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� The sleep EEG provides an in vivo assay of spontaneous cortical activity across post-natal
development.

� Early brain development is marked by dramatic alterations in discrete cortical rhythms.
� Stereotyped integration patterns between brain rhythms emerge across early brain development.

a b s t r a c t

Objective: Although neuronal activity drives all aspects of cortical development, how human brain
rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate
the emergence of human brain rhythms and functional cortical networks over early development.
Methods: We examined cortical rhythms and coupling patterns from birth through adolescence in a large
cohort of healthy children (n = 384) using scalp electroencephalogram (EEG) in the sleep state.
Results: We found that the emergence of brain rhythms follows a stereotyped sequence over early
development. In general, higher frequencies increase in prominence with striking regional specificity
throughout development. The coordination of these rhythmic activities across brain regions follows a
general pattern of maturation in which broadly distributed networks of low-frequency oscillations
increase in density while networks of high frequency oscillations become sparser and more highly
clustered.
Conclusion: Our results indicate that a predictable program directs the development of key rhythmic
components and physiological brain networks over early development.
Significance: This work expands our knowledge of normal cortical development. The stereotyped neuro-
physiological processes observed at the level of rhythms and networks may provide a scaffolding to
support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a
sensitive biomarker for cortical health across development.
� 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Over the course of post-natal development, the human brain
transforms from a relatively quiescent structure into a highly
complex organ capable of increasingly sophisticated cognitive
processes. Throughout these critical periods, neuronal activity
guides all aspects of cortical development from neurogenesis,
neuronal differentiation and migration, to synaptic maturation
and pruning (Komuro and Rakic, 1993; Katz and Shatz, 1996;
Kriegstein, 2005). A substantial literature supports the hypothesis
that neuronal oscillations serve to orchestrate complex neuronal
assemblies through transiently coupled physiological rhythms
across multiple temporal and spatial scales (reviewed in Buzsaki,
2004). Such coordinated cortical functional networks underlie
multiple cognitive processes (Gray et al., 1989; O’Keefe and Recce,
1993; Fries 2005; Buzsaki and Draguhn, 2004) and have been
found to be disrupted in many cortical diseases (e.g. Uhlhaas and
Singer, 2010; Sun et al., 2012; Kramer and Cash, 2012). How
human brain rhythms and circuits emerge and mature during crit-
ical periods of cortical development remains an active area of
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research. The sleep electroencephalogram (EEG) provides a unique
in vivo opportunity to observe spontaneous cortical voltage activity
across interacting brain regions over the course of post-natal corti-
cal development, providing a window into the intrinsic maturation
of brain rhythms across brain regions. Signal processing techniques
tailored for neurophysiological data enable principled evaluation
of the emergence of these neuronal rhythms and the large-scale
cortical ensembles (functional networks) they coordinate.

Prior work evaluating developing cortical rhythms and connec-
tivity patterns during sleep suggests rich dynamics, but remains
incomplete due to sparse electrode sampling, small number of sub-
jects, and limited evaluation of pediatric age ranges (Kuks et al.,
1988; Sterman et al., 1977; Gaudreau et al., 2001; Jenni and
Carskadon 2004; Jenni et al., 2005; Campbell and Feinberg, 2009;
Myers et al., 2012; Kurth et al., 2010; Tarokh et al., 2010; Feinberg
et al., 2011). We examined cortical rhythms and brain connectivity
patterns from birth through adolescence in a large cohort of devel-
opmentally normal children using scalp EEG in the sleep state. We
found that brain rhythms and connectivity patterns change
dramatically over childhood, but follow a remarkably stereotyped
sequence. In general, higher frequencies increase in prominence
with age while there is striking regional specificity throughout
development. The maturation of coupling patterns follows a gen-
eral pattern in which low-frequency networks increase in density
but are broadly distributed across childhood and adolescence and
high frequency networks become sparser but highly clustered
across development. Our results indicate that a predictable pro-
gram directs the development of key rhythmic components and
physiological brain networks over early development. This work
provides a foundation upon which to better understand the neuro-
physiological scaffolding that supports normal brain development
and ultimately, how alterations in these precisely timed sequences
may relate to and even anticipate disease.
2. Materials and methods

2.1. Subjects and EEG recordings

Subjects age 0–18 years with normal EEG recordings (as defined
by clinical electroencephalographers independent from this study)
were retrospectively identified from recordings performed at Mas-
sachusetts General Hospital between 2/1/2002 and 5/1/2012
(n = 4175). Clinical chart review was performed and only those
children with documented normal neurodevelopment and non-
epileptic events were included for analysis. Neurodevelopmental
status was determined from chart review of the clinical assess-
ments just prior to or following the EEG recording. Patients that
received alcohol, sedatives, anticonvulsant medications, or neuro-
active medications during the recording period were excluded.
Children born prematurely (<38 week gestational age) were
excluded. Subjects in whom the EEG recordings had excessive
muscle artifact were also excluded (n = 19). 384 subjects (187 fe-
males, 197 males, aged 1 day through 18 years 11 months) met
inclusion criteria. Identified non-epileptic events leading to diag-
nostic evaluation in these subjects are listed in Table 1. Subjects
were placed into age groups according to age at time of EEG with
groups defined by month from 0–23 months, by 6 months interval
for ages 24–59 months, and by 12 month intervals from 60–
216 months. This grouping maintained approximate group sizes
across ages (n = 8.8 ± 3.4 per age bin) and allowed rapid changes
in cortical voltage properties over infancy to be captured.

To increase the total number of subjects in this analysis, we in-
cluded children with a history of provoked seizure (e.g., febrile sei-
zure, post-concussive seizure, and post-syncopal seizure) as these
events do not indicate epilepsy and these subjects have a low risk
of subsequent epilepsy or neurological disease (Hesdorffer et al.,
1988; Shinnar and Glauser, 2002). On subgroup analysis, we found
no difference in mean spectral power between those with a history
of seizures and those without in any of the frequency bands
evaluated (p > 0.7) and no difference in functional network density
(defined below, p > 0.99) between subjects without a history of
seizure (n = 296) and those with a history of provoked seizure
(n = 88).

Recordings included electrooculogram (two channels), EEG (19
Ag/AgCl electrodes placed according to the 10–20 international
system: FP2, F4, C4, P4, O2, F8, T4, T6, Fz, Cz, Pz, Fp1, F3, C3, P3,
O1, F7, T3, and T5) and electrocardiogram using a standard clinical
recording system (Xltek, a subsidiary of Natus Medical). Signals
were sampled at 200, 256, 500 or 512 Hz and stored on a local ser-
ver. Analysis of the data from these subjects was performed retro-
spectively under protocols approved and monitored by the local
Institutional Review Board according to National Institutes of
Health guidelines.

2.2. EEG Pre-processing

EEG recordings were manually reviewed by an experienced
electroencephalographer (C.J.C. and/or J.P.) and large movement
and muscle artifact removed. EMG spectra is known to have broad-
band activity >25 Hz and is maximal in the higher frequencies (40–
90 Hz) temporally (Gasser et al., 2005). As a conservative measure
to minimize the impact of low amplitude muscle artifact not iden-
tified by visual analysis contaminating analysis of high frequencies
(>25 Hz), we identified outliers that did not have the expected
steep fall-off of power with frequency (Freeman et al., 2000). To
do so, we computed a linear fit of the log power versus the log fre-
quency for frequencies between 30–50 and 65–95 Hz in temporal
leads (selected due to sensitivity for temporal muscle artifact) for
each subject. If the slope of this fit exceeded �1, indicative of a
slow decrease in power with frequency (Partha and Hemant,
2008), we excluded these subjects from analysis.

Stage 2 (N2) sleep was identified by visual analysis as per stan-
dard criteria (Silber et al., 2007). N2 sleep was selected for analysis
for several reasons. First, N2 sleep provides a state of relative uni-
formity amongst subjects, minimizing the confounds of attention
and environmental-specific stimuli, thereby emphasizing sponta-
neous rhythms intrinsic to the developing system. Second, N2
sleep is contaminated by minimal muscle and movement artifacts,
providing a greater signal to noise ratio (Scher, 2008; Eeg-Olofsson,
1980). Third, N2 sleep is the most reliably identified sleep state
among experienced neurophysiologists (Rosenberg and Van Hout,
2013). Finally, we have previously shown that there is the least
within individual variation in EEG functional networks in the N2
sleep state, allowing more sensitive identification of population
trends (Chu et al., 2012).

For neonates without clear sleep spindles, we selected for quiet
sleep according to standard criteria (Anders, 1974). After referenc-
ing, the mean voltage was subtracted from each voltage tracing.
The N2 sleep data were concatenated to generate a single continu-
ous file of 100s duration. We have previously demonstrated that
this epoch size is sufficient to produce high similarity between net-
works inferred from N2 sleep samples (see Chu et al., 2012).

2.3. Volume conduction

Spatial blurring of the voltage signal propagating from the cor-
tex to the scalp is a known limitation of EEG recordings. Here, we
have implemented several measures to reduce the impact of vol-
ume conduction on the scalp voltage recordings prior to analysis.
First, we have utilized a nearest-neighbor Laplacian montage to
maximize identification of local potential deviations (Nunez and



Table 1
Indications for EEG.

Diagnosis N Diagnosis N Diagnosis N

Provoked Seizure 88 Uncertain indication 8 Hypoglycemia 2
Syncope 40 Sleep phenomenon 6 Startles 2
Headaches 35 Acute life-threatening event 5 Visual phenomenon 2
Breathholding spells 21 Tremors 5 Aplastic anemia 2
Non-epileptic staring 20 Vertigo 5 Bell’s palsy 1
Gastrointestinal reflux 18 Dizziness 4 Hypertonia 1
Behavioral events 14 Transient stiffening 4 Ingestion 1
Stereotypies/tics 14 Voluntary movements 4 Intussusception 1
Shuddering spells 14 Altered mental status 3 Lyme disease 1
Transient unresponsiveness 13 Apnea 3 Panic attack 1
Sleep myoclonus 13 Falls 3 Polydipsia 1
Nonspecific movements 12 Head nods 3 Suspected abuse 1
Unusual eye movements 9 Vomiting 3 Trauma 1
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Srinivasan, 2006). This referencing technique minimizes the im-
pact of volume conducted signals in both anterior-posterior or
midline-lateral dimensions and performed best in our simulations
(data not shown) comparing physical reference, bipolar reference,
and common average reference procedures on a three spherical
head model (see Nunez and Srinivasan, 2006). In spite of careful
referencing, random coupling is known to occur between multi-
electrode recordings. In order to ascribe confidence to the statisti-
cal associations measured, we employed an analytical technique
for both the cross correlation and the coherence measures to assess
the significance of coupling relative to the background activity (see
below, Kramer et al., 2009). Finally, to further reduce the potential
impact of volume conduction on the voltage recordings, we
ignored data in which maximal coupling was identified at zero
lag or zero phase. A detailed discussion of the robustness of this
method can be found in Chu et al., 2012.
2.4. Power spectra

We computed the power spectra using the multitaper method
(time bandwidth product of 3, 3 s windows, 5 tapers, 1 Hz fre-
quency resolution). We chose this window size to balance signal
stationarity and frequency resolution. In order to reduce variability
in spectra measurements due to trivial contributions from changes
in head size and skull thickness across development (Law, 1993;
Bronzino, 2000), we report the relative changes in power in each
frequency band after normalizing to the total power. To illustrate
that the spectral analysis technique employed here is robust to
changes in head size and skull thickness, we performed the follow-
ing simulation study. We considered a 3-shell (scalp, skull, cortex)
spherical head model (Nunez and Srinivasan, 2006) in two config-
urations: 1) An ‘‘Adult’’ model with adult geometries (9.2 cm scalp
radius, 6.5 mm skull thickness, 8.25 cm cortex radius). 2) An ‘‘In-
fant’’ model with infant geometries (7.0 cm scalp radius, 4 mm
skull thickness, 6.3 cm cortex radius). We assume in both models
the same standard values of resistivities (Nunez and Srinivasan,
2006). For each model, we simulated voltage activity using
�1100 dipole sources evenly distributed just below the cortical
surface (Nunez and Srinivasan, 2006). We then observed the simu-
lated scalp EEG data from each model configuration using sensors
placed following the standard scalp EEG cap (Fig. 1A). We note that
although the presence of sutures and the density of the bone are all
expected to impact the resistance of the skull to cortical activity, in
empirical studies, skull resistance is found to be linearly correlated
to skull thickness (Law, 1993).

We first simulated each cortical dipole source (there are �1100)
as pink noise. We note that pink noise captures an important
qualitative feature of observed brain activity: the reduction in sig-
nal power with frequency. Both the ‘‘Adult’’ and ‘‘Infant’’ model
configurations possess the same number of sources and identical
source activity; the only difference between the two configurations
is the head geometry. We analyze the simulated EEG data using the
same procedures applied to the clinical EEG data described in the
manuscript; namely, we apply the Laplacian reference, bandpass
filter the data (1–50 Hz), and subtract the mean from each elec-
trode derivation. We then computed the power spectrum of these
data for each 2 s window, normalized by dividing by the total
power for each electrode, as we did for the clinical EEG data de-
scribed in the manuscript. We show the ratio of the power spectra
from the Adult model configuration to the Infant model configura-
tions in Fig. 1B (blue curve). These results indicate that the analysis
approach mitigates the impact of volume conduction on the spec-
tral results. We note that repeating the analysis without normali-
zation of the data results in lower power at all frequencies
studied (1–50 Hz) in the Adult model configuration (red curve in
Fig. 1B), as expected due to the spatial blurring of the thicker skull.

The power per 1 Hz frequency was computed for each window
for each electrode and scaled by the total power. The average
scaled power for each frequency and for each frequency band of
interest (delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta
(12–20 Hz), high beta (20–30 Hz), low gamma (30–50 Hz), high
gamma (65–95 Hz) were computed for each subject, averaged
and reported as a mean with standard error of the mean for each
age group using Chronux (Mitra and Bokil, 2007) and custom soft-
ware developed in MATLAB.
2.5. Functional network construction

To assess the associations between voltage activities recorded
at two electrodes, we use two measures of linear coupling: cross
correlation and coherence. Many linear and nonlinear measures
can be used to assess signal coupling. We use the cross correlation
and coherence measures because analytic and computationally
efficient tests for inference of significant coupling exist. To correct
for multiple comparisons, a linear step-up false detection rate con-
trolling procedure was used with q = 0.05. For this choice of q, 5%
of the edges are expected to be falsely declared (Benjamini and
Hochberg, 1995). A detailed discussion of the statistical testing ap-
plied to one of these measures can be found in Kramer et al., 2009.

Functional networks were constructed using both broad- and
narrowband analysis. To construct the functional networks, the
prepared EEG data were divided into discrete 2 s windows. For
broadband analysis, the data are filtered with high- and low-pass
filters (third-order Butterworth, zero-phase shift digital filtering)
for frequencies of interest (1–50 Hz). Windows that contained con-
catenated data from noncontiguous time points are discarded.
Within each window, the data are normalized from each electrode
to have zero mean and unit variance before coupling analysis. We



Fig. 1. Normalization of power to mitigate impact of skull geometry over development. (A) Illustration of the head geometries in the two model configurations, Adult (left)
and Infant (right). The yellow circles denote dipole sources in the cortex, and the black circles scalp electrode locations (with labels). The red square between O1 and O2
denotes the physical reference. (B) The ratio of the power spectrum computed in the Adult model configuration divided by the Infant model configuration. The average power
is computed for a 2 s interval over all electrodes in each configuration, and then the ratio is determined. The blue line is the power ratio for the normalized spectra. The thick
line indicates the mean ratio and the thin lines the 95% confidence intervals over 1000 instantiations of 2 s of pink noise dipole source activity. The sampling frequency is
512 Hz. The mean ratio is near 1, which suggests that the normalization prevents alterations in power due to changes in head geometry. The red line is the power ratio of
spectra that have not been normalized; here the mean is smaller because there is less power in the Adult spectra due to the spatial blurring of the thicker skull. (C) The
number of edges detected in the inferred functional networks depends on the dipole source activity, regardless of head geometry. (Left) when the dipole sources consist of
uncorrelated pink noise, both head geometries (Adult and Child, see legend) tend to detect one or fewer edges. (Right) when a subset of dipole sources possess correlated
activity, both head geometries detect one or more edges.
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then calculate the maximal cross correlation between all electrode
pairs, allowing a lag of ±500 ms. The choice of lag time was
selected to provide sufficient variance for significance testing
(Kramer et al., 2009). For analysis of narrower frequency bands
of interest, we applied the coherence measure on unfiltered data.
For this, we used a multitaper method and compute the coherence
between signals at center frequencies (2.5, 6, 10, 16, 25, 40, and
80 Hz) for all electrode pairs. We set our parameters to allow for
accurate resolution of classically recognized EEG band frequencies
observed in the scalp EEG (Buzsaki, 2004; Darvas et al., 2010;
Piantoni et al., 2013) and peak signals identified on power spectral
analysis (1–4 Hz: time bandwidth product (NW) 2.5, 4 tapers; 4–
8 Hz: NW 4, 7 tapers; 8–12 Hz NW 4, 7 tapers; 12–20 Hz: NW 8,
15 tapers; 20–30 Hz: NW 10, 19 tapers; 30–50 Hz: NW 10, 19
tapers; 65–95 Hz: NW 30, 59 tapers).

For each 2 s window, the connectivity of the EEG data is repre-
sented as a network in the form of an undirected binary adjacency
matrix M. Significant coupling (either cross correlation or coher-
ence) between two electrodes i and j, indicating an edge in the
functional network, is represented as M(i,j) = M(j,i) = 1. If elec-
trodes i and j lack significant coupling, M(i,j) = M(j,i) = 0. Diagonal
matrix elements, M(i,i), are always set to 0. The binary networks
generated from each window are averaged across time to create
weighted functional networks representative of fifty, 2 s epochs
for each subject. Weighted networks are then averaged for each
age group.

We note that the changing skull geometry across developmen-
tis expected to have a great impact on surface EEG coupling
measures because of distortions in the spatial extent of volume
conduction on the cortical signals. Here we employ several
measures to conservatively reduce the impact of volume conduc-
tion (see Section 2.3). To illustrate that the network inference pro-
cedure employed here is robust to changes in head size and skull
thickness, we performed the following simulation study. We con-
sidered the same 3-shell (scalp, skull, cortex) spherical ‘‘Adult’’
and ‘‘Infant’’ head models described above (see Section Power
Spectra and Fig. 1A). We then simulated the dipole source activity
as pink noise, and constructed functional networks from the simu-
lated scalp EEG data. To do so, we employed the same network
inference procedure described in the manuscript. We focus here
on the cross correlation measure. We find no difference in the
number of edges detected in the two model configurations
(Fig. 1C): in 1000 simulations of the model, 98% of the networks
in both model configuration possessed 0 or 1 edge, and 99.5% of
networks possessed 2 or fewer edges. For this simulation scenario,
all of the edges are spurious (because the dipole sources lack any
organization – they’re all uncorrelated pink noise activity). Consis-
tent with this scenario, we tend to find networks with very few
edges. We note that, in the clinical EEG data, we find densities in
the 120 m and older consistent with 5 or more edges, well above
the number of spurious edges detected here.

We also constructed functional networks for the simulated data
with correlated source activity. To do so, we simulated two cortical
dipole sources with five times larger magnitude than the other
(uncorrelated, pink noise) sources. These two cortical dipole
sources possessed correlated dynamics: for a 2 s interval of data,
the sources exhibited 15 Hz oscillations for the middle 1 s interval
of data, with a delay of 100 ms between the two sources. We sim-
ulated the model as above, and inferred functional networks from
the simulated EEG scalp activity using the cross correlation. We



1364 C.J. Chu et al. / Clinical Neurophysiology 125 (2014) 1360–1370
find that the functional network procedure successfully detects an
increase in the number of edges; compare the left (uncorrelated)
and right (correlated) panels of Fig. 1C. In this way, the inferred
network from the simulated scalp EEG reflects increased coupling
between cortical sources. Although this simulation study necessar-
ily simplifies aspects of the true human head (e.g., a spherical shell
model), these results provide additional confidence that the analy-
sis procedures are robust to changes in head size, skull thickness,
and electrode distance.

2.6. Network measures

For characterization of global network connectivity, we com-
puted the average density and global clustering coefficient of the
networks (Rubinov and Sporns, 2010; Newman, 2010). The average
density of a network, d, is defined as the number of edges observed
divided by the total number of possible edges. The average density
was computed for each subject and the mean per age group com-
puted. The global clustering coefficient, C, is defined as the average
of local clustering coefficients of all nodes, where local clustering
coefficient is defined as the proportion of edges between the neigh-
bors of a node divided by the total number of possible edges be-
tween the neighbors of the node. To compute these network
measures, we used algorithms from the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010). Disconnected nodes were counted as
contributing zero triangles in the calculation of global clustering
coefficient. We note that clustering coefficient measures are corre-
lated with density (Faust, 2007). Thus, for each network, we nor-
malize the computed clustering coefficient against the average
clustering coefficient generated from 500 randomized models in
which the density is preserved (Newman, 2010). Although many
other measures (weight dispersion, assortativity, global efficiency,
and path length) were considered to further characterize the net-
works, the sparsity of nodes (n = 19 electrodes) and very low den-
sities identified for each network limited the utility of additional
measures.

2.7. Statistical tests

Differences in group means were identified using a two-way
ANOVA test with variables age and statistic of interest (mean
power and density) and a Tukey least square difference test to cor-
rect for multiple comparisons. Subgroup analyses were performed
with variables a) spectral power or density and b) subgroup (males
versus females and history of provoked seizure versus no history of
seizure) using a 2-tailed t-test. Corrections for multiple compari-
sons were performed using the Bonferroni method.
3. Results

3.1. Cortical rhythms are age specific

Visual inspection of power spectra revealed stereotyped fre-
quency specific patterns across development (Fig. 2A). Lower fre-
quencies dominate in all ages, with greatest prominence in
infancy. Higher frequencies increase in power over childhood with
prominent spectral peaks in the low beta range (12–20 Hz) appear-
ing during infancy, and broad increases in the high beta and low
gamma range (20–40 Hz) persisting from 6 months through
3 years of age, at which point beta activity (12–20 Hz) becomes
prominent. A discrete peak in alpha power (11 Hz) is evident from
16 months. A marked increase in power in the high gamma range
(50–100 Hz) is observed in adolescence (Fig. 2A).

In order to evaluate further the relationship between the fre-
quency of cortical rhythms and age, we computed the mean power
across seven frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha
(8–12 Hz), low beta (12–20 Hz), high beta (20–30 Hz), low gamma
(30–50 Hz), and high gamma (55–95 Hz). Consistent with prior
reports, we found no difference in spectral power between males
and females in any age bin (t-test, p > 0.27; Jenni et al., 2005; Baker
et al., 2011).

There was a significant relationship between spectral power
and age in each of the frequency bands (ANOVA, p < 0.0001;
Fig. 1B). In the delta band, power initially increases in early infancy
followed by a dramatic decrease from age 6 months to approxi-
mately 15 months followed by a plateau through age 10 years,
prior to a second decline observed in adolescence. In the theta, al-
pha, and low beta bands, power increases consistently with age. In
the high beta and low gamma bands, power generally increased
with age through 18 months with a relative plateau thereafter.
Power in the high gamma band demonstrates a U-shaped trend
with an initial drop over the first 6 months of life followed by a
steady increase through adolescence (Fig. 2B). Our findings are in
concert with the spectral features previously reported in neonates
(Myers et al., 2012; Sankupellay et al., 2011), children (Gaudreau
et al., 2001; Smit et al., 2012) and adolescents (Gaudreau et al.,
2001; Feinberg et al., 2011; Smit et al., 2012). Here we show that
across ages, there is a gradual reduction in power for low frequen-
cies, and gradual increase in power for higher frequency bands
across development, interspersed with additional structure in the
first months of life.

3.2. Cortical rhythms have regional specificity over development

In order to evaluate the evolution of rhythms in different corti-
cal regions across development, we computed the power spectra of
the EEG activity at each electrode for each age group. We com-
puted the mean power across each of the 7 frequency bands and
found a significant relationship between age and frequency band
for each cortical region evaluated (ANOVA, p < 0.0001 for all tests).
Visual inspection revealed several spatially specific frequency pat-
terns across development (Fig. 2). In particular, theta and alpha
activity increase with age primarily in the posterior regions
(Fig. 3A, purple arrows). Prominent bursts of activity are present
in the midline and frontocentral regions at 14 Hz at age 2 m
(Fig. 3A, broad white arrows) and later at �6 m in the left temporal
regions (Fig. 2, pink arrow). A streak of narrow alpha activity ap-
pears, centered at 11 Hz in midline, frontal and temporal regions
by age 18 m (Fig. 3A, narrow white arrows). In the high beta and
low gamma frequencies, prominent bursts of activity are broadly
present from 6 months to 5 years, but most prominent in the cen-
tral and temporal regions (Fig. 3A, gray circles). In these same re-
gions, though most prominent centrally, high frequency power
(>65 Hz) increases from childhood into teenage years (Fig. 3A,
black triangles).

In order to further evaluate the relationship between the topog-
raphy of cortical rhythms across development, we computed the
mean normalized power across seven frequency bands: delta (1–
4 Hz), theta (4–8 Hz), alpha (8–12 Hz), low beta (12–20 Hz), high
beta (20–30 Hz), low gamma (30–50 Hz), and high gamma (55–
95 Hz) at each electrode at each age. There is a significant relation-
ship between spectral power and age in each of the frequency
bands in each electrode (ANOVA, p < 0.0001; Fig. 3B). In the delta
band, the dramatic rise and fall in power in the first 15 months fol-
lowed by a second fall in adolescents is evident in all electrode
locations, though most prominent in the temporal and occipital
electrodes. In the remaining frequency bands evaluated, marked
spatial structure was present with age (Fig. 3B).

To summarize, lower frequency theta and alpha (<10 Hz) in-
crease in prominence in the posterior regions over childhood.
Higher frequencies demonstrate prominent activity in the frontal



Fig. 2. Cortical power spectra across development. (A) Visualization of power spectra. Relative power in decibels (averaged across all electrodes) is plotted as a function of age
and frequency, averaged across adjacent age bins, and normalized to age 0 months. In general, lower frequencies (<5 Hz) dominate over early infancy and higher frequencies
increase in power over childhood. Additional structure is also present. For example, a prominent increase in power is present in the low beta band during infancy and in the
high beta and low gamma bands during the second year of life. (B) Average relative power in five frequency bands. The percent total power (+/� SEM) across seven classical
frequency bands is plotted for each age group (note, the x-axis is not continuous; please see Methods for age bins). Complex dynamics are observed, but in general, delta
power is highest in infancy and power in the higher frequency bands (>4 Hz) significantly increases with age (ANOVA, p < 0.0001 for each frequency band). Note: separate
color schemes reflect power in 1A and frequency band in 1B.
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central and midline in early infancy (10–15 Hz) and centrotempo-
ral regions during toddler years and childhood (20–50 Hz) and
adolescence (20–95 Hz).
3.3. Frequency specific cortical networks emerge across development

In order to evaluate for frequency-specific coupling patterns be-
tween different brain regions, we computed the mean functional
networks in each frequency bands for each age group. Visual
inspection of the average networks across development revealed
striking topological organization (Fig. 4). In general, functional net-
work patterns between cortical regions are grossly symmetric be-
tween hemispheres across development. The earliest patterns of
cortical brain connectivity appear as diffuse connections in the
low beta frequencies in early infancy that are most prominent in
midline regions, followed by prominent connectivity in bilateral
anterior regions in the theta frequencies in the second year of life.
Prominence of anterior and lateral to midline connections in delta
and alpha frequencies develop over toddler years and childhood.
High beta and low gamma frequency networks highlight neighbor-
ing anterior, lateral and posterior brain regions at all ages. High
gamma coupling is seen diffusely and non-specifically initially
and later coupling is most prominent between adjacent brain re-
gions by late childhood and teenage years.

In summary, frequency specific coupling patterns are observed
at each age. In low frequency bands, large-scale patterns covering
broader spatial regions are noted to emerge in later childhood. In
higher frequency bands, the opposite pattern is observed, with in-
creased local connections observed with age. These results are con-
sistent with observations that low frequency networks cover
broader spatial regions and may be reflective of underlying struc-
ture, while higher frequency networks may play an essential role
in integrating focal regions in transient cognitive tasks (Singer,
1999; He and Raichle, 2009; Baria et al., 2011).
3.4. Functional network structure evolves across normal development

In order to characterize the strength and organization of cou-
pling between brain regions at different ages, we computed the
average network density and clustering coefficient for each age
group in each frequency band. Network density provides an overall
measure of network connectedness. This measure is bounded be-
tween 0 and 1 with higher numbers reflecting networks with more
edges (i.e., denser networks). We found a prominent relationship
between network density and age in the broadband networks,
where network density steadily increased over the course of devel-
opment (ANOVA, p < 0.00001) with a dramatic rise in density seen
after age 5 years (see Fig. 5). We found no difference in density be-
tween males and females in any age group (t-test, p > 0.99). The
findings in the broadband networks were reflected in the delta
and theta band networks; both low frequency networks exhibited
initial low densities during infancy which increased prominently
after age 5 years (ANOVA, p < 0.00001). In the alpha frequency net-
works, high variability between subjects was present at most ages,
though some age-specific structure was present (p = 0.003). In the
low beta and high beta networks, initial peaks in density were
present in early infancy followed by a relative plateau through
adolescence (ANOVA, p < 0.00001). A similar trend was present in
the low gamma networks (ANOVA, p = 0.004).

Global clustering coefficient measures the tendency of nodes in
a network to cluster together, here reflecting the tendency of
groups of brain regions to coordinate beyond random. Typically
this measure is bounded between 0 and 1; however, the clustering
coefficient is highly coupled to network density, so we have nor-
malized our measure such that values >1 reflect a tendency to clus-
ter beyond that expected in random networks (see Methods). For
most frequency bands, the normalized clustering coefficient was
found to be near-random with no relationship with age (delta, al-
pha, low beta, high beta, low gamma, ANOVA, p > 0.05). In broad-
band, theta, and high gamma networks, we found a significant



Fig. 3. (A) Regional power spectra. Average relative power in decibels is plotted as a function of age and frequency for each voltage tracing, averaged across adjacent age bins
and normalized to age 0 months. We plot the average electrode location on the head schematic for representative location of the electrode sensors. Several regionally specific
frequency dynamics are observed. For example, prominent beta and gamma activity is present in central and temporal regions from 6 months to 5years (silver circles), while
prominent alpha and theta activity appears at 5years in the posterior regions (purple arrows). Two distinct bands of activity are present in the midline and frontocentral
region at age 2 months (14 Hz, broad white arrows) and 12–18 months (11 Hz, narrow white arrows) while 3 distinct bands (centered at 5, 11, and 14 Hz) are present in the
left temporal region at age 18 months (pink arrow). High frequency power (>60 Hz) increases steadily after age 5 years, most prominently in the central regions (black
triangles). (B) Regional power spectra in classical frequency bands. Average power is plotted for each age in each frequency band for each electrode derivation. Results of
homologous electrodes are averaged for ease of visualization. Marked spatial structure is present in the relative power in each frequency over development. In the delta band,
the dramatic rise and fall in power in the first 15 months followed by a second fall in adolescents is evident in all electrode locations, though most prominent in the temporal
and occipital electrodes. In the theta band, prominent increases in theta activity are observed through childhood in the central and parietal regions, which persist through
adolescence in the occipital regions. In the alpha band, early increases in relative power are present in infancy, and most prominent in the frontocentral regions, followed by a
dramatic increase in power in the parietal, temporal and occipital regions over childhood and adolescence. In higher frequencies, a peak in low beta activity is present in the
frontocentral regions during infancy, a prominent peak in high beta activity is present in the temporal regions during the second year of life, and a rise in low gamma activity
is present in the frontal region through 2 years before a subsequent relative decline.
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relationship between clustering coefficient and age (Fig. 5, right;
ANOVA, p < 0.002 for each frequency band shown). In broadband
networks, clustering generally decreased with age. In theta band
networks, peaks in clustering were evident during early infancy.
In high gamma networks, clustering coefficient increased with
age. Other variations in clustering coefficient limited to a single
age bin were also present, but were felt to be likely due to artifact
given the small sample sizes within each age group.

In summary, we found a general increase in integration be-
tween brain regions over the course of development as measured
by increased network density with age in the broadband and low
frequency networks. More complex structure is evident in mid-
range frequencies with alternating periods of heightened and re-
duced integration observed across development. In high gamma
frequency networks, density decreases with age. In low and high
frequency bands, as network density decreases, global clustering
coefficient increases, suggesting that clusters of brain regions are
preferentially integrated in sparse networks; in particular, spar-
ser, more clustered high frequency networks are present with
age.

4. Discussion

Cortical rhythms are presumed to be an essential part of brain
function. The maturation and interregional coupling of these
rhythms has long been recognized as precisely timed, although
enigmatic process (Eeg-Olofsson, 1971; Scher and Loparo, 2009).
Here, we have evaluated rhythms and cortical functional networks
in a large population of infants and children across development in
the sleep state. We have found that cortical rhythms follow an
orchestrated maturational sequence across development and that
these sequences are non-linear and regionally specific. In general,
we have found that after mid-infancy, the relative contribution of
power in low frequencies decreases, and that of higher frequencies
increase with age. More specifically, we observed markedly stereo-
typed sequences with bursts of increased power seen in each cor-
tical region at different ages and unique frequency bands. We also
demonstrated dominant network connectivity patterns integrating
distant brain regions over the course of development with distinct
characteristics in each frequency band. Our findings are consistent
with recent work over smaller and more sparsely sampled age
ranges (Smit et al., 2012; Myers et al., 2012; Feinberg et al.,
2011), and helps to uncover the neurophysiological signatures of
the scheduled windows of cortical maturation and integration that
occurs across development.

Much prior work has been done to evaluate spectral features in
EEG recordings over development. In spite of some methodological
differences in EEG analysis techniques, we find consistent results,
though here complemented by greater age and spatial resolution.
In a longitudinal study, Sankupellay and colleagues evaluated 34
healthy infants power spectra at the C3 electrode at 2 weeks, 3,
6, 12, and 24 months and reported peaks in power at �13 Hz at
3, 6, and 12 months (Sankupellay et al., 2011). We find that this
peak is evident earlier, at 2 months (�14 Hz), and maximal in the
midline and frontocentral regions. Sankupellay and colleagues also
report a peak at �11 Hz at 24 months. Here, we find this peak is



Fig. 4. Functional network topology across development during sleep. The average networks are plotted for age groups ranging from 0 months through 18 years (averaged
across adjacent age bins) using cross correlation (broadband, 1–50 Hz) and coherence measures for narrowband frequencies (delta, theta, alpha, beta, high beta, low gamma,
high gamma) frequencies. Nodes represent average location of voltage recordings used in the nearest neighbor Laplacian reference. Edges represent presence of significant
coupling between cortical voltage recordings. The width of the edge is drawn proportional to its weight, such that the most persistent edges present over the recording epoch
are dark and thick. Striking topological organization is present across development in each frequency band (please see text).
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evident by 18 months and maximal in the midline, frontal and
temporal regions. Prior work in adolescents using longitudinal
datasets has reported a precipitous decline in NREM delta power
starting at age 11 years maximal in occipital regions (Campbell
and Feinberg, 2009; Baker et al., 2011). We expand this work
across development and show that occipital delta power initially
increases in early infancy followed by a dramatic decrease from
6–15 months followed by a relative plateau through age 4 years,
which is then followed by the decline reported in adolescence. Fur-
thermore, we find a marked increase in delta power from ages
5–8 years, most prominent in the temporal regions. Kurth et al.
evaluated cortical rhythms using high density EEG in 41 subjects
from ages 2.4–19.4 years. These authors report that the maximal
delta activity shifts from posterior to anterior regions between
school age (5–8 years) and early adolescents (11–14 years). We
did not find this topographical shift in delta power in our subjects,
likely due to differences in EEG analysis techniques. In order to
minimize the impact of skull size and bone resistivity on power
measures between individuals and electrode locations (Law,
1993; Bronzino, 2000), we evaluate the relative power in each fre-
quency band after normalizing by the total power. Thus, Kurth
et al. report an absolute increase in the delta power in the frontal
regions over time; after correcting for amplitude variations, we
find a relative decrease in delta power in both frontal and occipital
regions between childhood and adolescence. Similarly, we find an
increase in NREM theta power in the occipital region over adoles-
cence, while others have reported decreased absolute theta power
over this period of development (Campbell and Feinberg, 2009;
Baker et al., 2011).

The function of cortical sleep rhythms has been studied exten-
sively and remains an area of active research. Many of the rhythms
present during sleep, including slow waves (delta), sleep spindles
(beta/sigma) and gamma frequencies, are likely to support pro-
cesses of learning and memory consolidation (Gais et al., 2002;
Stickgold, 2005; Steriade, 2006; Fifer et al., 2010; Dragoi and
Tonegawa, 2011; Uhlhaas and Singer, 2006; Roux et al., 2012).
Some have proposed that the shifts in cortical rhythms observed
over early development may reflect processes of synaptogenesis
and pruning (Campbell and Feinberg, 2009; Tarokh et al., 2011;
Kurth et al., 2010; Baker et al., 2011), early sensorimotor circuit
formation (Khazipov et al., 2004), receptor modification (Uhlhaas
and Singer, 2010) or represent the gradual emergence of self-
awareness (Buszaki, 2006). The emergence of discrete bands of
oscillatory activity in early infancy and childhood may also reflect
the maturation of distinct cortical generators producing the ob-
served rhythms (Bollimunta et al., 2011). As each of these sleep
rhythms emerge in an age-specific sequence with regional promi-
nence, our data support the idea that specific rhythms may play
key roles during critical periods of cognitive development and pro-
vides a physiological map through which to target key rhythms
during development (Hensch, 2005; Espinosa and Stryker, 2012).

Increasingly, physiological coupling between brain regions is
observed to enhance communication, establishing long-range net-
works that drive or support behavior (Fries, 2005; Hipp et al., 2011;
Uhlhaas and Singer, 2006). Network measures allow characteriza-
tion of the organization and features of the complex coupling pat-
terns observed in EEG recordings. Here we find that broadband EEG
functional networks increase in density over development, with an
accelerated rise present after age 2 years. These broadband net-
works, which are dominated by low frequency delta and theta
activity, are concomitantly sparser with a lower clustering coeffi-
cient with age. In contrast, high gamma frequency networks de-
creased in density with increased clustering with age. These
observations fit with extensive work suggesting that low frequency
cortical networks integrate longer-range neuronal assembles,
while higher frequency networks are more spatially restricted
(Buzsaki and Watson, 2012). Physiologically, slower oscillations
provide longer windows to integrate more neuronal assemblies



Fig. 5. Functional network characteristics across development. Left: The mean density (+/� standard error of the mean, y-axis) is plotted for each age group (months, x-axis)
for the broadband and narrow band networks. The broadband networks represent a summary statistic of connectivity strength across all frequencies. Here we see that in
general, network density increases with age, rapidly increasing after age 60 months. When narrower frequency bands are evaluated, more structure is present. Right: The
mean global clustering coefficient (normalized to 500 random networks with equal density, +/� standard error of the mean) is plotted for each age group for three frequency
bands in which some structure across development is present.
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over a larger cortical volume. The changes in network density in
the low and high frequencies that we observed over development
may reflect anatomical maturation processes, which could include
white matter myelination and synaptic pruning which persist
through adolescence (Hermoye et al., 2006; Huttenlocher and
Dabholkar, 1997). In addition, recent work suggests that the
maturation of extensive GABAergic interneuron assemblies likely
plays a pivotal role in orchestrating the cortical field oscillations
and network synchronization patterns observed here (Fritschy,
2008; Le Magueresse and Monyer, 2013).The selective maturation
of these inhibitory circuits has been observed to occur in distinct
steps over development, independent of environmental input
(Ben-Ari et al., 2012; Baho and Di Cristo, 2012; Le Magueresse
and Monyer, 2013).

In addition to the intrinsic biological events shaping cortical
networks, some spontaneous cortical oscillations may require
environmental input for appropriate maturation. Spindle bursts,
triggered by muscle twitches in early development, are
proposed to lay the circuitry for mature sensorimotor networks
(Khazipov et al., 2004). Similarly, visual input is required for
the maturation of cortical circuits in the visual cortex
(Katz and Shatz, 1996). Our observation of stereotyped se-
quences of functional network topologies suggests that a pre-
dictable program directs the wiring of physiological networks
over normal development. This emerging network may reflect
stages of cellular, synaptic, and behavioral maturation, perhaps
providing the dynamic scaffolding to support experience-
expectant, adaptive cortical networks across each stage of neu-
rological development.

Although spatially restricted patterns could be discerned in
both the spectral and network analysis, anatomical correlation is
limited by the low spatial resolution that results from spatial blur-
ring of the voltage signal at the scalp and low density spatial sam-
pling (Nunez and Srinivasan, 2006). High density scalp EEG
recordings and MEG recordings would allow better spatial resolu-
tion and approximation of rapid cortical dynamics for more accu-
rate anatomical correlation. In addition, interpretation of high
frequency activity in the spontaneous scalp EEG remains contro-
versial. Many authors contend that gamma rhythms cannot be con-
fidently identified due to the brain’s inherent 1/f properties and
spatial filtering (Nunez and Srinivasan, 2010; McMenamin et al.,
2011; Muthukumaraswamy, 2013), while others have reported
success identifying focal gamma rhythms at the scalp surface (Ball
et al., 2008; Darvas et al., 2010; Andrade-Valenca et al., 2011). We
observed marked increases in gamma power during childhood and
adolescence, consistent with prior work in awake children
(Uhlhaas et al., 2009). Although we applied conservative measures
to remove subjects with possible muscle artifact, the results in the
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high frequencies should be interpreted with caution as muscle arti-
fact cannot be definitively excluded. Secondary use of clinical data
captured during neuromuscular blockade could help determine the
extent that muscle artifact may contribute to these findings. Nota-
bly, all high gamma spectral and coherence measures were
repeated excluding the studies sampled at 200 Hz (n = 52
excluded) and qualitatively similar results were found. Further-
more, in our analysis, we evaluate only linear coupling between
the recorded EEG activities. Study of nonlinear dynamics, including
cross frequency coupling (Canolty and Knight, 2010), may contrib-
ute further to revealing and understanding the complex dynamics
underlying brain organization and emergent properties of adaptive
patterning and cortical network formation. In addition, although
we employed strict inclusion and exclusion criteria to identify
healthy subjects, because this study drew from a population of
children referred for diagnostic evaluation, these subjects may
not represent a community population sample. Finally, by under-
taking a cross-sectional study, we were able to evaluate the matu-
ration of cortical physiology at the population-level with short
sampling intervals across an 18 year span. Although our findings
are consistent with longitudinal work obtained across shorter
intervals (Campbell and Feinberg, 2009; Tarokh et al., 2010;
Sankupellay et al., 2011; Baker et al., 2012), longitudinal analysis
would be required to confirm that the observed patterns hold
within each individual.

In summary, we have characterized the rapidly developing cor-
tical rhythms and functional brain networks from early infancy
through adolescence in a large population of normal children dur-
ing sleep. We found that cortical rhythms and functional networks
change dramatically and predictably over infancy and childhood.
These changes are evident within routine EEG recordings across a
time span of months and years and provide a foundation upon
which to better understand normal physiological brain develop-
ment. Such cortical measures may also provide a sensitive clinical
tool to interrogate and assess cortical health in the maturing brain.
Future work is needed to tie these events to the sequence of adap-
tive behavioral and cognitive skills observed across development
and to better understand how alterations in these precisely timed
sequences may relate to and anticipate disease.
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