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Functional connectivity networks have become a central focus in neuroscience because they reveal key higher-dimensional features of
normal and abnormal nervous system physiology. Functional networks reflect activity-based coupling between brain regions that may be
constrained by relatively static anatomical connections, yet these networks appear to support tremendously dynamic behaviors. Within
this growing field, the stability and temporal characteristics of functional connectivity brain networks have not been well characterized.
We evaluated the temporal stability of spontaneous functional connectivity networks derived from multi-day scalp encephalogram (EEG)
recordings in five healthy human subjects. Topological stability and graph characteristics of networks derived from averaged data epochs
ranging from 1 s to multiple hours across different states of consciousness were compared. We show that, although functional networks
are highly variable on the order of seconds, stable network templates emerge after as little as �100 s of recording and persist across
different states and frequency bands (albeit with slightly different characteristics in different states and frequencies). Within these
network templates, the most common edges are markedly consistent, constituting a network “core.” Although average network topolo-
gies persist across time, measures of global network connectivity, density and clustering coefficient, are state and frequency specific, with
sparsest but most highly clustered networks seen during sleep and in the gamma frequency band. These findings support the notion that
a core functional organization underlies spontaneous cortical processing and may provide a reference template on which unstable,
transient, and rapidly adaptive long-range assemblies are overlaid in a frequency-dependent manner.

Introduction
An expanding focus in neuroscience has been on the complex
functional interdependencies between widespread brain regions
that underlie normal and abnormal cortical processing (Bull-
more and Sporns, 2009; Wig et al., 2011). These relationships can
be identified as temporally coordinated interregional activities
using a variety of multivariate physiological recording tech-
niques, including functional MRI (fMRI), magnetoencephalog-
raphy, near-infrared spectroscopy, electrocorticography, and
scalp electroencephalography (EEG) (Fox and Raichle, 2007;
Bullmore and Sporns, 2009; Stam et al., 2009; Homae et al., 2010;
Kramer et al., 2010). The resulting functional brain networks
represent dynamic coupling or connectivity patterns between
brain regions that are distinct from underlying anatomical links

(Honey et al., 2009; Ponten et al., 2010). Despite growing interest
in these dynamic networks as a new modality through which to
understand information processing, development, and disease,
their temporal characteristics have not been well characterized.

Extensive work using fMRI has identified reproducible, inter-
nally generated functional brain networks derived from corre-
lated physiologic blood oxygen level-dependent (BOLD) signals
between brain regions (Gusnard and Raichle, 2001; Greicius et
al., 2003; Damoiseaux et al., 2006; Fransson, 2006; Fox and
Raichle, 2007). Although fMRI recordings provide exquisite an-
atomical resolution, temporal resolution is limited to several sec-
onds, and scan times are typically performed over several minutes
during constrained behavioral states. The stability of intrinsic
functional brain networks derived from finer temporal resolu-
tions and spanning longer periods of time remains poorly char-
acterized but would shed light on the endogenous dynamics of
nervous system activity.

By providing direct, temporally precise recordings of under-
lying neuronal activity non-invasively, the scalp EEG may pro-
vide the only practical opportunity to study the temporal
dynamics of functional networks over large-scale brain regions in
neurologically normal human subjects. To date, early work eval-
uating functional brain networks using EEG has been confined to
brief, cross-sectional epochs of data across many subjects, with
recording lengths ranging from only a few to several hundreds of
seconds during varied cognitive states (Pachou et al., 2008; de
Haan et al., 2009; Leistedt et al., 2009; Douw et al., 2010; Isler et
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al., 2010; Moeller et al., 2011). It remains unknown whether a
consistent functional network structure emerges spontaneously
across time or persists across cognitive states.

We evaluated the dynamics of functional connectivity net-
works derived from scalp EEG signals using longitudinal record-
ings covering multiple days. We found that functional networks
are highly variable from 1 s to the next; however, an ensemble of
network topologies averaged over �100 s resulted in persistent
“template” network structures. These network templates were
dominated by a small number of commonly appearing edges
constituting a “core” network. Although some differences could
be identified, most core network structures persisted across all
states of consciousness and frequency bands over multiple days.
In contrast, measures of global network connectivity— density
and clustering coefficient—varied depending on states and fre-
quency bands. These findings support the growing theoretical
framework that internally generated large-scale functional brain
networks may provide dynamic, heterotopic scaffolding for
adaptive cortical processing and integration at multiple spatio-
temporal scales.

Materials and Methods
Subjects and EEG recordings. Five subjects (four females, one male, aged
26 – 41 years) with normal neurological exams, normal brain imaging,
non-epileptic events, and normal multi-day EEG recordings (as defined
by clinical electroencephalographers independent from this study) were
retrospectively identified from the Massachusetts General Hospital neu-
rophysiology unit. Identified non-epileptic events leading to diagnostic
evaluation in these subjects included non-epileptic seizures (n � 2),
cardiogenic syncope (n � 2), and obstructive sleep apnea (n � 1). All
subjects underwent multi-day EEG recordings of at least 48 h duration.
The subjects did not receive alcohol, sedatives, or anticonvulsant medi-
cations during the monitoring period.

Recordings included electrooculogram (two channels), EEG (19 chan-
nels, Ag/AgCl electrodes placed according to the 10 –20 international
system referred to a C2 spinous process reference: FP2, F4, C4, P4, O2, F8,
T4, T6, Fz, Cz, Pz, Fp1, F3, C3, P3, O1, F7, T3, and T5), and electrocar-
diogram using a standard clinical recording system (Xltek, a subsidiary of
Natus Medical). Signals were sampled at 256 or 512 Hz and stored on a
local server. Analysis of the data from these subjects was performed ret-
rospectively under protocols monitored by the local Institutional Review
Board according to National Institutes of Health guidelines.

EEG preparation. Forty-eight contiguous hours of EEG recordings
were manually reviewed by an experienced electroencephalographer
(C.J.C.) and epochs with large movement and muscle artifact removed.
Sleep stages [wake (W), stage 1 (N1), stage 2 (N2), slow wave sleep (N3),
and rapid eye movement sleep (REM)] were manually scored and clipped
by experienced neurophysiologists (M.T.B. and C.J.C.) following stan-
dard criteria (Silber et al., 2007) on 30 s epochs. When mixed sleep
features were present within a 30 s epoch, smaller subsections were iden-
tified. Data were concatenated to generate a single continuous file for
each state.

The data were filtered with high- and low-pass filters (third-order
Butterworth, zero-phase shift digital filtering) for frequency bands of
interest [broadband (0.5–55 Hz)], and the average reference was sub-
tracted. A running Gaussian filter with a 4 s baseline was applied to
further remove very slow drift artifact. For REM and wake segments,
eyeblinks and saccades were identified as large deviations from the
baseline mean amplitude in Fp1 and Fp2 electrodes above a threshold
determined by visual inspection for each subject. Each identified eye
movement artifact (� surrounding 100 ms) was removed.

Network construction. To construct the functional networks, the pre-
pared EEG data were divided into discrete 1 s windows for coupling
analysis. We chose this window size to balance signal stationarity and
accurate assessment of the coupling measure (described below). Win-
dows that contained concatenated data from noncontiguous time points
were discarded. Within each window, the data were normalized from

each electrode to have zero mean and unit variance before coupling
analysis.

To measure electrode associations between the time series recorded at
two electrodes, we used two measures of linear coupling: the cross-
correlation and coherence. For broadband analysis, the maximal cross-
correlation between all electrode pairs was calculated, allowing a lag of
�200 ms. The choice of lag time was selected to encompass the duration
of known neurophysiological processes and cross-cortical conduction
times (Varela et al., 2001; Garcia et al., 2011). For analysis of narrower
frequency bands of interest, we applied the coherence measure. For this,
we used a multitaper method [time bandwidth product of 2, four tapers
for delta (0.5– 4 Hz), theta (4 – 8Hz), alpha (8 –12Hz) bands; time band-
width product of 4, six tapers for beta (12–20 Hz); and time bandwidth
product of 15, six tapers for high beta/low gamma (20 –50Hz)] and com-
puted the coherence at center frequencies (2, 6, 10, 16, and 35 Hz) for all
electrode pairs. Frequency bands were selected to overlap with classically
recognized EEG band frequencies. Although many linear and nonlinear
measures can be used to assess signal coupling, most appear to perform
equally well on simulated and observed macroscopic brain voltage data
(Ansari-Asl et al., 2006; Osterhage et al., 2007). For both the cross-
correlation and coherence measures, analytic and computationally effi-
cient significance tests exist. To correct for multiple comparisons, a linear
step-up false detection rate controlling procedure was used with q �
0.05. For this choice of q, 5% of the network connections are expected to
be falsely declared (Benjamini and Hochberg, 1995). A detailed discus-
sion of the statistical testing applied to one of these measures can be
found in the study of Kramer et al. (2009).

For each 1 s window, the connectivity of the EEG data was represented
as a network in the form of an undirected binary adjacency matrix M.
Significant coupling (either cross-correlation or coherence) between two
electrodes i and j, indicating an edge in the functional network, was
represented as M(i,j) � M( j,i) � 1. If electrodes i and j lack significant
coupling, M(i,j) � M( j,i) � 0. Diagonal matrix elements, M(i,i), were
always set to 0. The binary networks generated from each window were
then averaged across time to create weighted functional networks repre-
sentative of varied epoch lengths ranging from 1 to 5000 s. Averaged
networks were also generated for the entire available recording period
for each subject and in each state and frequency band. Binary and
weighted networks were visualized with electrodes represented as
nodes and edges weighted according to the values in the summed
adjacency matrix (Fig. 1).

Volume conduction. Volume conduction of signals propagated from a
common source may lead to identification of spuriously coupled scalp
EEG signals. Previous methods to reduce the impact of common gener-
ators have attempted to remove information from time series data that is
more likely to be explained by a common source (Nunez et al., 1997;
Nolte et al., 2004; Stam et al., 2007). A second, but related, problem in
identification of functional networks from scalp EEG is the impact of
montage selection on observed EEG signals. Here, average reference was
selected to emphasize identification of both spatially distributed and
focal activities with varied dipole orientations (Nunez et al., 1997, 1999).
Subtraction of the average signal from all time series, however, may result
in the identification of spurious coupling (negative correlation) between
cortical regions with large-amplitude signals and those that are relatively
inactive. Here, to address both problems, we have removed all edges in
which the maximum absolute value of the cross-correlation or coherence
measure occurred at zero time lag between time series.

To examine the impact of this method, we performed a forward model
simulation consisting of a four-shell spherical head model (Nunez and
Srinivasan, 2005). The four shells consisted of the following: scalp (outer
radius, 9.2 cm; conductivity, 0.44 S/m); skull (outer radius, 8.7 cm; con-
ductivity, 0.015 S/m); cerebrospinal fluid (CSF) (outer radius, 8.2 cm;
conductivity, 1.8); and brain (outer radius, 8.0 cm; conductivity, 0.44
S/m). Just below the brain surface (at radius 7.99 cm), 514 radial dipole
sources were evenly distributed across the upper half sphere. We simu-
lated each dipole to evolve independently in time after a pink noise
process (with slope 1/f 0.5) for 1 s at a sampling rate of 500 Hz and
computed the scalp voltage for each moment in time. The propagation of
the voltage signal from dipole source to scalp spatially blurs the voltage
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activity (Fig. 2A). Because in this simulation the dipole sources evolve
independently, any coupling of voltage activity observed at the scalp
surface results solely from the effects of volume conduction. To assess
this effect, we computed the maximum absolute value of the cross-
correlation between two scalp voltage signals as a function of geodesic
distance on the scalp (Fig. 2 B). For intermediate distances, the correla-
tion is weaker, and we declare no edge using our statistical measure
above. For short and long distances, the spurious correlation is strong
and we identify network edges. If edges identified when the maximum
absolute value cross-correlation occurs at zero time lag are removed, all
spurious edges are identified, and the resulting functional network pos-
sess no edges, as expected for independently evolving dipole sources.

This forward model simulation suggests that removing edges with
maximal coupling strength occurring at zero time lag successfully erad-
icates spurious edges attributable to volume conduction. This method
likely removes some edges that are attributable to true cross-cortical
coupling. However, in post hoc analysis, we found excellent fidelity be-
tween the average networks generated with edges identified at zero time
lag included with those with edges identified at zero time lag excluded
across the entire recording session (cross-correlation, 0.94 � 0.10). Thus,
this method provides a conservative measure in which identified edges
can be interpreted excluding the effects of volume conduction without
excessive impact on the resulting functional networks.

Network measures. To analyze the similarity between two networks, we
computed the normalized two-dimensional (2D) cross-correlation with
zero shift between the two networks. The normalization requires first
computing, for each matrix, the scale, s, equal to the sum of its elements
squared. The 2D cross-correlation is then normalized by the square root

of the product of s for each matrix. We note that, in the normalization,
the diagonal elements of each adjacency matrix and the edges identified
at zero time lag are fixed to zero. For each epoch length evaluated, we
calculated the average 2D cross-correlation of all networks averaged over
the same duration.

For additional characterization of the network structures and compar-
ison with the literature, we computed the average density and clustering
coefficient of the networks. The average density of a network, d, is defined
as the number of edges observed divided by the total number of possible
edges. The global clustering coefficient, C, is defined as the average of
local clustering coefficients of all nodes, where local clustering coefficient
is defined as the proportion of edges between the neighbors of a node
divided by the total number of possible edges between the neighbors of
the node. To compute these network measures, we used algorithms from
the Brain Connectivity Toolbox (Rubinov and Sporns, 2010). Discon-
nected nodes were counted as contributing zero triangles in the calcula-
tion of global clustering coefficient. We note that clustering coefficient
measures are primarily affected by the density and degree distribution
(Faust, 2007). Thus, for each network, we normalize the computed clus-
tering coefficient against the average clustering coefficient generated
from 500 randomized configuration models in which the degree distri-
bution is preserved (Newman, 2010).

For each subject, network similarity measures were grouped according
to state of consciousness and frequency band. Subject results were pooled
and averaged for each group (e.g., N1 stability measurements were aver-
aged among the five subjects). To limit multiple comparisons, similarity
measures for data lengths of 100 s were analyzed for differences between
groups. Differences in group means were first evaluated using a one-way

Figure 1. Construction of functional networks from multivariate scalp EEG recordings. A, Example 5 s of EEG data recorded from 19 electrodes (broadband, 0.5–55 Hz). B, For each 1-s interval for
each electrode pair, the cross-correlation is calculated. Two example traces recorded from O1 and T5 electrode tracings here. The maximum absolute value of the cross-correlation (blue circle)
determines the significance of the coupling. (Note that, for evaluation of specific frequency bands, coherence was computed for each frequency band of interest using the multitaper method.) C,
Example binary adjacency matrices derived from five 1-s epochs. Significant electrode coupling is represented in black and given a value of 1. D, Example weighted adjacency matrix generated from
averaging n-binary matrices, where n ranged from 1 to 5000, representing 1 s to �83 min recording epochs. E, Average matrices derived from same epoch lengths are visualized, characterized, and
compared.
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ANOVA test, and, if a significant difference
was found, pairwise t tests were performed.
Significant differences in graph metric distri-
butions generated between groups were calcu-
lated using the Kolmogorov–Smirnov test.
Interactions between the effects of state and
frequency on density were tested using ordi-
nary least-squares regression on categorical in-
dependent variables.

Surrogate data generation. To test for robust-
ness against the null hypothesis that the ob-
served functional networks have random
structure, the 2D cross-correlation values were
calculated for shuffled subject networks and
random networks. For random networks, sym-
metric edges were drawn from an ordinary bi-
nomial distribution ( p � 0.05 to mimic the
observed average density). These individual
networks were then averaged to generate
weighted networks representative of observed
networks averaged over varying-length epochs.
For shuffled data, the observed network size
and density were maintained. For each ob-
served network (deduced from 1 s of EEG data
as described above), the edge locations were
randomly shuffled. The resulting (undirected)
networks were then averaged over data epochs,
and the similarity between these shuffled net-
works was computed.

Results
Network structure emerges over time. Vi-
sual inspection of functional networks re-
vealed no apparent consistent structure across 1 s epochs.
Instead, there was marked variability in the networks from sec-
ond to second, even when epochs were obtained from the same
state of consciousness (Fig. 3A). This finding was consistent with
long-standing observations that cortical connectivity patterns
represent transient neuronal assemblies that are rapidly adaptive
to behavior (Nudo et al., 1996; Chu and Jones, 2000), mental state
(Fingelkurts, 2004), and the environment (Buonomano and
Merzenich, 1998).

To evaluate whether consistent functional connectivity pat-
terns and recurrent topological structures emerge over longer
epochs, we inspected networks generated from the entire 48 h
dataset for each subject. Random or homogenous coupling activ-
ity between all brain regions is expected to produce functional
networks with a uniform structure over time, whereas organized
coupling patterns would produce recurrent, non-uniform topo-
logical structures. The distribution of edges present in networks
derived from all 1 s epochs across the 48 h recording session was
not uniform. Edge distribution was positively skewed for each
subject, with most edges rarely present and a much smaller num-
ber of edges present with high frequency in each subject. For
example, across all subjects using broadband analysis, 82.7 �
2.2% of edges were present in �10% of 1 s epochs, 17.3 � 2.20%
of edges were present in 10 –30% of 1 s epochs, and 13.3 � 6.4%
of edges were present in �30% of 1 s epochs.

Stable network “templates” emerge within �100 s. Visual in-
spection of averaged networks generated from increasing epoch
lengths revealed complex, weighted network structures compris-
ing edges present at different frequencies over the duration of the
epoch. These template structures appeared remarkably stable
across randomly selected epochs as brief as 100 s across the re-
cording sample (Fig. 3B). To characterize the temporal stability

of functional networks, we calculated the average 2D cross-
correlation between networks averaged across epoch lengths of
increasing duration (ranging from 1 to 5000 s) for each subject.
The presence of high correlation between networks (value near 1)
indicates topological similarity between their structures, and a
value near 0 signifies low similarity. Consistent with visual in-
spection, for each subject, we found that the 2D cross-correlation
between functional networks was low for networks derived from
1 s epochs (0.09 � 0.02) but high for networks derived from
longer epochs. The 2D cross-correlation achieved near-maximal
values (0.84 � 0.05) for networks derived from 100 s epochs. In
comparison, cross-correlation values for random networks and
shuffled networks (see Materials and Methods) remained near 0
(at 100 s epoch lengths, �0.015 and 0.007 � 0.006, respectively;
Fig. 4).

Network templates are remarkably consistent across states.
The above analysis of network stability does not account for the
changing state of consciousness of a subject over time. To address
this, we evaluated the stability of networks restricted within each
state (W, N1, N2, N3, and REM). A similar timescale for temporal
stability of averaged networks was seen in each state, with near-
maximal similarity achieved between networks derived from
�100 s epochs. However, networks derived from wakefulness
were significantly less stable than networks derived from any
other state (ANOVA, p � 0.002; t test, p � 0.02 for all compari-
sons; Fig. 4). To evaluate for stability of network structure
between states of consciousness, we examined the 2D cross-
correlation between networks derived from the same state (i.e.,
N1 epochs compared with all other N1 epochs) and between
networks derived from epochs from different states (mixed ep-
ochs). When 100 s epochs were evaluated, networks derived from
the same state had a higher cross-correlation (0.84 � 0.05) than

Figure 2. Forward model simulation of volume conduction. We implemented a four-shell spherical head model, placing 514
radially oriented dipole sources on the upper half of the innermost sphere (methods adapted from Nunez and Srinivasan, 2005). We
simulated 500 time steps, assigning each dipole source uncorrelated pink noise. We then measured the coupling (see Materials and
Methods, Network construction) between sensors at the scalp surface (outer sphere). A, Example voltage map on cortex (left) and
scalp (right) demonstrating blurring of voltage signal on the scalp surface compared with cortex. B, Distribution of maximum
absolute value of the cross-correlation between scalp voltage signals as a function of geodesic distance on the scalp. Green (red)
circles indicate edges (non-edges) in the resulting functional network, and filled black circles indicate the maximum absolute value
of the correlation occurred at zero time lag.
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networks that were compared between states (0.75 � 0.003, p �
0.004; Fig. 4).

Despite the subtle differences in network topology evident
between states, networks compared from different states were
strikingly similar to each other (mean cross-correlation values for
mixed states, 0.75 � 0.003 for 100 s epochs). Visual inspection of
networks derived from the entire sampling period available from
each state revealed similar network structures across all states of
consciousness in each subject (Fig. 5). To further investigate the
persistence of network structures across states, we evaluated
the cross-correlation between the most common (top 5%
most commonly appearing) edges in network templates de-
rived from the duration of the recording session for each state.
We found that the topology of these most common edges were
consistent across states (cross-correlation � 0.69 � 0.02),
constituting a core network that persisted with high probabil-
ity across states (Fig. 5).

Visual inspection revealed that core edges were more likely to
be found between adjacent electrodes (75.6%) and with a predi-
lection for within hemisphere connections (71.7%) compared
with between-hemisphere connections (26.1%).

Network templates are consistent across frequency bands. To
characterize frequency-dependent effects on network structure,
we evaluated the stability of networks generated from data cen-
tered at five frequency bands of interest: delta (0.5– 4 Hz), theta
(4 – 8 Hz), alpha (8 –12 Hz), low beta (12–20 Hz), and high beta/
low gamma (20 –50 Hz). When networks were averaged across
varying epoch sizes, network features again stabilized within
�100 s in each frequency band (Fig. 6B). At 100 s epochs, there
was no significant difference in cross-correlation between net-
works generated from each frequency band (ANOVA, p � 0.28;
Fig. 6B). When 100 s epochs were evaluated, networks derived
from the same frequency band tended to have a higher cross-
correlation (0.74 � 0.092) than networks compared across dif-
ferent frequency bands (0.67 � 0.09, p � 0.09).

The similarity between networks derived from different fre-
quency bands was nonetheless striking; across the five frequency
bands, networks averaged across 100 s epochs achieved cross-
correlation values of �0.67 between different frequencies. Visual
inspection of frequency-based coherence networks generated
from the entire sampling period (48 h) revealed marked persis-
tence of core topologies across all frequency bands (Fig. 6A). To

Figure 3. Visualization of functional network similarity and epoch length. A, Example binary functional networks derived from 1-s epochs in a single subject during REM sleep. Marked variability
in network topology is evident. B, Example weighted average networks derived from varying epoch lengths from the same subject during REM sleep. The width of the edge is drawn proportional to
its weight (scaled to the frequency of the most common edge). The most persistent edges present in each of these networks (those with weights above the 95th percentile) are shown on the right
in red. Variability between networks derived from 5, 10, 25, and 50 s epochs is evident. A recurrent network template (left) and core topology (right) emerges in networks generated from 100 s
epochs that remains stable across networks derived from longer (500 s) epochs.
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investigate the persistence of dominant net-
work structures across frequency bands, we
evaluated the cross-correlation between the
most common edges (top 5%) in network
templates derived from the duration of
the recording session in each frequency
band. We found that highest-frequency
edges were markedly similar across each
frequency band (cross-correlation �
0.61 � 0.04), constituting a persistent
cross-frequency network core.

Although persistent coupling appeared
between the same electrode pairs for all fre-
quency bands, visual inspection of raw EEG
signals suggested that the periods of cou-
pling were not necessarily present at the
same moment in time (Fig. 7). To character-
ize the similarity between networks gener-
ated from different frequency bands at the
same moment in time, we evaluated the av-
erage 2D cross-correlation of networks gen-
erated from the same 1 s epoch (i.e., a
network derived from the beta frequency
band at time n of the EEG recording to net-
works derived from each other frequency
band at time n of the EEG recording) and
the average 2D cross-correlation of net-
works generated from randomly chosen
temporally separate 1 s epochs (selected
from a uniform distribution across the
length of the recording sample; n � 1000).
There was no difference in 2D cross-
correlation between networks selected from
the same 1 s epoch (0.11 � 0.03) and net-
works compared from temporally separate
1 s epochs (0.01 � 0.03) across frequency
bands (p � 0.31). Therefore, although net-
works had a similar average topology across
all frequency bands analyzed, network edges
were not more likely to be present across
frequency bands at the same time.

Template network structures are not consistent across sub-
jects. Although consistent network structures were evident in
relatively short time samples (�100 s) across multiple days and
states of consciousness for each subject, visual inspection re-
vealed marked variability in template networks between subjects
(Fig. 5). Networks generated from the same subject were signifi-
cantly more similar than networks generated from different sub-
jects (2D cross-correlation at 100 s, 0.84 � 0.05 and 0.42 � 0.20,
respectively, p � 0.005). 2D cross-correlation values for average
networks generated from the entire sampling period (48 h) com-
pared between subjects 0.68 � 0.16 (Fig. 8A). Therefore, tem-
plate network topologies, although more similar than random or
shuffled networks, are highly variable between subjects.

Graph characteristics differ between states and frequency
bands but are consistent across subjects. To further characterize
the observed functional networks, we evaluated average density
and clustering coefficient for each state and each frequency band.
These two measures were chosen as two of the primary, charac-
teristic measures of the topology of a network. The density, d, is
the fraction of total possible edges present in a network [bounded
between 0 (no edges) and 1 (all possible edges are present)] and
broadly represents the overall connectivity of a network. The

clustering coefficient, C, measures the fraction of possible trian-
gles (the presence of edges among all nodes in a grouping of 3)
that are present in a network and represents the tendency of
nodes in the network to cluster by virtue of their nearest-
neighbor connectivity. To adjust for the impact of density and
degree on clustering coefficient, this measure was normalized
against random networks with the same degree distribution (see
Materials and Methods, Network measures).

For each state, the functional networks were sparsely con-
nected, with mean d ranging from 0.0.03 to 0.07 and mean C
ranging from 0.71 to 1.32. For each subject, unlike the template
network topological structure, the distribution of average densi-
ties and clustering coefficients differed consistently between
states of consciousness (p � 0.01 for all comparisons). For each
subject, average density was higher during wakefulness than
sleep, with lowest values present during stages N2 and N3.
Conversely, average clustering coefficient was highest during
stages N2 and N3 and lowest during wakefulness (W: d �
0.07 � 0.0.02, C � 0.78 � 0.03; N1: d � 0.06 � 0.02, C �
0.76 � 0.40; N2: d � 0.04 � 0.01, C � 0.98 � 0.25; N3:
d � 0.03 � 0.010, C � 1.32 � 0.24; REM: d � 0.05 � 0.02, C �
0.71 � 0.46; Fig. 8B). Density and clustering coefficient were not
correlated (Pearson’s r, �0.03).

Figure 4. Functional network stability and epoch length. Functional network stability is plotted as the average 2D cross-
correlation ( y-axis) for all networks derived from increasing epoch lengths (x-axis) across 48 h samples for each subject. Mean �
SD cross-correlation for networks derived from randomly selected and averaged 1 s epochs for each subject are shown in light gray.
Networks are highly variable for epochs �20 s but rapidly stabilize with increasing epoch lengths and achieve near-maximal
cross-correlation values for epochs �100 s. Mean cross-correlation for shuffled (dark gray) and random data (black) remain near
zero for all simulated epoch lengths. Networks derived from the same state of consciousness (wake, N1, N2, N3, and REM) are more
similar than networks compared between different states of consciousness (purple). Functional networks derived from wakeful-
ness are significantly less stable than those derived from all sleep states ( p � 0.02).
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For each frequency band, the average density and clustering
coefficient of functional networks spanned a broader range
(mean d range, 0.05– 0.18; mean C range, 2.86 – 4.91). The distri-
bution of average densities and clustering coefficients was signif-
icantly different between frequency bands (p � 0.001 for all
comparisons; Fig. 6C). Networks generated from the delta and
beta frequency bands had highest average density, with lowest
average clustering seen in the beta band; conversely, networks
generated from the alpha, theta, and gamma bands were sparsest
and more highly clustered (delta: d � 0.12 � 0.03, C � 3.78 �
076; theta: d � 0.05 � 0.02, C � 4.91 � 1.80; alpha: d � 0.07 �
0.02, C � 4.12 � 1.35; beta, d � 0.18 � 0.06, C � 2.86 � 1.24;
gamma d � 0.05 � 0.01, C � 3.60 � 0.81). Density and clustering
coefficient were not correlated (Pearson’s r, �0.06). We found
significant interactions between the effects of state and frequency
on density (p � 0.001 for all frequencies), with the beta band
demonstrating a markedly higher density during sleep compared
with wakefulness (conditional mean densities of the interaction
of frequency with state: delta, 0.08 � 0.001; theta, 0.04 � 0.001;
alpha, 0; beta, 0.16 � 0.001; gamma, 0.04 � 0.001). Networks
therefore have common dominant edges across state of con-
sciousness and frequency band but differ in density and cluster-
ing coefficient. Consistent with previous work, sparsest and most
highly clustered networks were seen during sleep (Ferri et al.,
2007; Kar et al., 2011). Densest networks with low clustering were

consistently seen in the delta band, and sparsest networks with
high clustering were consistently present in the gamma band
across states and subjects.

Discussion
Using multi-day scalp EEG recordings from five healthy human
subjects, we found that functional networks are highly variable
when evaluated on the timescale of seconds. However, we found
that consistent large-scale functional relationships recur sponta-
neously, generating quasi-stable template network structures.
The most common, dominant edges within this template consti-
tuted a persistent network core. These conserved subnetworks
became evident when functional networks— derived from 1 s
windows of EEG data—were averaged over epochs of at least
�100 s in duration. The resulting templates were present across
all days of recording, states of consciousness, and frequency
bands evaluated. Although the temporal dynamics of network
stability and measures of network connectivity were strikingly
similar across subjects, the structure of each network template
varied across individuals.

Large-scale, functional connectivity brain networks have long
been identified by correlating markers of metabolic activity be-
tween brain regions using positron emission tomography (PET)
and fMRI (Friston et al., 1994; Biswal et al., 1995; Raichle et al.,
2001; Greicius et al., 2003). Highly correlated fluctuations in

Figure 5. Functional network stability across subjects and states. Average networks derived from the entire recording session for each subject for each state of consciousness. The widths of the
edges are drawn proportional to the frequency with which the edges appear in the sample (scaled to the frequency of the most common edge). Consistent functional network topologies are evident
in each subject across all states. The most common edges present in each subject (those with weights above the 95th percentile) are shown in red. Although functional networks are stable across time
for each subject, they vary considerable across subjects.
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fMRI BOLD signal that decrease during cognitive tasks (“default-
mode networks”) or are present at rest (“resting state networks”)
have been found to be a useful biomarker for developmental stage
and disease (Buckner et al., 2008; Bassett and Bullmore, 2009;

Power et al., 2010). Recent work has suggested that fMRI BOLD
signal fluctuations may colocalize with slow fluctuations in EEG
gamma power (He and Raichle, 2009; Ko et al., 2011), but how,
and whether, the BOLD signal relates to brain electrophysiology

Figure 6. Functional network stability across frequency bands. A, Average networks derived from the entire recording session in a single subject in each frequency band of interest [delta (0.5– 4 Hz), theta
(4 – 8Hz),alpha(8 –12Hz)beta(12–20Hz),andgamma(20 –50Hz)].Thewidthsoftheedgesaredrawnproportionaltothefrequencywithwhichtheedgeappearsinthesample.Consistentfunctionalnetwork
topologies are evident across all frequencies. The most stable edges (those with weights above the 95 percentile) are shown in red. B, Functional network stability is plotted as the average 2D cross-correlation
( y-axis) for all networks derived from increasing epoch lengths (x-axis) for each frequency band and mixed frequency bands compared with each other. Networks are highly variable for epochs�20 s but rapidly
stabilize with increasing lengths and achieve near-maximal cross-correlation values for epochs�100 s. Similar curves are seen for each frequency band. Networks compared within the same frequency are more
similar then networks compared from different frequency bands (plotted in gray). C, Top, Empirical cumulative distribution function of density measures for all 1 s networks for each frequency band and all
subjects. Graph characteristics vary significantly between frequency bands ( p � 0.0001 for all comparisons). Sparsest networks were seen in the low gamma and theta bands for each subject.

Figure 7. Signal coupling across frequencies is not synchronous. Left, Example EEG data from two electrodes that are highly coupled on average. Strong coupling was apparent between the same
electrode pair at each frequency band, although not necessarily at the same time. Here, in the delta band, coupling is strongest in the first second, whereas in the alpha band, coupling is strong in
the third second, and in the beta band, coupling is strong in the second and third seconds. Right, Example EEG data from two electrodes that are not highly coupled on average. Coupling is not strong
between this electrode pair at any frequency band.
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remains incompletely understood (Bartels et al., 2008; Britz et al.,
2010; Hlinka et al., 2010).

fMRI resting networks appear to be stable within the same day
when averaged over at least 5 min (Whitlow et al., 2011; Park et
al., 2012); however, more detailed investigation of the short- and
long-term temporal dynamics of these networks has been limited
by the temporal resolution of the BOLD signal (�1 s) and con-
straints on fMRI scan duration (typically several minutes). Here,
using a direct measure of neuronal activity, we find that func-
tional brain networks are rapidly shifting over short time inter-
vals; however, spontaneous neuronal connectivity patterns recur
with high probability over time. These large-scale network tem-
plates are individual specific and strikingly stable through uncon-
strained states of consciousness and across multiple days, with
persistent dominant edges constituting a network core. How
functional and structural networks are related remains an open
research question (Rubinov et al., 2009). The variability of func-
tional networks over short time intervals and across individuals
suggests that these assemblies do not simply reflect relatively
static large-scale macroscopic anatomical connectivity patterns
(Honey et al., 2009; Yasmin et al., 2009; Ponten et al., 2010). Our
findings of a core functional organization within these dynamical
systems may therefore reflect an overlay of rapidly changing bio-
physical mechanisms on more static structural anatomy. These
observations complement a growing body of literature that
intrinsic and persistent core functional assemblies sculpt the
complex organization of neuronal processing at multiple spatio-
temporal scales (Singer, 1999; Fingelkurts, 2004; Laufs, 2008;
Bullmore and Sporns, 2009; Deco et al., 2011).

Our findings of network instability on the order of seconds
and network stabilization on the order of �100 s implicate at
least one consistent “timescale” on which cortical brain networks
appears to operate. This temporal stability could not be repro-
duced with surrogate data generated from random or shuffled

networks and was consistent across sub-
jects and all states of consciousness and
frequency bands. Very slow oscillations
on the order of �0.1 Hz (phases of �10 s
and greater) dominate functional net-
works identified using fMRI (Fox and
Raichle, 2007) and peak oscillations at
0.017 Hz (�60 s) may correlate with the
fluctuation of power in brain voltage os-
cillations (Ko et al., 2011). We find that
average functional network templates
emerge on a similar timescale (�100 s).
Cortical information processing and inte-
gration is hierarchically organized across
several fundamental scales, ranging from
milliseconds [synaptic integration and
spiking patterns (Singer, 1999)], hun-
dreds of milliseconds [theta integration
across local field potentials (Mizuseki et
al., 2009)], to hours [molecular “clocks”
underlying circadian rhythms of con-
sciousness (Lefta et al., 2011)]. The time-
scale for functional network stability
observed here (�100 s) may provide a
temporally appropriate cadence for mod-
ulation and integration of large-scale cor-
tical processes (ranging from tens to
hundreds of milliseconds) across multiple
frequencies (Baria et al., 2011). Func-

tional cortical networks could thus provide internally generated
quasi-regular heterotopic scaffolding to selectively modulate
transient, lower probability cortical processes (Deco et al., 2011).
That the template network components observed here were not
present as oscillating phase-locked discrete events but were ob-
served to emerge probabilistically over �100 s time course, could
enable fluid temporal integration across cortical events joined
both forward and backward in time.

Consistent with growing evidence that higher-frequency net-
works may be more focally distributed, we observed denser, less
clustered networks in delta frequency and sparser, highly clus-
tered networks in the gamma frequency (Singer, 1999; Miller et
al., 2007; He and Raichle, 2009; Tallon-Baudry, 2009; Baria et al.,
2011). Although beta frequency power decreases during sleep
relative to wakefulness, we have observed an increase in func-
tional network density during sleep, consistent with previous
work demonstrating that coherence between electrodes is in-
creased in beta as a result of the presence of sleep spindles (12–15
Hz) (Achermann and Borbély, 1998a,b; Gross and Gotman,
1999). Although the density and clustering of networks varied
across frequency bands, there was marked persistence of the most
common edges across frequency bands. This finding is consistent
with the observation that similar network templates persisted
across sleep states, which are indexed primarily based on fre-
quency content (Silber et al., 2007). Notably, specific edges were
not necessarily present simultaneously across frequency bands,
suggesting that cross-frequency network templates may not co-
incide. These global observations suggest that long-range integra-
tion preferentially occurs between similar brain regions across all
frequencies on average but that coupling strength may fluctuate
across frequency bands over time. Our findings are consistent
with observations that different frequency bands might have
“crosstalk” between them at any one time (Klimesch, 1996; Fris-
ton, 1997; von Stein et al., 2000; Varela et al., 2001; Laufs, 2008;

Figure 8. Functional network stability and graph characteristics across subjects and states. A, Functional network stability
plotted as the average 2D cross-correlation for all networks derived from increasing epoch lengths. Networks are markedly less
similar between subjects than within the same subject but more similar than random or shuffled networks. B, Top, Empirical
cumulative distribution function of density measures for all 1 s networks for each state and all subjects. Bottom, Empirical cumu-
lative distribution function of clustering coefficient values of 1 s networks for each state and all subjects. Graph characteristics vary
significantly between states ( p � 0.0001 for all comparisons). Similar distributions were seen for each subject. Sparsest networks
with lowest clustering were present in N3, followed by N2 in each subject. Densest networks with highest clustering are present
during wakefulness in each subject. REM and N1 states had intermediate values, which were near-equivalent to wake values in one
subject.
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He et al., 2010), thus simultaneously providing additional di-
mensions of information transfer across cross-frequency net-
work assemblies. Cross-frequency coupling localized to different
brain regions in distinct frequencies and with distinct phase rela-
tionships (Fell and Axmacher, 2011) were not identified in our
analysis. Additional examination of the temporal features of
long-distance, edge-specific, cross-frequency coupling relation-
ships will be required to further characterize the network prop-
erties of such complex interdependencies.

A common limitation to EEG-based analysis includes the poor
spatial resolution of the EEG signal that constrains identification of
complex network structures and ignores the contribution of sub-
cortical structures. Despite these limitations encountered in the
scalp EEG signal, we and others have identified fine stable graph
characteristics across time and subjects using these techniques
(Ferri et al., 2007; Boersma et al., 2011; Moeller et al., 2011).
Furthermore, because the EEG represents the spatially blurred
average activity of millions of underlying cortical neurons prop-
agated through the cortex, CSF, skull, and scalp and further as-
signed to a near-regular lattice of scalp electrode locations,
volume averaging may bias analyses toward the identification of
spurious edges between electrodes, especially adjacent electrodes.
However, in our analysis, we have used conservative method to
remove coupling relationships likely to be caused by volume con-
duction, allowing us to interpret remaining identified edges as
representing interregional coupling. Finally, we also recognize
that the spatial resolution of the recording equipment may influ-
ence the temporal stability of identified networks. Recording
techniques with denser cortical spatial resolution will have in-
creased sensitivity to pick up local coupling shifts that may be
spatially averaged using EEG, resulting in more stable network
architecture over time. Nonetheless, we have observed similar
timescales for functional network stability in long-term intracra-
nial electrocorticography (Kramer et al., 2011), suggesting that
the timescale observed for functional network stability may re-
flect a consistent, intrinsic process.

Despite these limitations, it is important to recognize that
EEG data are widely available and offer a unique opportunity for
in vivo evaluation of large-scale cortical networks in healthy and
diseased populations of all ages and in a wide variety of circum-
stances. The brevity of data that is required to generate a stable
and representative functional network within a given individual
is promising for the feasibility of future research and the devel-
opment of therapeutically useful biomarkers of integrated brain
dynamics. Our findings suggest that, using functional network
techniques, a routine EEG (usually at least 30 min long) contains
sufficient information to reliably and tractably characterize the
core functional network of a subject. These core networks may
provide individual-specific baseline physiological phenotypes
and null hypotheses for event-specific dynamic network struc-
tures as well as population level state- and frequency-specific
graph characteristics. Additional work evaluating how these core
networks develop and persist across months, years, and the lifes-
pan—and how they are disrupted in disease—may provide enor-
mous insight into their function and potential utility as biomarkers
of neurological disease.
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