼ 0.9945; (b) MMO, at a¼ 0.99398; (c)
LAO, at 0.9935. In each of these panels, the remaining parameters are fixed
at b¼ 0.01, e ¼ 0:1, x ¼ 0:9 and the plot includes both yðtÞ ¼ rðtÞ sin hðtÞ
and the envelope r(t). (d) MMO at a¼ 0.99398, b¼ 0.01, e ¼ 0:1, x ¼ 0:01,
corresponding to slow rotation. For clarity, only r(t) is included in this
frame. (e) Summary of the dynamics exhibited by system (5), shown in the
ðx; aÞ parameter plane at b¼ 0.01, e ¼ 0:1. The boundaries in (e) were com-
puted using the continuation technique outlined in the Remark at the end of
Sec. IV.

FIG. 6. (Color online) The null-surfaces N r and N z of system (5). The
curve C

SN
traces out the local minimum of N r . The point P0 is a local maxi-

mum of N r . The curve at the intersection of these two null-surfaces
(N r \ Nz) is shown for reference. The lower part of the figure shows a pro-
jection onto the (x, y) plane. The projection of C

SN
is a circle of unit radius,

centered at the origin. The projection of N z is a circle of radius a, centered
at (x, y)¼ (b, 0). In this figure, a¼ 1.3 and b¼ 0.2.
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e ¼ 0, the attracting manifold is S0
a;1 [ S0

a;2, and the repelling
manifold is S0

r;1 [ S0
r;2.

Each of these normally hyperbolic invariant manifolds
persists for sufficiently small e > 0 as attracting and repel-
ling manifolds that are invariant under the dynamics of the
system (5), as we will now show. We use the superscript e to
denote the persistent manifolds. Of course, the z-axis is
clearly also an invariant set of the full system (5), and so the
existence of the attracting and repelling manifolds Se

a;1 and
Se
r;1, which coincide with their unperturbed (e ¼ 0) counter-

parts, is straightforward. In order to demonstrate the persist-
ence of the surfaces S0

a;2 and S0
r;2, we consider separately the

two cases x ¼ OðeÞ and x ¼ Oð1Þ. In the regime x ¼ OðeÞ,
the manifolds S0

a;2 and S0
r;2 are manifolds of fixed points of

the fast system (referred to as critical manifolds) and hence
normally hyperbolic invariant manifolds of the full system.
The Fenichel theory21 then applies directly to yield the per-
sistence of these manifolds as slow invariant manifolds,
which we label Se

a;2 and Se
r;2. Moreover, we note that these

persistent manifolds are differentiably OðeÞ close to the criti-
cal manifolds.

In the regime of x ¼ Oð1Þ, the surfaces S0
a;2 and S0

r;2
are invariant manifolds foliated by periodic orbits of the fast
subsystem. They are also normally hyperbolic invariant
manifolds of the full system. The more general Fenichel
theory of persistence of normally hyperbolic invariant mani-
folds20,21 guarantees the persistence of these manifolds for
sufficiently small e. In particular, we use the Fenichel theory
presented in Ref. 35 to conclude that the full system pos-
sesses invariant manifolds, which we also label Se

a;2 and Se
r;2,

that are differentiably OðeÞ close to their unperturbed coun-
terparts. Of course, in this regime, the dynamics in the h
direction is fast and the dynamics in the z direction is slow.

In both x regimes, Se
a;2 and Se

r;2 are cylinders topologi-
cally, defined over the intervals r > 1 and 0 < r < 1, respec-
tively. Orbits on these invariant manifolds evolve slowly in
z, at an OðeÞ rate, and orbits off these invariant manifolds are
rapidly attracted to them in forward or backwards time,
respectively.

The presence of these manifolds enables us to under-
stand the dynamics of system (5). In fact, the relative dispo-

sitions of these two persistent invariant manifolds (i.e., their
global geometry) govern the existence of the torus canards
and the varied behavior shown in Fig. 5, as we will now
show. First, observe that orbits on Se

a;2 will flow beyond the
fold C

SN
into the regime r < 1 and will typically end up

either above or below the other persistent invariant manifold
Se
r;2. Those that lie below will undergo a large amplitude os-

cillation, jumping to a neighborhood of Se
a;1 and slowly drift-

ing up the z-axis (Fig. 7, trajectory c1). Those that lie above
will undergo a small amplitude oscillation as they quickly
move back to larger values of r (Fig. 7, trajectory c2). Simi-
larly, in backward time, orbits on Se

r;2 will flow past the fold
C

SN
into the regime r > 1, and end up either above or below

Se
a;2 (Fig. 7, trajectories c3 and c4, respectively). We define a

maximal torus canard as an intersection of Se
a;2 and Se

r;2. It
follows that maximal torus canards are found in pairs, and
that they act as separatrices on the two-dimensional persis-
tent invariant manifolds. For example, maximal torus
canards separate regions on Se

a;2 where individual trajectories
behave qualitatively like c1 of Fig. 7 from regions where
they behave qualitatively like c2.

Intersections of the attracting and repelling persistent
invariant manifolds clearly play an important role in forming
torus canards. To locate and study such intersections, we
examine these manifolds as they cross the surface
R ¼ fðr; h; zÞjr ¼ 1g, a cylinder of unit radius that contains
the fold C

SN
of N r. The phase space plots in Fig. 7 include R

for reference. Figure 8 shows the manifolds Se
a;2 and Se

r;2 as
they cross R, plotted in coordinates labelled ðhR; zRÞ to indi-
cate measurement on R. Intuitively, this involves flowing a
ring of initial conditions from high up the attracting part of
N r forward in time until they cross R and likewise for a ring
of initial conditions flowed backward in time from the repel-
ling part of N r. In practice, each curve in the figure is traced
out by continuation in the boundary condition of an appropri-
ately defined boundary value problem.

The upper panels in Fig. 8 show how the intersections of
Se
a;2 and Se

r;2 with R vary as the parameter a changes. At
large a values (Fig. 8(a)), Se

a;2 lies above Se
r;2 for all hR, so

the persistent manifolds do not intersect and each trajectory
from Se

a;2 undergoes a small amplitude oscillation in r < 1,

FIG. 7. (Color online) Sketch of trajectories from system (5). (a) The trajectory c0 from Se
a;2 lies close to N r in r > 1. The point where it crosses R is marked

with the * symbol. (b) When such trajectories enter r < 1, they typically transition to fast motion in r, either toward small r (trajectory c1) or large r (trajec-
tory c2). (c) Trajectories on Se

r;2 enter r > 1 in backward time, then transition to fast motion in r, either decreasing (trajectory c3) or increasing (trajectory c4).
Note that R is distinct from the cylindrical null-surfaceN z included in Fig. 6.
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similar to c2 from Fig. 7. Decreasing the parameter a causes
Se
a;2 to move down and Se

r;2 to move up in zR, so at smaller a
values (Fig. 8(c)), Se

a;2 lies below Se
r;2 for all hR. In this case,

each trajectory from Se
a;2 undergoes a large amplitude oscil-

lation in r < 1, similar to c1 from Fig. 7. At the intermediate
value of a shown in Fig. 8(b) the manifolds intersect, so both
large and small amplitude orbits are possible, depending on
the initial condition. The lower panels in Fig. 8 show how
the manifolds deform as x varies. At the particular a value
used in these panels, the intersection of Se

a;2 and Se
r;2 persists

from small x (Fig. 8(f)) well into the regime of large x
(Fig. 8(d)). As x increases, the hZ variation of the two mani-
folds becomes nearly identical and so the intersection
becomes less robust to changes in the parameter a (which
shift Se

r;2 and Se
r;2 in opposite directions in zR).

The persistence of the intersections of Se
a;2 and Se

r;2 is in
part a consequence of simple geometry. In the two-dimen-
sional planar system described in Sec. III, the attracting and
repelling slow manifolds were each one-dimensional invariant
sets, so their intersection occurred at a unique value of the pa-
rameter a. In the three-dimensional system considered here,
Se
a;2 and Se

r;2 are each two-dimensional invariant surfaces.
The one-dimensional intersections of such surfaces are struc-
turally stable and therefore persist over a range of a values.

The maximal torus canards lie along the intersections of
Se
a;2 and Se

r;2. Torus canards occur near these intersections
where the separation between the manifolds is necessarily
small. Restricting our attention to trajectories on Se

a;2, this
means that there is a strip of torus canard trajectories sur-
rounding each maximal torus canard. When x is small (as in

Fig. 8(b)), this strip of torus canards is narrow, including
only a small fraction of the trajectories on Se

a;2. When x is
larger (as in Fig. 8(d)), the strip of torus canards is broader
and may grow to include the entire surface.

The intersection of Se
a;2 and Se

r;2 also implies the exis-
tence of MMO. A single MMO trajectory cycles through R
many times, and for any nonzero x, the value of hR will in
general change with each cycle. A detailed study of the
sequence of hR values generated by the global return map
R ! R is beyond the scope of this article. However, the
global return does appear to mix the two ranges of hR that lie
on either side of the maximal torus canards. We find numeri-
cally that the hR sequence almost always includes hR values
where Se

a;2 lie above Se
r;2, as well as values where Se

a;2 lies
below Se

r;2. This explains why the range over which the per-
sistent invariant manifolds Se

a;2 and Se
r;2 intersect (and hence

the range over which torus canards occur) matches exactly
the range over which MMO are observed in Fig. 5(e). In the
regime of small x, MMO consist of many SAO followed by
many LAO due to the fact that the angle hR changes by a
small amount each cycle (Fig. 5(d)). When x is larger, the
MMO transitions more frequently between large and small
amplitude oscillations (Fig. 5(b)).

Note that the maximal torus canards are typically not
global attractors of the dynamics of the full system (5) and
need not appear in the MMO sequence. Nevertheless, the
maximal torus canards allow Se

a;2 to simultaneously include
both SAO and LAO orbits, thereby playing a crucial role in
guiding the long time dynamics of the system and creating
MMO.

FIG. 8. (Color online) Plots of the manifolds Se
a;2 and Se

r;2 as they cross the surface R, plotted in coordinates ðhR; zRÞ measured on R. The upper panels show
the manifolds move through each other as a varies. (a) At a¼ 1.00448, Se

a;2 lies above Se
r;2; (b) at a¼ 0.99398, they intersect; (c) at a¼ 0.98348, Se

a;2 lies
below Se

r;2. Other parameters in (a–c): x ¼ 0:01, b¼ 0.01, e ¼ 0:1. The lower panels show different regimes for the rotation rate: (d) fast, at x ¼ 0:9; (e) inter-
mediate, at x ¼ 0:3; and (f) slow, at x ¼ 0:01. Other parameters in (d–f): a¼ 0.99398, b¼ 0.01, e ¼ 0:1. Intersections are indicated in each panel with the (

symbol.
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Clearly, the magnitude of x is particularly important in
determining how robust the torus canard phenomenon is to
changes in parameters. We analyze the cases of large and
small x in Secs. V and VI, confirming the numerical results
about the persistent invariant manifolds, their intersections,
and their separation.

Remark: We have chosen to use the cylinder fr ¼ 1g as
our cross-section R in the numerical simulations. As a result,
there are threshold values of b (depending on a and x) such
that the SAO and LAO in the numerical simulations will hit
the cross-section only for values of b below the threshold.
For example, in Fig. 9, we show the images of Se

a;2 and Se
r;2

on R for a value of b that is an order of magnitude larger
than that used in Fig. 8 and that is just below the threshold.
To observe the dynamics of the SAO, LAO, and MMO for
larger values of b (with the other parameters fixed), one
would need to use a different, more complicated cross-sec-
tion that is tailored to the shape and amplitude of the symme-
try-breaking term. In this sense, the threshold is artificial.
We do not pursue other choices of cross-sections here.

Remark: The above description focuses on locating the
maximal torus canards by tracing out the manifolds Se

a;2
and Se

r;2, then searching for their intersections. The maximal
torus canards can also be found directly as solutions to a
boundary value problem, where the boundaries lie far up
the attracting and repelling parts of N r. Numerical continu-
ation of the maximal torus canards provides an efficient
way to compute several important properties of these trajec-
tories. For example, the tangencies between Se

a;2 and Se
r;2

correspond to saddle-node bifurcations of the branch of
maximal torus canards. The boundaries of the MMO region
in Fig. 5(e) were computed directly in AUTO by continua-
tion of these saddle-node bifurcations in two parameters, a
and x.

V. FAST ROTATION—AVERAGING FOR LARGE x

In this section, we analyze the system (5) for large x
using averaging. This corresponds to the regime in which
system (5) includes one slow and two fast variables. We
show that the system includes a periodic orbit which under-
goes a torus bifurcation at

a ' 1 þ b2=4 : (8)

This torus bifurcation plays a similar role in the creation of
torus canards as the Hopf bifurcation in the planar case. We
employ the method of averaging28,45 in the regime of large
x to establish this basic result about the torus bifurcation.
We limit the analysis here to the leading order averaging,
and then, at the end of this section, comment on higher order
effects. We present numerical evidence that the higher order
effects are not crucial for the values of b considered here.

We define h0 ¼ hð0Þ, so the _h component of this system
is trivially solved by hðtÞ ¼ xt þ h0. The z-component of the
vector field is periodic with period 2p=x. We use ~z to denote
this variable in the averaged system, and let z ¼ ~z þ dfðr; ~z; tÞ
with d ¼ OðebÞ. Then,

_z ¼ _~z þ d
@f
@t

þ d
@f
@r

_r þ d
@f
@~z

_~z (9)

and

_~z ¼ 1 þ d
@f
@~z

& '#1

_z # d
@f
@r

_r # d
@f
@t

& '
¼ 1 þ d

@f
@~z

& '#1

+ e a #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 # 2rb cosðxt þ h0Þ þ b2

p" #
# d

@f
@r

_r # d
@f
@t

$ %
:

(10)

We will choose the function f so that the oscillatory part of
the square root is canceled from the above equation. With
this goal in mind, it is natural to choose d ¼ eb instead of the
weaker assumption that d ¼ OðebÞ. Thus,

_~z ¼ e 1 þ eb
@f
@~z

& '#1

+ a #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 # 2rb cosðxt þ h0Þ þ b2

p
# b

@f
@r

_r # b
@f
@t

& '
:

(11)

Next, we show that _r ¼ OðeÞ along the trajectories of inter-
est. In particular, the initial conditions of these trajectories
satisfy either rð0Þ > 1 or 0 < rð0Þ < 1. Provided the solu-
tion is outside a neighborhood of the fold C

SN
, it follows

from Fenichel theory that the orbit will be exponentially
attracted to Se

a;2 in forward time or Se
r;2 in backward time,

and in both cases _r ¼ OðeÞ to leading order. Therefore, for
orbits for which r(t) stays outside of a small neighborhood of
r¼ 1, Eq. (11) simplifies to

_~z ¼ e 1 þ eb
@f
@~z

& '#1

+ a #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 # 2rb cosðxt þ h0Þ þ b2

p
# b

@f
@t

& '
þ Oðe2bÞ :

(12)

We separate the square root into a sum of its average and
oscillatory parts using the identity

FIG. 9. (Color online) Similar to Fig. 8, but at a larger value of b. Parame-
ters: a¼ 0.9955, b¼ 0.1, e ¼ 0:1, x ¼ 0:9.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 # 2rb cosðxtþ h0Þ þ b2

p
¼ ðr # bÞ

p
E p;

#4br

ðr # bÞ2

 !

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 # 2rbcosðxtþ h0Þ þ b2

p
# ðr # bÞ

p
E p;

#4br

ðr # bÞ2

 !" #

;

where Eð,; ,Þ is the incomplete elliptic integral of the second
kind.10 Clearly, if we choose f such that

@f
@t

¼ # 1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 # 2rb cosðxt þ h0Þ þ b2

ph

# ðr # bÞ
p

E p;
#4br

ðr # bÞ2

 !#

; (13)

then we see that f is independent of ~z so that @f=@~z ¼ 0 and
Eq. (12) for ~z reduces to

_~z ¼ e a # ðr # bÞ
p

E p;
#4br

ðr # bÞ2

 !" #

þ Oðe2bÞ : (14)

Equation (14) is the leading order averaged equation. For the
values of b shown in Fig. 10, the leading order term domi-
nates and the remainder is second order in e and also linearly
proportional to b.

The main result (8) about the torus bifurcation is now at
hand. In particular, we expand the incomplete elliptic inte-
gral in powers of b and find

_~z ¼ e a # r # b2

4r

& '
þ Oðeb3; e2bÞ : (15)

Now, since the fold of N r is at r¼ 1, it follows that the torus
bifurcation should occur when a ' 1 þ b2=4, which estab-
lishes Eq. (8). This parabola is shown in Fig. 10 and fits well
to the data points obtained from numerically computed torus
bifurcations.

For each value of b shown in Fig. 10, torus canards exist
for a small interval of a values just below the torus bifurca-
tion. While the first-order averaging is insufficiently sensi-
tive to find these intervals analytically, they may be found
(and we found them) numerically. They are narrow intervals
and get narrower as x gets larger (data not shown).

Remark: In using Eq. (15) in the limit that b ! 0, one
has to exercise care with how small b is relative to e, as one
of the remainder terms eventually becomes more important
than the b2 term in parentheses. We do not pursue this small
correction for very small values of b here.

Remark: It is important to note that the assumption
made above that _r ¼ OðeÞ only holds outside a small neigh-
borhood of the fold C

SN
, because the Fenichel theory only

applies outside this neighborhood. Nevertheless, the orbits
we study here briefly pass through this neighborhood. Hence,
to make the above averaging fully rigorous, one needs to use
the theory of Ref. 42 to determine the size, which is OðepÞ
for some 0 < p < 1 of _r in this brief interval. Also, it may be
possible to get a much sharper bound on the closeness of the
images on R in the regime of fast rotations (Fig. 8(d)) by
using the ideas in Ref. 41.

VI. SLOW ROTATION—BLOW-UP FOR SMALL x

In this section, we use geometric desingularization16 to
understand the dynamics in the slow rotation regime. This
corresponds to the regime in which system (5) includes two
slow and one fast variables. The geometric desingularization
method, which is also known as the blow-up method, enables
one to naturally extend geometric singular perturbation
theory21,34 to fast-slow problems with relaxation oscillations
to overcome the loss of hyperbolicity at fold points.17,37,38

As mentioned in Sec. IV, the MMO in system (5) become
more robust when h is a slowly varying parameter—i.e., they
occur over a wider range in the parameter a for each fixed
value of b > 0. To better understand the dynamics in this re-
gime, we assume x ¼ e ~x, where ~x is Oð1Þ with respect to e
and adopt the blow-up method of Refs. 16, 17, and 49. In
particular, we blow up the ring C

SN
along the fold of the r-

null-surface N r.
Since we are concerned with dynamics near r¼ 1 (recall

that C
SN

¼ fðr; h; zÞjr ¼ 1; z ¼ 0g), we make a change of var-
iables s¼ r – 1 and introduce the new parameter k ¼ a # 1.
After expanding in powers of b, we find that system (5)
becomes

_s ¼ zð1 þ sÞ # 3s2 # 5s3 # 2s4 ; (16a)

_h ¼ e ~x ; (16b)

_z ¼ eðgðs; h; k; bÞ þ hðs; h; bÞ þ Oðb3ÞÞ ; (16c)

_e ¼ 0 ; (16d)

_k ¼ 0 ; (16e)

_b ¼ 0 ; (16f)

where

gðs; h; k; bÞ ¼ #s þ k þ b cos h ; (17a)

FIG. 10. (Color online) Location of the torus bifurcation in system (5), plot-
ted in the (a, b) parameter plane. Exact values for x ¼ 1 and e ¼ 0:1 are
indicated with the ( symbol and were determined at several fixed b values
by numerical continuation of periodic solutions in the parameter a. The
approximation (8), derived from the leading order averaging, is plotted as a
solid curve.
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hðs; h; bÞ ¼ #b2
sin2 h

2ð1 þ sÞ
: (17b)

The blow-up is given by

s ¼ !q!s ; z ¼ !q2!z ; e ¼ !q2!e ; k ¼ !q!k ; b ¼ !q!b ; (18)

which defines a map

U : S5 + ½0; d. + S1 ! R3 + R + R + R
ð!s; !z; !e; !k; !b; !q; hÞ 7! ðr; h; z; e; k; bÞ : (19)

The transformation Eq. (18) blows up the ring C
SN

into a cyl-
inder, where the variable h is unaltered. We include both the
coordinates and the parameters in the blow-up because we
want to locate the maximal torus canards and also predict
how they vary with the parameters.

To analyze the blown-up dynamics, we will look at the
charts K1 and K2 that correspond, respectively, to setting
!z ¼ 1 and !e ¼ 1,

K1 : s ¼ q1s1 ; z ¼ q21 ; e ¼ q21e1 ; k ¼ q1k1 ; b ¼ q1b1 ;

(20)

K2 : s ¼ q2s2 ; z ¼ q22z2 ; e ¼ q22 ; k ¼ q2k2 ; b ¼ q2b2 :

(21)

The chart K1 is the entry and exit chart, which we will use to
study how orbits enter and exit a neighborhood of C

SN
. The

chart K2 is the rescaling chart, which we will use to analyze
the dynamics of orbits as they pass through the neighborhood
of C

SN
.

The change of coordinates j12 from K1 to K2 is given by

s2 ¼ s1e
#1=2
1 ; z2 ¼ e#1

1 ; k2 ¼ k1e
#1=2
1 ; b2 ¼ b1e

#1=2
1 ;

(22)

and j#1
12 is given by

s1 ¼ s2z
#1=2
2 ; e1 ¼ z#1

2 ; k1 ¼ k2z
#1=2
2 ; b1 ¼ b2z

#1=2
2 :

(23)

A. Dynamics in the chart K1

This chart is used to analyze the dynamics around the
entry into and exit from the fold region. After rescaling time
by a factor of q1, the equations of motion in this chart are

_s1 ¼ 1 þ q1s1 # 3s21 # 1

2
s1e1ðg þ q1hÞ # 5q1s

3
1 # 2q21s

4
1 ;

(24a)

_h ¼ q1e1 ~x ; (24b)

_e1 ¼ #e21ðg þ q1hÞ þ Oðq21Þ ; (24c)

_q1 ¼ 1

2
q1e1ðg þ q1hÞ þ Oðq31Þ ; (24d)

_k1 ¼ # 1

2
k1e1ðg þ q1hÞ þ Oðq21Þ ; (24e)

_b1 ¼ # 1

2
b1eðg þ q1hÞ þ Oðq21Þ ; (24f)

where g ¼ gðs1; h; k1; b1Þ and h ¼ hðq1s1; h; b1Þ. In this
chart, we have invariant hypersurfaces corresponding to each
of e1 ¼ 0, q1 ¼ 0, k1 ¼ 0, and b1 ¼ 0; in the first two of these
surfaces, any hypersurface h ¼ h0 2 S1 is also invariant. The
intersection of all these hypersurfaces is an invariant line,

‘1 ¼fðs1;h;e1;q1;k1;b1Þjh¼h0;e1 ¼0;q1 ¼0;k1 ¼0;b1 ¼0g :

This line has two equilibria, pa ¼ ð1=
ffiffiffi
3

p
; h0; 0; 0; 0; 0Þ and

pr ¼ ð#1=
ffiffiffi
3

p
; h0; 0; 0; 0; 0Þ; the former is attracting (on the

line) and the latter is repelling. The point pa has one stable
eigenvector in the s direction and 5 zero eigenvalues in the
directions of h, q, k, b, and s=12

ffiffiffi
3

p
þ e. The point pr has

one unstable eigenvector in the s direction and 5 zero eigen-
values in the directions of h, q, k, b, and # s=12

ffiffiffi
3

p
# e.

The normally hyperbolic invariant manifold S0
a;2 connects

directly to pa. For small values of e > 0, orbits on the per-
sistent invariant manifold Se

a;2 enter the neighborhood of
C

SN
near pa. Similarly, the normally hyperbolic invariant

manifold S0
r;2 connects to pr, and for small e > 0, orbits on

the persistent invariant manifold Se
r;2 enter in backward

time near pr.

B. Dynamics in the chart K2

This chart is used to analyze the flow from the point pa
to the point pr—i.e., the flow through the blow-up region.
After rescaling time by a factor of q2, the dynamics here is

_s2 ¼ z2ð1 þ q2s2Þ # 3s22 # 5q2s
3
2 # 2q22s

4
2 ; (25a)

_h ¼ q2 ~x ; (25b)

_z2 ¼ g þ q2h ; (25c)

_q2 ¼ 0 ; (25d)

_k2 ¼ 0 ; (25e)

_b2 ¼ 0 ; (25f)

where g ¼ gðs2; h; k2; b2Þ and h ¼ hðq2s2; h; b2Þ. In the
invariant surface q2 ¼ 0, we have

_s2 ¼ z2 # 3s22; (26a)

_z2 ¼ #s2 þ k2 þ b2 cos h ; (26b)

where h, k2, and b2 are fixed parameters. If jk2j < jb2j, then
for h ¼ 6cos#1ð#k2=b2Þ, we have

_s2 ¼ z2 # 3s22 ; (27a)

_z2 ¼ #s2 ; (27b)

which is Hamiltonian with

H ¼ 1

18
e#6z2 3z2 # 9s22 þ 1

2

& '
; (28a)

_s2 ¼ #e6z2
@H

@z2
; (28b)
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_z2 ¼ e6z2
@H

@s2
: (28c)

The curve CðtÞ ¼ ðs2;CðtÞ; z2;CðtÞÞ ¼ ðt; 3t2 # 1=6Þ corre-
sponding to H¼ 0 separates periodic orbits from unbounded
solutions and corresponds to the graph of

z2 ¼ 3s22 # 1

6
: (29)

After multiplying this equation by e1, we can use Eq.
(23) to transfer this orbit to chart K1,

1 ¼ 3s21 # 1

6
e1 : (30)

As z2 ! 1, we have e1 ! 0, and so s1 ! 61=
ffiffiffi
3

p
along C.

We also have k1 ! 0, b1 ! 0, and q1 ¼ q2z
1=2
2 ) 0 along C,

so the endpoints of the curve are pa and pr. Moreover,
implicit differentiation yields

0 ¼ 6s1ds1 # 1

6
de1 ; (31)

so along C we have

ds1
de1

¼ 6
1

12
ffiffiffi
3

p : (32)

Thus, C lies on the center manifolds of both pa and pr and
connects the two points.

C. Perturbation from the singular limit

In this section, we use the Melnikov approach employed
by Ref. 37 to show that the connection C from pa to pr breaks
for e 6¼ 0 and that the intersection of the center manifolds of
pa and pr is transverse. We then use the transversality to
compute the first order approximation of the parameter val-
ues required to produce such intersections, which correspond
to maximal torus canards.

We first define a distance function Dðq2; k2; b2Þ that
uses the value of the Hamiltonian to measure the distance
between a trajectory followed from pa in forward time and a
trajectory followed from pr in backward time. Applying
Proposition 3.5 of Ref. 37 to our system, we have

Dðq2; k2; b2Þ ¼ dqq2 þ dkk2 þ dbb2 þ dqqq22 þ Oð3Þ ; (33)

where the coefficients of the linear terms are

dp ¼
ð1

#1
rHðCðtÞÞ ,

z2;Cs2;C # 5s32;C
0

$ %
dt; (34a)

dk ¼
ð1

#1
rHðCðtÞÞ , 0

1

$ %
dt; (34b)

db ¼
ð1

#1
rHðCðtÞÞ ,

0

cosh

$ %
dt: (34c)

Note that in each integral rH is dotted with the first-order
term from the corresponding Taylor series, with each of the

other parameters being fixed at zero. Also, h is a constant in
the last equation, as is consistent to leading order. Using

rHðCðtÞÞ ¼ e#6z2;C
#s2;C

#ðz2;C # 3s22;CÞ

$ %
¼ e1#18t2 #t

1=6

& '
;

(35)

we have

dq ¼
ð1

#1
e1#18t2 t2

6
þ 2t4

& '
dt ¼ e

ffiffiffiffiffiffi
2p

p

648
; (36a)

dk ¼
ð1

#1
e1#18t2 1

6

& '
dt ¼ e

ffiffiffiffiffiffi
2p

p

36
; (36b)

db ¼
ð1

#1
e1#18t2 cos h

6

& '
dt ¼ e

ffiffiffiffiffiffi
2p

p

36
cos h : (36c)

At higher order, we find

dqq ¼ 2

ð1

#1
e#6z2;Cs52;C dt ¼ 2

ð1

#1
e1#18t2 t5

) *
dt ¼ 0 ; (37)

and the dominant term of the Oð3Þ corrections in Eq. (33) is
Oðq2b22Þ.

Applying the condition Dðq2; k2; b2Þ ¼ 0 to locate the
intersections, we find

q2
18

þ k2 þ b2 cos h ¼ Oðq2b22Þ : (38)

Since q2 ¼ e1=2, k2 ¼ k e#1=2, and b2 ¼ b e#1=2, we have

1

18
e þ k þ b cos h ¼ Oðb2Þ : (39)

Therefore, in terms of the original parameter a, maximal
torus canards occur at

a ¼ 1 # e
18

# b cos h þ Oðb2Þ : (40)

We require b & e1=2 for the remainder to be higher order.
These results coincide with those from Ref. 37 in the case
b¼ 0. For b 6¼ 0 and small x, the relation in Eq. (40) can be
used to show that, to leading order, maximal torus canards
persist over a range in a of size 2b. This matches the numeri-
cal results presented in the upper panels of Fig. 8. Moreover,
for any value of a within this range, Eq. (40) can be used to
calculate hR for the intersections of the persistent invariant
manifolds on R.

We note that the variable h is not included in the blow-
up because we want to consider it over the entire range of
values on S1. Nevertheless, we can still examine its dynamics
in the new variables and time-scale used in the blow-up and
we get _h ¼ !q!ex. In general, if _h ¼ eax then in the blow-up
we have _h ¼ !q2a#1!eax. Since the case !q ¼ 0 is important for
considering the singular limit of the blow-up, this suggests
that a ¼ 1=2 is a critical value in this model, and that
_h ¼ e1=2 may correspond to a bifurcation in the behavior of
this model. In fact, the above analysis carries over for
_h ¼ eax with a > 1=2, but for a < 1=2, one is already closer
to the fast rotation regime. This is consistent with the
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observation in Sec. III that the two frequencies associated
with the tori at onset (at least when b¼ 0) are x and e1=2,
confirming the intuition that the large and small regimes of
x should be measured relative to a e1=2 frequency scale.

Remark: The perturbation theory of Ref. 37, with its
Melnikov function D, is developed in the context of small-
amplitude autonomous perturbations. As noted above, we
have used it here for system (5) under the assumption that h
is a constant, so that the perturbation is autonomous. We
now show briefly that the time-dependence of h leads to
higher order terms. In this respect, we first observe that the
dominant term in Eq. (25c) is b2 cos h, and that the other
h # dependent term can be neglected since it is of Oð3Þ,
with magnitude proportional to q2b

2
2. Hence, h is slowly

varying in time, and when integrated against the extremely
rapidly decaying factor of e#18t2 from rH, only the value of
hðtÞ at t¼ 0 contributes, as may be seen from a steepest
descent calculation. Therefore, the h-dependent perturbation
terms may be treated as being effectively constant.

Remark: In the regime x ¼ OðeÞ, there are folded singu-
larities on the ring C

SN
. Preliminary calculations show that

they are directly related to the maximal torus canards. The
analysis of these folded singularities and the relationship to
torus canards and MMO are the subjects of a separate
article.9

VII. MORE GENERAL SYMMETRY BREAKING

In this section, we describe briefly how the results
obtained above for system (5) carry over to a rotated planar
system of van der Pol type with more general symmetry
breaking. As such, we define the new system

_r ¼ rðz # f ðrÞÞ ; (41a)

_h ¼ x ; (41b)

_z ¼ e a þ brðhÞ # rð Þ ; (41c)

where rðhÞ is a general, smooth, periodic function of
h 2 ½0; 2pÞ. In this case, the z-null-surface is N z ¼ fðr; h; zÞj
r ¼ a þ brðhÞg, which is a cylinder of approximate radius a
that is distorted by rðhÞ. As before, the parameter b measures
the strength of the symmetry breaking. For small b, system
(5) reduces at leading order to Eq. (41) with rðhÞ ¼ cos h,

and this linearized system avoids the branch point at
fðx; y; zÞjx ¼ b; y ¼ 0g present in system (5). We note that,
in the slow regime, the analysis of Sec. VI may be carried
out for system (41), and one finds that maximal torus canards
occur when

a ¼ 1 # e
18

# brðhÞ þ Oðb2Þ ; (42)

similar to Eq. (40) but with the function rðhÞ replacing
cos h, and again with b < e1=2. We also expect that maximal
canards persist into the fast x regime, but are less robust to
changes in a, as was the case in system (5).

These expectations are confirmed numerically in Fig. 11,
which shows the persistent invariant manifolds Se

a;2 and Se
r;2

on R for the case rðhÞ ¼ ð0:55 þ 0:45 cos hÞ cos ð2h # p=6Þ.
This particular functional form is chosen to break the reflec-
tion symmetries of cos h, and also to introduce additional ze-
ros in rðhÞ. Figure 11(c) shows the persistent invariant
manifolds when x is small. In this regime, Eq. (42) correctly
predicts the intersections of the manifolds—both the range in
a over which they persist, and their location in hR for any
particular choice of a within this range. The other panels in
Fig. 11 show how the persistent invariant manifolds deform as
x increases to the fast regime.

VIII. ROBUST MMO IN THE PURKINJE MODEL

In Sec. IV, we showed that MMO in system (5) can be
made more robust by slowing the dynamics of the rotation
variable h. In Ref. 36, and as we briefly highlighted in
Sec. II, MMO were reported to occur in the Purkinje cell
model (2) over a small range in parameter J, at the transition
between the bursting and amplitude modulated states (e.g.,
Figure 2 of Ref. 36). The analysis presented here for system
(5) suggests that to increase the range of J over which MMO
appear in the Purkinje cell model, one should modify the
original model in such a way as to decrease the spike fre-
quency. The details of the modification are described in Ap-
pendix. The result is a decrease in the typical spiking
frequency from about 600 Hz in the original model to about
300 Hz in the modified model—a decrease in the effective x
by about 50%.

We plot an example of the voltage dynamics for the
modified Purkinje model in Fig. 12. This example illustrates

FIG. 11. (Color online) The persistent invariant manifolds of system (41) for the case rðhÞ ¼ ð0:55 þ 0:45 cos hÞ cosð2h # p=6Þ, shown as they cross R. The
three panels show different regimes for the rotation rate: (a) fast, at x ¼ 0:9; (b) intermediate, at x ¼ 0:3; and (c) slow, at x ¼ 0:01. Note the different vertical
scale in (a). Other parameters: a¼ 0.99398, b¼ 0.01, e ¼ 0:1.
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a complicated MMO, consisting of variable numbers of
bursts and amplitude modulations. We find that the range of
parameter J over which these MMO appear is DJ / 0:005,
an increase of at least two orders of magnitude compared to
the range of J over which MMO occur in the original Pur-
kinje model. These results confirm the prediction of the main
model for the biophysical Purkinje model: namely, that slow-
ing the rotation increases the robustness of MMO.

IX. CONCLUSIONS AND DISCUSSION

In this article, we carried out a study of torus canards, a
phenomenon recently reported in a biophysical model of a
Purkinje cell.36 We found it useful to exploit the analogous
dynamics for canards in planar systems, such as the van der
Pol oscillator, in which a fixed point undergoes a Hopf bifur-
cation when the null-cline of the slow variable passes a fold
in the null-cline of the fast variable. A canard is a trajectory
from the attracting slow manifold that spends a long time in
the neighborhood of the repelling slow manifold. The family
of canards exist in a narrow range of parameter values just
beyond the Hopf bifurcation and is associated with rapid
growth of small amplitude limit cycles into large amplitude
relaxation oscillations. The analogous behavior in one higher
dimension is a torus bifurcation of a limit cycle that occurs
as the null-surface of a slow variable passes a fold in the
null-surface of a fast variable. A torus canard is a trajectory
from the persistent invariant manifold of attracting limit
cycles that spends a long time in the neighborhood of the
persistent invariant manifold of repelling limit cycles. The
family of torus canards found nearby the torus bifurcation
may exist over a much larger range of parameters and plays
an important role in organizing the global behavior of trajec-
tories in the system.

We began with a brief review of the torus canards that
exist in the Purkinje cell model. We then showed that torus
canards also occur in a much simpler three-dimensional model
which consists of a rotated planar system of van der Pol type.
In this case, the torus canards are simply copies of the planar
canards, trivially extended to a three dimensional phase space
by rotation about the z-axis. The main model considered in
this paper is a variation of the rotated planar system, modified
to break the rotational symmetry. We did this by introducing a
phase-dependent term in the (slow) z-dynamics. The resulting
model, system (5), exhibits nontrivial torus canards.

We studied explicitly how the rotation rate x affects the
behavior of torus canards in this model. In the regime of fast

rotation, we showed via the method of averaging that the
phase-dependent term shifts the location of the torus bifurca-
tion associated with the torus canards, but that the behavior
of the torus canards themselves is otherwise essentially the
same as in the planar case. In the regime of slow rotation, we
used the method of geometric desingularization (a.k.a., the
blow-up method) to identify the particular trajectories on the
attracting persistent invariant manifold that correspond to
maximal torus canards. These exist over a large range of pa-
rameter values and separate orbits which execute a LAO
from those which execute a SAO. The coexistence of such
orbits results in MMO in the long-time behavior of individ-
ual trajectories. The results from the detailed analysis of sys-
tem (5) carry over to system (41), which includes an
arbitrary symmetry breaking term.

Finally, returning to the Purkinje cell model, we deter-
mined how to substantially enlarge the parameter interval
over which torus canards and MMO occur. This was achieved
using insight gained from our elementary model, system (5).
These results may be useful for developing a better under-
standing of transitions between bursting states and amplitude
modulated states in this and other models in neuroscience.
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APPENDIX: PURKINJE MODEL

The value of the parameters used in the Purkinje cell
model (2) are given in Table I. The equations51 used for the
forward and backward rate functions are

a
CaH

¼ k
CaH

1:6

1 þ e#0:072ðV # 5Þ ; (A1a)

b
CaH

¼ k
CaH

0:02ðV þ 8:9Þ
#1 þ eðV þ 8:9Þ=5 ; (A1b)

FIG. 12. (Color online) Example of a MMO occurring in the modified Purkinje model of Sec. VIII, with slower fast currents. The choice of J¼ #34.6 nA
results in a complicated pattern of bursts (labeled B) interspersed with amplitude modulation (labeled A).
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a
NaF

¼ k
NaF

1

1 þ eðVþ59:4Þ=10:7

$ %
0:15 þ 1:15

1 þ eðVþ33:5Þ=15

$ %#1

;

(A1c)

b
NaF

¼ k
NaF

1 # 1

1 þ eðVþ59:4Þ=10:7

$ %
0:15 þ 1:15

1 þ eðVþ33:5Þ=15

$ %#1

;

(A1d)

a
KDR

¼ k
KDR

1

1 þ e#ðVþ29:5Þ=10

$ %
0:25 þ 4:35 e#jVþ10j=10
h i#1

;

(A1e)

b
KDR

¼ k
KDR

1 # 1

1 þ e#ðVþ29:5Þ=10

$ %
0:25 þ 4:35 e#jVþ10j=10
h i#1

;

(A1f)

a
KM

¼ 0:02

1 þ e#ðVþ20Þ=5 ; (A1g)

b
KM

¼ 0:01 e#ðVþ43Þ=18 ; (A1h)

and the equilibrium function for the fast potassium gat-
ing variables is

m
NaF;1 ¼ 1 þ e#ðVþ34:5Þ=10

h i#1
: (A2)

The sodium channel is sufficiently fast that we make the
standard approximation in Eq. (2a) that m

NaF
takes the value

m
NaF;1. The constants k

CaH
, k

NaF
, and k

KDR
are included in Eq.

(A1) to adjust the time scales of these currents. In Sec. II, as
in Ref. 36, all these constants are set to one. In Sec. VIII, we
choose k

CaH
¼ 0:9, k

NaF
¼ 0:5, and k

KDR
¼ 0:5. Slowing these

currents decreases, the characteristic rapid spiking frequency
exhibited by solutions from about 600 Hz to about 300 Hz.
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TABLE I. Parameters used in the Purkinje cell model (2). In addition, we

use C¼ 1 nF for the cell’s capacitance.

Channel
Reversal

potential (mV)
Conductance
(lm ho)

leak (L) V
L

¼ #70 g
L

¼ 2

High-threshold calcium (CaH) VCaH ¼ 125 gCaH ¼ 1

Fast sodium (NaF) V
NaF

¼ 50 g
NaF

¼ 125

Delayed rectifier potassium (KDR) V
KDR

¼ #95 g
KDR

¼ 10

M-current (KM) V
KM

¼ #95 g
KM

¼ 0:75
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