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Distributed control in a mean-field cortical network model: Implications for seizure suppression
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Brain electrical stimulation (BES) has long been suggested as a means of controlling pathological brain
activity. In epilepsy, control of a spatially localized source, the seizure focus, may normalize neuronal dynamics.
Consequently, most BES research has been directed at controlling small, local, neuronal populations. At a higher
level, pathological seizure activity can be viewed as a network event that may begin without a clear spatial
focus or in multiple sites and spread rapidly through a distributed cortical network. In this paper, we begin
to address the implications of local control in a network scenario. To do so, we explore the efficacy of local
BES when deployed over a larger-scale neuronal network, for instance, using a grid of stimulating electrodes
on the cortex. By introducing a mean-field model of neuronal interactions we are able to identify limitations
in network controllability based on physiological constraints that suggest the need for more nuanced network
control strategies.
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I. INTRODUCTION

Pathological oscillations are characteristic of many neuro-
logical disorders. A striking example of this is epilepsy, the
condition of chronic unprovoked seizures, which affects over
50 million people worldwide [1]. For many of these patients,
seizures remain poorly controlled despite maximal medical
management. In these cases, invasive treatment options are
a viable alternative, including resective surgery, in which the
brain region implicated for seizure genesis is removed [2].
When the epileptogenic zone includes eloquent cortex (e.g.,
motor or speech cortex), alternative invasive treatments are
considered, including brain electrical stimulation (BES) [3].
The most common BES method is vagus nerve stimulation,
thought to affect brain regions (e.g., the thalamus) that might,
in theory, increase cortical inhibition and thereby lessen or
modulate seizures [4]. Seizures may also be aborted by direct
electrical stimulation of the cortex. For example, cortical
afterdischarges (seizure-like activity elicited by direct cortical
electrical stimulation) may be arrested by applying brief bursts
of pulse stimulation to the cortex [5] at a variety of frequencies
[6,7].

At the microscopic scale of individual neurons and small
neural populations, the impact of electrical stimulation on
seizure-like activities has been thoroughly studied [8,9]. But
the effect of BES on a network of macroscopic brain regions
remains incompletely understood. Characterizing the impact
of cortical stimulation at the macroscopic level will be impor-
tant in determining optimal stimulation sites, transducers, and
parameters for terminating seizures.
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Animal models of epilepsy have allowed researchers to
explore different BES methods that currently pose unaccept-
able risks to human subjects [9,10]. In addition, mathematical
models provide an alternative means to safely investigate the
effects of new BES paradigms [11]. Typical studies have
focused on the mechanisms of control in local neuronal popula-
tions, for instance, cortical columns [12,13], single cells [14],
and small neuronal populations [15,16]. While these works
have offered insights into local controllability, none directly
address the notion of distributed control of the seizure activity
propagating through a large network. Such an understanding
is particularly important to treating epilepsy in which some
seizures can be understood as network events, beginning in a
circumscribed region but rapidly recruiting other brain areas
through a cascade of spreading activity. An optimal control
strategy may thus target multiple spatially localized regions
while being sensitive to the network structure.

This paper offers an initial theoretical exploration of control
issues in cortical networks. We are motivated by existing
technologies, such as electrocorticography (ECoG), in which
grids of electrodes are placed on the cortical surface [see
Fig. 1(a)]. Animal experiments and medical technologies such
as deep-brain stimulation show that voltage stimulation can
suppress activity in neural tissue [9]. Thus, it is plausible that
such a grid could be used in a distributed control scheme.
However, would localized suppression at a few spatially
disparate regions be sufficient to stabilize the entire network?
In order to investigate this question at the spatial scale
relevant to ECoG, we use a mesoscale model consisting of
coupled mean-field neuronal oscillators [17]. The propagation
of seizure activity was previously modeled in a similar context
in Ref. [18], where a controller was proposed to modulate a
localized epileptogenic focus. Here, we examine distributed
control at multiple sites. The model is simple enough to be
analytically tractable but maintains some important features
from neurophysiology. By characterizing the feasibility of
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FIG. 1. (a) Typical intracranial grid configuration. We examine
the implications of local control at a single node for control over the
larger network. (b) Two-column model network with local actuation
only at column 2. The ej (gray) and ij (white) indicate excitatory and
inhibitory neural populations, respectively. The arrows between the
columns indicate excitatory connections.

control in this model, we can identify limitations that would
persist in more complex biophysical models.

To this end, we study two types of cortical networks: those
coupled by diffusion and by synaptic transmission. The former
has been employed in mean-field modeling (e.g., [19]) and
permits analytic characterizations, although the connection
to neural physiology is less clear. Here, we use diffusive
coupling to gain basic analytic insight before moving to the
case of synaptic coupling, which is the commonly accepted
modality by which most corticocortical transmission occurs,
although this improved realism limits rigorous analysis. The
controllability of the network is different in the two cases. In
the diffusive network, a sufficiently dense grid of local control
nodes can always suppress pathological activity. Conversely,
when coupling is synaptic, distributed control is not sufficient
to completely suppress pathological activity but may be able
to firewall activity within a section of cortex. Consequently,
the analysis demonstrates fundamental limitations that suggest
the development of new BES network paradigms.

The outline of this paper is as follows: In Sec. II we in-
troduce the mean-field cortical network model. In Secs. III–V
we describe the controllability of such a network in the case of
diffusive and synaptic connectivity. For the latter we consider
both nearest-neighbor and small-world network topologies.
Conclusions and an outline of future work are provided in
Sec. VI.

II. PRELIMINARIES

A. Cortical network model

The Wilson-Cowan model [20] is used to describe os-
cillatory behavior in a single cortical macrocolumn, i.e., a
cylindrical portion of cortical tissue ∼0.5–3 mm in diameter

[21]. It is a mesoscale model and offers a compromise between
the biophysical detail of single neuron models of the Hodgkin-
Huxley type [22] and the ability to describe macroscopic brain
activity, such as field potentials, in large populations and over
large cortical distances.

Here, we construct a network of N Wilson-Cowan columns,
given by

ėj = −ej + (ke − reej )F[c1ej − c2ij + Ce(ē) + Pj (t)]

+ be
juj (t) + w(t), (1)

i̇j = −ij + (ki − riej )F[c3ej − c4ij + Ci(ē) + Qj (t)]

+ bi
juj (t), (2)

where (ej ,ij ) are, respectively, the activity in excitatory and
inhibitory cell populations of the j th column. The function F
is of the standard sigmoidal form

F(x) = 1

1 + exp[−a(x − θ )]
− 1

1 + exp(aθ )
. (3)

The biophysical interpretation and typical values for the
parameters in Eq. (1) are given in Table I. The network
interconnectivity arises through the functions Ce(·) and Ci(·),
where

ē = [e1 e2 · · · eN ], (4)

and the connections between columns are only excitatory. The
term uj (t) is the exogenous input, or control, while w(t)
is a white noise process that models random background
activity in each column. If column j is actuated, for instance,
by a surface electrode, then be

j ,b
i
j are nonzero. Again, we

are motivated by existing electrode grid configurations, e.g.,
Fig. 1, in which only a subset of cortical columns are directly
stimulated. For most of the simulations we will assume that the
control uniformly deactivates both excitatory and inhibitory
populations, i.e., be

j = bi
j < 0. In Sec. VI we will consider

the issue of imperfect control, where these coefficients may be
uncertain due to, for example, differential effects of stimulation
depending on neuron orientation [8,23].

In the absence of both interconnections, i.e., when Ce(·) =
Ci(·) = 0, and control, i.e., when be

j = bi
j = 0, a single

column exhibits two dynamic regimes of interest, depending
on the level of external input Pj (t),Qj (t) to the excitatory
and inhibitory populations, respectively. Specifically, when
Pj (t),Qj (t), and w(t) are sufficiently small, the column
displays small deviations about a stable equilibrium [note that
(ej ,ij ) = (0,0) is a stable equilibrium when P (t),Q(t) = 0].

TABLE I. Parameter values for the Wilson-Cowan model.

Symbol Description Typical value

c1,c3 Average number of excitatory synapses per cell 16, 15
c2,c4 Average number of inhibitory synapses per cell 12, 3
P,Q External input to the excitatory, inhibitory subpopulation [0,1.25], 0
ke,ki The maximum values of the excitatory, inhibitory response functions 1,1
re,ri The absolute refractory period of the excitatory, inhibitory subpopulations 1,1
ae,ai The value of the maximum slope of the logistic curve for the excitatory, inhibitory subpopulation 1.3, 2
θe,θi The position of maximum slope of the logistic curve for the excitatory, inhibitory subpopulation 4, 3.7
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Such behavior is representative of normal neuronal population
activity. Conversely, when Pj (t) is large, the column displays
oscillations in the (ej ,ij ) plane. Such an oscillation is more
indicative of a pathologically entrained neuronal ensemble and
will be used herein as a surrogate for epileptogenic activity.

B. Control in a single column

Previous studies in BES, both experimental and compu-
tational, have typically focused on the problem of control
in an isolated neuronal population [3,8,24]. Emphasis has
been placed on understanding the specific mechanisms of
electrical stimulation, including the sensitivity of cells to
electric fields [25] and their orientation with respect to the
cortical surface [23]. From a control perspective, effort has
been directed at addressing practical considerations such as
minimization of delivered current and charge balance [3,26].

There remain many open questions with respect to single-
cell and small-population control. Our focus here is on
how such control, once achieved, may affect activity at the
network level. Hence, we assume that there exists a controller
design that successfully regulates the neuronal activity of a
single cortical column in real time, i.e., a local control of
the form

yj = g(ej ), uj = h(yj ), (5)

where g(·) maps the excitatory neural activity into yj , the
observed brain voltage signal. For the purposes of our
simulations, we will assume, without loss of generality, that
g(ej ) = ej and h(yj ) = kyj , i.e., simple proportional control
based on (1) and (2). Such a scheme, though simplistic,
is sufficient to ensure suppression of an individual cortical
column in a more detailed model [12] and, more importantly,
enables us to assess the implications of local control in a
network of interacting elements. In reality, the specific local
control law would likely rely on desynchronization of the
underlying population for achieving suppression [16,27,28].

III. CONTROL IN DIFFUSIVELY COUPLED NETWORKS

The simplest model of coupling between neuronal popula-
tions is standard diffusion. Here, the terms Ce(·) and Ci(·) in
(1) and (2) take the form

Ce,i(ē) = kd

∑

k∈N
(ek − ej ), (6)

where N denotes the set of neighboring columns and kd is a
diffusive constant. In the absence of input, the controllability
of the network about the origin can be assessed directly by
linearizing (1) and (2) about the point (ē,ī) = (0,0). The more
interesting case occurs when Pj (t) is nonzero and the network
exhibits pathological oscillation.

Consider a simple two-column network, reciprocally cou-
pled as shown in Fig. 1(b), and let P1(t) be such that both
columns exhibit limit cycle behavior. Assume that control is
applied locally to the second column in order to suppress
activity there, i.e., b1 = 0,b2 = 1, so that

|e2(t)| ≈ 0. (7)

FIG. 2. Two columns with diffusive coupling. External input to
column 1 drives oscillations in both columns. Control applied to
column 2 at t = 400 ms eliminates oscillations in both columns.

Proposition 1. For kd sufficiently large, local control in
column 2 suppresses limit cycles in the connected two-column
network. �

See the Appendix for the proof to Proposition 1. The
intuition behind this result follows from the fact that the
diffusive term, kde1, acts as a proportional feedback for
column 1.

To illustrate control in the two-column network, consider
the standard parametrization [20]

c1 = 16, c2 = 12, c3 = 15, c4 = 3, ae = 1.3, ai = 2,

θe = 4, kd = 2, θi = 3.7, re = ri = ke = ki = 1,

P1(t) = 1.25, P2(t) = Q1(t) = Q2(t) = 0, (8)

with w(t) being a Gaussian random process of variance 0.1.
Figure 2 plots e1,e2 from the resulting simulation when control
at column 2 is turned on at t = 400 ms. As shown, this
control induces stability about a low-activity fixed point in
both columns. In general, for certain parameter ranges, a
column may exhibit multiple attractor states [29]. However,
this phenomenon will not occur for the parametrizations
considered in this paper.

Proposition 1 suggests that, in a diffusively coupled network
of more than two nodes, a sufficiently dense grid of control
electrodes can suppress the generation and propagation of
pathological activity (consider the limiting case of a control
actuator placed at every other node in the network). To
demonstrate this property, we consider a simulation of a
network consisting of 225 columns arranged in a 15 × 15 sheet.
Here, we assume that a column encompasses a volume that is
roughly 6 mm in diameter, or the equivalent of roughly four
macrocolumns, which we reason is approximately the region
affected by a typical intracranial electrode. In this setting,
our network spans a surface area of 9 cm × 9 cm, which
is approximately the size of a typical intracranial electrode
grid. On this network, we will consider 25 (5 × 5) equally
spaced actuators, equivalent to roughly a 1-cm interelectrode
spacing, again, typical of actual intracranial grids. Thus, our
configuration equates to a grid density (the ratio of controlled
to uncontrolled columns) of around 1 : 10.

Figure 3(a) illustrates the results of a simulation of this
225-column cortical sheet in the uncontrolled case. The
network parametrization is as in Eq. (8), and coupling is in a
nearest-neighbor topology. Here, excess drive is briefly applied
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FIG. 3. (Color online) Distributed control on a 15 × 15 network
with diffusive coupling. (a) Uncontrolled propagation. The network
is kindled at a single column in the lower right for t < 625 ms.
(b) Control on a 5 × 5 subgrid. Here, pathological activity is
completely abolished. Warm (cool) colors (or lightness of gray scale)
indicate activation (inactivation) of the excitatory population within
each column. (c) Monte Carlo simulation showing entrainment (as
defined by the sum of excitatory activity over all columns) over
the entire network. The solid and dashed lines indicate the mean
and standard deviation over n = 100 simulations. Note that in the
controlled case, the standard deviation is small.

to a column in the lower right quadrant [Pj (t) = 1.25 at the
column], which kindles and entrains the rest of the network.
Nodes at the network boundary receive input from neighboring
nodes but do not provide outgoing excitation to other nodes.
Figure 3(b) shows the same network with control applied using
the grid of 25 actuators.

Localized control at these sparse columns is sufficient
to stabilize the network. Figure 3(c) shows a Monte Carlo
analysis (n = 100 simulations) of the entrainment (as defined
by the sum of excitatory activity over all columns) of the
network in both the uncontrolled and controlled cases. During
each simulation trial, a new realization of the background noise
w(t) is generated, and the model parameters are randomly and
uniformly chosen to within 5% of the values in Eq. (8). Over
time, the controlled network exhibits much lower entrainment
than the uncontrolled network.

While distributed control here seems effective, the diffusive
coupling model has an important deficiency. It assumes passive
inhibition, i.e., quiescence in column 2 suppresses column 1.
Such inhibition may occur in the brain via ephaptic means
or through gap junctional connections. The dominant mode
of transmission in the cortex is, however, synaptic coupling,
in which the presynaptic area must be excited in order to

modulate activity in the postsynaptic area. In the next section
we explore the limitations of networked control in this more
realistic scenario.

IV. CONTROL IN SYNAPTICALLY COUPLED
NETWORKS: NEAREST-NEIGHBOR TOPOLOGY

Consider a simple representation of synaptic coupling given
by

Ce,i(ē) = ks

∑

k∈N
ek, (9)

where N again denotes the set of neighboring columns and ks

is the coupling strength [30]. Here, excitation in a neighboring
column induces activity in both e and i populations. The
following result highlights a fundamental limitation in the
controllability of such a network

Proposition 2. Consider the network of two columns
illustrated in Fig. 1(b) and described by (1) and (2), coupled
reciprocally via synaptic coupling (9), where P1(t),Q1(t) is
such that limit cycles are displayed in both columns in the
absence of control. Unlike the diffusive model, the system
is not controllable through control applied to the second
column. �

See the Appendix for the proof of Proposition 2.
Figure 4 provides an illustration of this property, showing the
same two-column network as in Fig. 2, except with (9) and
ks = 2. Although column 2 is locally suppressed, column 1
continues to display a limit cycle.

Note that the exact size of an epileptic focus is, in general,
not well known and may be larger than a column. Proposition
2 is intended only to illustrate that nonlocal control, offset
from pathological tissue, cannot yield complete suppression
of activity in the network.

Although complete suppression is not possible, distributed
control may still limit, or firewall, pathological activity. As
an example, consider Fig. 5(a), which shows propagation of
pathological activity in an uncontrolled, synaptically coupled
network. The parametrization here is the same as in Fig. 3,
except with P (t) = 0.8,ks = 1.5 for all columns. Again,
excess drive is initially applied to a single column in the
lower right quadrant [Pj (t) = 1.25 at the column], which is
sufficient to kindle and entrain the remainder of the network.
When local control is applied at 25 equally spaced columns

FIG. 4. Two columns with synaptic coupling. External input to
column 1 drives oscillations in both columns. Control applied to
column 2 (at t = 400 ms) fails to control column 1.
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FIG. 5. (Color online) Distributed control on a 15 × 15 network
with synaptic coupling. (a) Uncontrolled propagation. The network
is kindled at a single column in the lower right for t < 625 ms.
(b) Control on a 5 × 5 subgrid. Pathological activity is not abolished
but stays firewalled within the initial pathological region. Color (gray
scale) scheme is as in Figure 3. (c) Monte Carlo simulation showing
entrainment (as defined by the summed excitatory activity) over the
entire network. The solid and dashed lines indicate the mean and
standard deviation over n = 100 simulations.

[Fig. 5(b)], the pathological activity stays firewalled within the
region of kindling.

We note from Fig. 5(c) that, over time, the pathological
activity may still begin to accumulate within the network.
Indeed, depending on the strength of coupling, the firewalling
effect may be eventually overcome by recurrent excitatory
activity. Nevertheless, containing or slowing propagation may
still be valuable as a tool to detect or localize seizure activity,
providing added time for clinical intervention with pharmaco-
logical or other therapeutic agents. Moreover, slowing seizure
propagation may allow intrinsic mechanisms within epileptic
foci to “run their course” and terminate endogenously without
affecting larger areas of the brain.

Remark 1. In the two-column network (Fig. 4) one may
surmise a strategy in which column 2 is placed in an antiphase
oscillation to that of column 1, providing a sort of destructive
interference. While this may work in suppressing column 1,
such an antiphase oscillation requires activation of column
2, which may entrain pathological activity in other columns
activated by column 2 in a larger network.

V. CONTROL IN SYNAPTICALLY COUPLED NETWORKS:
SMALL-WORLD TOPOLOGY

The nearest-neighbor connectivity topology, while simple,
may not accurately reflect the longer-range anatomical con-

FIG. 6. Control efficacy in small-world topologies: (a) Control ef-
ficacy when, with probability p, one nearest-neighbor edge is replaced
with long range connection. (b) Propagation and control efficacy
in a small-world network topology with higher connection density
as compared with purely nearest-neighbor coupling. A more dense
(i.e., controlled nodes to uncontrolled nodes) control grid is required
to recover comparable propagation suppression performance. Lines
indicate mean of n = 100 simulations, with parameters fixed and
different instantiations of small-world topology and noise.

nections within the cortex [31,32]. To understand the effects
of these longer-range connections, we perform simulation
studies in a small-world network topology [33]. Here, each
column may, with some probability p, make a long range
connection to a non-neighboring column. To maintain the
overall connectivity density, when a long range connection is
made, one of the nearest-neighbor connections is randomly and
equiprobably removed. Figure 6(a) demonstrates the control
efficacy of this scenario for various values of p. As shown, the
performance of the control scheme is approximately retained
over all cases. The result can be understood in terms of the
uniformity of our control grid. Since we use equally spaced
actuators that cover the entire network, any small-world edge
emanating from the focus is effectively firewalled by an
actuator located near the termination of the connection. If
our grid was not uniform and only covered the region of the
network containing the focus, then the presence of small-world
edges would cause the activity to escape containment. This
result suggests that, for a uniform grid, the critical factor in
efficacy is not the degree of randomness but instead a ratio of
the strength and density of connections between columns to
the spacing or density of actuators.

To examine this issue, we also study a small-world situation
in which connection density is not maintained. In this setting,
when a long range connection is made, a nearest-neighbor
connection is not removed. Figure 6(b) illustrates the prop-
agation of activity in this setting for p = 0.1, where the
simulation parameters are otherwise identical to that of Fig. 5.
Not surprisingly, the uncontrolled propagation is faster than
in the nearest-neighbor-only configuration, and the efficacy of
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the 5 × 5 control grid is diminished. When the grid density is
increased to 6 × 6 (relative to the same 15 × 15 network), the
control efficacy improves substantially, with the propagation
approximating that of the 5 × 5 case in Fig. 5(a). The results
suggest that random long range connections exacerbate the
speed of activity propagation in this model only when they
increase the overall connection density, and that this effect can
be offset by a compensatory increase in grid density.

We can thus interpret the effect of our distributed control
scheme as dependent on two complementary factors: (i) a
spacing, or density, of actuators sufficient to contain the spread
of excitatory activity and (ii) coverage by our actuator grid of
those regions affected by long distance connections emanating
from the seizure focus. The combination of these two factors
leads to what we have termed the firewalling of seizure activity.
When firewalled, the activity remains localized in the region of
the seizure focus, even in the case of long range connections.
Thus, given a set of known long range connections (from,
say, brain mapping studies [34]), along with nearest-neighbor
local connectivity, the model could be used to investigate
the minimum actuator spacing or density required to achieve
propagation containment. Moreover, such studies may suggest
the design of nonuniform grids that place electrodes only near
areas impinged upon by the seizure focus. Characterizing in
detail the relationship between network connection strength
and actuator grid spacing and design will be the subject of
future work.

VI. LIMITATIONS DUE TO IMPERFECT
LOCAL CONTROL

As mentioned above, the methodology introduced in this
paper is intended to assess distributed control over a large
cortical network. We do not explicitly treat the problem
of local control, which is itself an active area of research.
Issues such as the geometry of the control electrode with
respect to the cortical surface may significantly alter the
efficacy of any fixed feedback scheme of the form (5).
For instance, depending on the orientation of the sulci near
the electrode, the stimulation may preferentially affect the
inhibitory interneurons as opposed to the excitatory pyramidal
cells [8]. Similarly, the same stimulation parameters may
depolarize, rather than hyperpolarize, some elements of the
underlying cell population. In our model, this would amount
to a change in the coefficients be

j and bi
j in Eqs. (1) and (2).

To investigate this issue, we examine the effect of imperfect
local control on the distributed control scheme. Specifically,
we repeat the simulation of Fig. 5 by randomly choosing a
portion of the control network (10%, 30%, or 50% of nodes)
for which control is imperfect, modeled here by setting be

j

or bi
j to zero, i.e., control of only the inhibitory or excitatory

population.
As shown in Fig. 7, the critical factor in the efficacy of

the scheme is the control to the excitatory cell population.
If control is preferential to the inhibitory population (i.e.,
local failure causes be

j = 0), then the performance degrades
as a function of the failure rate [Fig. 7(a)]. Functionally, this
is analogous to a decrease in the grid density. Moreover, by
selectively suppressing inhibitory elements, the propagation in
the network is actually enhanced due to an excess of excitation

FIG. 7. Simulation study of network entrainment for different
levels of local control failure. Lines indicate mean of n = 100
simulations. (a) Control preferential to inhibitory cell population.
(b) Control preferential to excitatory cell population. Note that the
traces virtually overlap.

compared to inhibition (compare with Fig. 5). Conversely, if
control is preferential to the excitatory population (i.e., local
failure causes bi

j = 0), performance is unaffected [compare
Fig. 7(b) with Fig. 5]. The result is promising since excitatory
cells, owing to their longer axons [35], are more apt to be
affected by electrical stimulation.

We do not consider the case when the local electrode
may depolarize the underlying population, i.e., be

j ,b
i
j > 0.

Uncertainties in the sign of be
j ,b

i
j would likely necessitate

specialized local controllers in place of (5). For instance, a
unique situation may arise when be

j ≈ 0, bi
j > 0. Here, in order

to suppress excitatory activity, one may surmise a local strategy
that depolarizes the inhibitory cell population.

VII. DISCUSSION AND CONCLUSIONS

Understanding the biophysical mechanisms of BES remains
an active and important area of research. While elucidating
these mechanisms, it will be important to consider the implica-
tions of local BES when deployed over broader networks. This
paper has introduced a modeling framework for this purpose,
a platform on which to bridge analysis at the level of small
neuronal populations with that over larger brain areas.

We show that local control may be insufficient to completely
suppress pathological activity, which may be important when
such activity is diffuse in space or does not have a predictable
focus. This is due to a basic limitation in the controllability of
the underlying dynamical system. Nevertheless, distributed
control has the capacity to firewall or delay propagation,
which may prove useful for real-time seizure detection or
localization algorithms, potentially enabling intervention with
other therapeutics. The controller would only need to remain
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on until such time as these other interventions were made (or
such time as the seizure dynamics ceased endogenously).

The size of our model network has been chosen to match the
scale of typical intracranial electrode grids. Based on our anal-
ysis, we expect that the qualitative behavior of the distributed
control scheme does not change with increased network
size as long as the interelectrode distances are maintained.
Nevertheless, in future work, the model may be paired with
anatomical data from brain mapping studies to examine larger
networks and account for additional complexities in cortical
connectivity, for instance, long range excitation from column
a onto only inhibitory cells in column b. When combined with
more principled methods for differentially targeting inhibitory
or excitatory populations, this additional detail may suggest
entirely new schemes for spatially containing propagation.
Such schemes have the potential to overcome the limitations
illustrated herein.

Evaluation in more detailed computational models and
experiments must be completed before any possible im-
plementation. However, the model shown herein can be
used to examine theoretical yet fundamental issues such as
control grid density, precision of electrode placement, and
parameter configuration. By rapidly synthesizing potential
control strategies, the model can serve as a precursor to
important, but challenging, experimental studies in the future.
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APPENDIX

Proof of Proposition 1. Since column 2 is controlled,
it follows that e2(t) can be made arbitrarily small, and
thus

ė1 = −e1 + (ke − ree1)Fe[(c1 − kd )e1 − c2i1 + P1(t) + ε],

(A1)

i̇1 = −i1 + (ki − rie1)Fi[(c3 − kd )e1 − c4i1 + Q1(t)],

(A2)

where ε � P1(t). As shown through structural bifurcation
analysis in Ref. [29], for any P1(t),Q1(t), there exists a kd > 0
such that no limit cycles exist and the system exhibits stability
about a fixed point.

Proof of Proposition 2. The proof is by contradiction.
Specifically, assuming the converse and using the standard
definition of controllability, there exists an input u2(t) such
that [e1(t),i1(t),e2(t),i2(t)] = 0 for t > 0. Since e2(t) is
suppressed, column 2 sends no outgoing synaptic excita-
tion to column 1. Then it follows that the dynamics of
column 1 are

ė1 = −e1 + (ke − ree1)Fe[c1e1 − c2i1 + P1(t)],
(A3)

i̇1 = −i1 + (ki − rie1)Fi[c3e1 − c4i1 + Q1(t)],

which, by definition, exhibits a limit cycle. In this case,
[e1(t),i1(t)] �= 0, and the system cannot be controllable. Note
that a full dynamical analysis of this configuration is contained
in Ref. [30].
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