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Quantitative Approximation of the Cortical Surface
Potential From EEG and ECoG Measurements

Mark A. Kramer and Andrew J. Szeri*

Abstract—A quantitative approximation of the cortical surface
potential from measured scalp surface potential data is developed.
The derivation is based on a local Taylor series expansion (TSE) in
the surface normal coordinate. Analytical and numerical results
for the four shell spherical head model show that the TSE method
improves the spatial deblurring of the surface Laplacian method.
The inclusion of the biharmonic term, the extension to other ge-
ometries, and the application to electrocorticogram measurements
are discussed.

Index Terms—Cortical imaging, high-resolution ECoG, high-
resolution EEG, spatial deblurring, surface Laplacian.

I. INTRODUCTION

THE electroencephalogram (EEG) provides neuroscientists
with temporal and spatial maps of the scalp surface po-

tential. Although unsurpassed in temporal resolution, the scalp
EEG suffers from limited spatial resolution due to large varia-
tions in conductivity between the cerebrospinal fluid (CSF), the
skull, and the scalp. Over the past few decades, neuroscientists
have found methods to improve the limited spatial resolution
of scalp EEG and to approximate the cortical surface potential.
These high-resolution EEG techniques are valuable both intrin-
sically and as a processing step to precede other analysis, such as
source localization. Techniques developed to improve the spa-
tial resolution of scalp EEG can be divided into two categories:
harmonic continuation techniques [1], [2] and surface Laplacian
techniques [3], [4].

In [2], a technique of harmonic continuation is described.
The scalp surface potential is fitted with an expansion in terms
of Legendre functions. Because there are no current sources
within the scalp, the scalp potential satisfies Laplace’s equa-
tion. Hence, the way in which the coefficients of the terms in
the Legendre function expansion vary with radial coordinate is
determined by their order. With this knowledge, the scalp po-
tential may be evaluated on the skull surface. The continuity of
the potential and of the radial component of the current density
permit further continuation into the skull, and so on. In this way,
the harmonic nature of the potential in the scalp, skull, and CSF
may be exploited to render the potential on the cortical surface.
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Among the drawbacks to this technique are that it relies on the
analytic determination of the scalp surface potential in terms of
Legendre functions and that the projection coefficients that fa-
cilitate the downward continuation are difficult to evaluate ana-
lytically for more realistic geometries.

Another technique to improve the spatial resolution of scalp
EEG involves the application of the surface Laplacian (SL). The
SL is a mathematical operator one can apply to a function over
any smooth, two-dimensional (2-D) surface. By associating this
mathematical operator with a field theory of electromagnetism
appropriate to neural activity, one can develop meaningful phys-
ical quantities, such as the scalp current density (SCD) [5]. The
SL of the scalp potential also provides a noninvasive, qualitative
estimation of the cortical surface potential [4]. In Section II of
this paper, we review this application of the SL.

The plan for the remainder of this paper is as follows. In
Section III, we present a new method for determining a quanti-
tative approximation to the cortical surface potential based on a
Taylor series expansion (TSE) in the surface normal coordinate.
We examine the TSE method analytically and through computer
simulations, as well as discuss spatial sampling and electro-
corticogram (ECoG) measurements, in Section IV. Finally, in
Section V, we summarize the results.

II. SL CORTICAL SURFACE POTENTIAL ESTIMATION

The combination of the high-conductivity CSF and low-con-
ductivity skull spreads current from a cortical source over a wide
region of scalp. This spatial spreading of current blurs the po-
tential distributions of nearby cortical sources, rendering them
less distinguishable in scalp EEG. The goal of cortical imaging
is to undo this blurring and thereby to approximate the cortical
surface potential. After an insightful physical argument and nu-
merous computer simulations, Nunez et al. [4] show that the SL

of the scalp surface potential can be used to estimate the
cortical surface potential through the proportional relation

(1)

where is the numerical factor

(2)

Here, and are the thicknesses of the skull and scalp, and
and are the skull and scalp conductivities, respectively. Thus,
knowing the scalp potential and the values of the physical
quantities in (2), the cortical surface potential is approx-
imated by (1). In practice, the cortical potential is visualized
more simply as

(3)
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TABLE I
FOUR-SHELL SPHERICAL HEAD MODEL PARAMETERS

because the magnitude of the second term in (1) greatly ex-
ceeds that of the first, as verified experimentally [4]. Although
derived for a spherical head model, (3) may be applied to
more realistic geometries [3], [6]. The main advantages of
using (3) to approximate are its model independence and
simple implementation.

The justification of (1) is based on physical approximations
and computer simulations [3], [4]. In what follows, we present a
method of approximating the cortical surface potential based on
a TSE in the surface normal coordinate. We find that the largest
terms in the expression match those of (1). However, there are
higher order terms whose neglect gives information about errors
in the use of (1). Moreover, the new expression we develop to
replace (1) is quantitative and not simply proportional to .

III. TSE METHOD

The TSE of the scalp surface potential provides an approx-
imation to the cortical surface potential. For simplicity and
concreteness, the formulation is derived here for a four-shell
spherical head model with parameters listed in Table I. The
extension of this derivation to other geometries is discussed
in Appendix II. The computation involves two steps: 1) deter-
mination of the TSE in of the potential in each layer of the
model and 2) exploitation of the boundary conditions at each
interface of the model. The application of this process to each
layer of the four shell spherical head model is discussed in
what follows.

The first step in the TSE procedure is to approximate the po-
tential within the scalp given the scalp
surface potential at the air/scalp interface

. In general, we can expand any well-behaved function of
near in a Taylor series

(4)

Here, includes all terms of order and
higher and . To determine the po-
tential within the scalp from the scalp surface poten-
tial , we fix in (4) and write

(5)

Because the unknown function occurs on both sides
of (5), we express the right-hand side of this equation in terms
of the known scalp surface potential . To do so requires

exploitation of the boundary conditions at the air/scalp interface.
In general, at the interface of shells and we have

(6)

(7)

where and are the conductivities of layers and , respec-
tively [8]. Then, the first term of (5) is simply related to the scalp
surface potential

(8)

by use of (6). For the second term of (5), we must determine the
normal derivative of evaluated at the air/scalp inter-
face . Equation (7) yields

(9)

where is the potential of the air surrounding the scalp
and and are the conductivities of the air and scalp, respec-
tively. Because , we conclude

(10)

Finally, for the third term in (5), recall that all current sources are
located in the cortex. Then Laplace’s equation

holds in the scalp. We write the Laplacian in spherical coor-
dinates and solve for to obtain

(11)

Here, we have made use of (8), (9), and . We remark that,
for simplicity, we are defining

(12)

rather than

(13)

This will save having to define different SL operators at different
radii and hence simplify the notation. We combine the results for
all three terms in (5) to conclude

(14)

Hence, we have expressed the potential distribution within the
scalp in terms of the potential distribution at
the air/scalp interface using only the approximations of
a TSE and of . We regroup the terms in (14) and express
the scalp potential as an operator acting on

(15)

Equation (15) is the approximation to the potential at any radius
within the scalp given the potential recorded

at the air/scalp interface , and the error is .
With the goal of approximating the cortical surface potential,
we continue the estimation process through the next layer of the
model: the skull.

To find the potential distribution within the skull
, we follow the same procedures as above. When
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, (15) is the approximation of the potential distribution at
the scalp/skull interface. We calculate from (4) the TSE of the
potential within the skull

(16)

We express the right-hand side in terms of for which
we have developed the approximation (15). Then, the first term
in (16) is

(17)

by continuity (6), (9), and (15). The second expansion term in
(16) is, by use of (7) and (15),

(18)

The third term of (16) can be written as

(19)

and evaluated using (7), (15), and (18). Here, we have made use
of the fact that there are no sources in . We substitute
these results into (16) and simplify to obtain the approximate
skull potential distribution

(20)

where and is the surface biharmonic operator,
which, like (12), is dimensionless. This expression may be used
to approximate the potential distribution at the skull/CSF inter-
face, . Finally, we follow the same procedures
as before and approximate the potential distribution within the
CSF, . Evaluation of at the
CSF/cortex interface produces the final result, an approximation
of the cortical surface potential from the recorded scalp
surface potential . We find

(21)

with error

(22)

We substitute in numerical values for the conductivities and
radii from Table I and find

(23)

as the approximation to the cortical surface potential. Note that
the operators in (23) are dimensionless.

A. Comparison to Prior Theory

We remark that the first two terms of (23) (i.e., the constant
1 and ) are in the same form as the expression developed in
[4] and restated in (1). Examination of the coefficient of in
(21) reveals a single dominant term

(24)

due to the large value of the conductivity ratio .
This matches (1) because in (1) includes a factor of . We
note that, in place of the factor 0.095 388 in (23) obtained by use
of all the terms in (21), one finds instead 0.08664 when using
only the dominant term (24). This represents an error of approxi-
mately 10%. It is interesting that the two different methods—the
physical arguments of [4] and the TSE above—produce approx-
imately the same result.

The value of having developed (21) by a different means is as
follows. First, we have an idea of the errors involved in simply
keeping a few of the many terms of (21) or (23). Second, the
new approximation for the cortical surface potential is quanti-
tative, rather than the proportional statement (1). Third, there
may be situations where the higher order terms are of impor-
tance. Fourth, the TSE method is a local approximation and,
therefore, permits changes in the model parameters—radii and
conductivities, in this case—within local angular regions. There
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is no built-in assumption or requirement of global consistency
in the TSE method. In what follows, we discuss first-order [up
to in (23)] and second-order [up to in (23)] corrections
to the cortical surface potential approximation.

IV. RESULTS

A. Analytical Consideration of TSE

For the four-shell spherical head model, there exists an an-
alytic solution for the potential distribution due to a point cur-
rent source. By superposition, more general sources—such as
dipoles—may be constructed. The potential distributions due
to a point current source are written compactly in terms of the
spherical harmonics as follows:

(25)

where is the angular location of the observation point,
for the scalp, skull, CSF, and brain, respectively,

and the coefficients and are determined by
matching the boundary conditions at the shell interfaces [9]. The
spherical harmonics are defined as

(26)

where are the associated Legendre polynomials and
. For the four-shell spherical head model, an expression can

be derived for the coefficients and within
each layer . If we divide the coefficients at the scalp surface

( and , where ) by
the coefficients at the cortical surface ( and

), we determine the transfer function of the
potential as a function of as follows:

(27)

We note that is independent of . This is the case
because the boundary conditions (6) and (7) only involve
derivatives with respect to , which makes the dependence
of and complicated. The coefficients

and depend on only through the
source term, and in the ratio (27) parameters related to the
source vanish.

Given a spherical harmonic of order on the cortical sur-
face, the scalp transfer function (27) determines the contribu-
tion of this spherical harmonic on the scalp surface. In Fig. 1,
we plot (solid curve) using the physical parameters in
Table I. Owing to the conductive properties of the brain, CSF,
skull, and scalp, the transfer function rapidly approaches zero
as increases. Thus, higher order spherical harmonics present
on the cortical surface are strongly damped at the scalp surface.

The goal of any deblurring procedure is to eliminate the blur-
ring produced by anisotropic and low-conductivity media by
amplifying higher order spherical harmonic terms damped at the
scalp surface. An ideal deblurring algorithm would be the in-
verse transfer function (ITF). Given the scalp surface potential,
the ITF determines the undamped contribution of each spherical

Fig. 1. Scalp transfer function TF[L] (solid) of a spherical harmonic term
of unit magnitude on the cortical surface to the scalp surface. Higher order
spherical harmonic terms are damped. Also plotted are the products of TF[L]
with the inverse transfer functions from the scalp surface to the cortical surface
(ITF [L] and ITF [L]). We show the product of the scalp transfer function and
the inverse transfer function for the TSE method up to the Laplacian correction
(TF � ITF [L]) (dotted), and the product of the scalp transfer function and
the inverse transfer function for the TSE method up to the biharmonic correction
(TF � ITF [L]) (dot–dash line).

harmonic on the cortical surface. We note that, for this simple
example, the exact ITF is the reciprocal of (27).

The TSE method determines an approximation to the ITF
. To see this, note that the scalp surface potential can be

written as

(28)

where the are unknown coefficients dependent on the
model parameters (i.e., the radii and conductivities of the shells,
in this case). Similarly,

(29)

for the cortical surface potential. We apply the TSE method (23)
to (28) and determine an approximation of the cortical surface
potential to yield

(30)

where we have used the well-known identity

(31)

Then, from (29) and (30), we have

(32)

where and correspond to first-order (up
through ) and second-order (up through ) approximations
to , respectively. The factors preceding in
(32) approximate the ITFs; given , corresponding to
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the scalp surface potential, the first- and second-order ITFs,
defined as

(33)

determine an approximation to . To analyze the approx-
imations (32), we plot the ratios of the approximate cortical co-
efficients in (32) to the exact cortical coefficient

(34)

(35)

in Fig. 1. Here, we have used the definitions (33) and the
definition of . If or were the exact ITF,
then the ratio (34) or (35) would equal one. We show in Fig. 1
that both ratios decrease as increases, though much less
rapidly than does. The higher order contributes more
to , due to the inclusion of the biharmonic term in (35).
In Appendix I, we show that for the contribution of
the biharmonic term is important (i.e., contributes more than
10% to the TSE approximation). The TSE method increases
the contribution of higher order spherical harmonic terms in
the scalp potential distribution and thereby approximates the
cortical surface potential.

B. Application of TSE To ECoG Measurements

The discussion has been focused thus far on deblurring the
scalp surface potential. In ECoG measurements, the electric po-
tential is recorded at layer I of the cortex, above the source distri-
butions in layers III or IV of the cortex. These measurements, al-
though closer to the source distribution, are still spatially blurred
by the intervening material. By modifying the numerical values
in Table I, we can apply the TSE method to ECoG measure-
ments. We set all of the nonzero conductivities equal to and

to approximate a thin layer
(0.9 mm) of material separating the ECoG measurement from
the current source distribution at 7.99 cm. With these nu-
merical values, the replacement to (23) is

(36)

The transfer function and ITFs for the ECoG measurement are
used to create the plots in Fig. 2. We note that the transfer func-
tion for the ECoG measurement, although broader than the scalp
transfer function (27), still decreases rapidly as increases.
As in Section IV-A, we apply the ITFs from the TSE algo-
rithm and show the increased contribution of higher order spher-
ical harmonic terms in Fig. 2. Notice that both the first- and
second-order ITFs are excellent approximations to the exact ITF
up to .

Fig. 2. ECoG transfer functionTF[L] (solid line) of a spherical harmonic term
of unit magnitude in layer IV of the cortex to layer I of the cortex. Higher order
spherical harmonic terms are damped. Also plotted are the products of TF[L]
with the ITFs from layer I of the cortex to layer IV of the cortex (ITF [L] and
ITF [L]). We show the product of the scalp transfer function and the ITF for
the TSE method up to the Laplacian correction (TF� ITF [L]) (dotted line),
and the product of the scalp transfer function and the ITF for the TSE method
up to the biharmonic correction (TF� ITF [L]) (dot–dashed line).

C. Spatial Sampling

The results in Figs. 1 and 2 are independent of electrode
spacing. By introducing an electrode configuration, the max-
imum observable spatial frequency becomes

(37)

where is the angle between electrodes assumed to lie on a
sphere. Given a uniform electrode spacing, we can determine
the maximum order of an observable spherical harmonic.
The frequency (in cycles per ) in the direction is

(38)

which follows immediately from the definition of . We
define the frequency (in cycles per ) in the direction as
the frequency of maximum power in the power spectrum of
Legendre polynomial . We find that the relationship between

and is approximately linear

(39)

From (37)–(39), the maximum observable order as a func-
tion of electrode spacing is

(40)

For example, given a uniform electrode spacing with
, corresponding roughly to the standard 127-electrode

configuration, the maximum observable spherical harmonic is
of order . Our analysis of the transfer func-
tions for this electrode configuration is then useful only up to

, where the Laplacian term in (21) dominates.
For an electrode spacing of , possible in ECoG
measurements with a high-density electrode grid, the maximum
observable spherical harmonic is approximately of order

. At this order, the biharmonic contribution to the TSE
approximation dominates.
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TABLE II
MEAN CORRELATION COEFFICIENTS

D. Numerical Analysis of the TSE Method

The robustness of the TSE method was tested through
computer simulations. A four-shell spherical head model was
chosen with the parameters listed in Table I. Two hundred and
twenty dipolar radial current sources at radius 7.99 cm
(i.e., 0.1 mm below the cortical surface) were distributed
uniformly in the upper hemisphere. The source currents at
most sites were randomly chosen to establish a background
scalp potential of 100 V. In addition, source currents were
assigned to create one positive and one
negative source clump, with peak scalp
potentials of 600 V. Spherical harmonics up to order
were used to calculate the scalp and cortical surface potentials
created by each source for a standard 127-scalp-electrode
configuration. The TSE algorithm (23) was applied to noiseless
and noisy (uniformly distributed noise bounded by 60 V)
scalp surface potential data and compared to the exact cortical
surface potential.

To compute the surface Laplacian and biharmonic corrections
in the TSE method, we utilized spline interpolation with the ap-
propriate regularization necessary for noisy data [2], [10], [11].
The scalp surface potential recorded at electrode was
approximated with the surface spline functions as

(41)

where is the cosine of the angle between electrodes
and is the total number of electrodes, and the ’s are

unknown coefficients. The surface spline functions are defined
as

(42)

where are the Legendre polynomials of order . For the
simulations, we chose . After spline interpolation, the
angular component of the surface Laplacian at electrode is
simply

(43)

Fig. 3. Computer simulations of the potential distribution created by 220 radial
dipolar current sources recorded with a standard 127-electrode configuration.
(a)–(d) correspond to the (noiseless) scalp surface potential, the exact cortical
surface potential, the TSE to first-order correction, and the TSE to second-order
correction, respectively. The gray scales correspond in the four figures.

Note that the argument to the spline function decreases by 1 in
(43) compared to (41). For the surface biharmonic at electrode

we have

(44)

where has decreased by 2. We made use of the spline
interpolation method and approximated the cortical surface
potential with the first- (up through ) and second-order
(up through ) corrections in (23) using (43) and (44),
respectively. The linear Pearson correlation coefficients (CCs)
between the exact cortical surface potential and: the scalp
surface potential , the first-order TSE , and the
second-order TSE , were computed. For comparison, the
correlation coefficient between the surface Laplacian
method of (3) and the exact cortical surface potential was also
computed. We show explicitly as

(45)

where and are the potentials at electrode on the
scalp and cortical surface, respectively, the sums run over all
electrodes, and and are the potentials averaged over all
scalp and cortical electrodes, respectively. The expressions for
the other CCs are similar. The mean CCs, averaged over 100
examples with random background scalp potentials, are listed
in Table II.

In Fig. 3(a), we show an example of the scalp surface poten-
tial distribution. Qualitatively, the TSE method [Figs. 3(c) and
(d)] sharpens the broad scalp surface potential and better ap-
proximates the exact cortical surface potential [Fig. 3(b)]. The
improvement to the scalp surface potential is made quantitative
in the CCs of Table II. For noiseless data, the TSE approxima-
tion significantly increases the mean CC of the scalp surface
potential. The TSE method also improves the mean CC of the
surface Laplacian method (3). The results for the noisy scalp
data are also listed in Table II.

The quantitative improvement of the TSE method over the
traditional surface Laplacian method in (3) is revealed by the
mean Euclidian error (EE) values in Table III. By Euclidian
error, we mean

(46)
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TABLE III
MEAN EUCLIDEAN ERRORS

where is the exact cortical surface potential, is a potential
distribution evaluated at the same electrode configuration, and

is

(47)

where is the total number of electrodes and is the po-
tential at electrode . As above, we computed the EE between
the exact cortical surface potential and: the scalp surface po-
tential , the first-order TSE , and the second-order
TSE . For comparison, we also computed the EE be-
tween and the surface Laplacian method in (3) and the exact
cortical surface potential . The mean EEs, averaged over
100 examples of random background scalp potentials, are listed
in Table III. We found that, for noiseless scalp data, the TSE
method reduced the mean EE of the scalp surface potential.
Moreover, the TSE method reduced the mean EE of the surface
Laplacian method by nearly a factor of 5. Similar results, listed
in Table III, hold for the noisy scalp data.

At this point the reader may wonder why is so large.
The reason for this is that the surface Laplacian operator ampli-
fies higher order spherical harmonics in the scalp surface poten-
tial by a factor that is too big. Thus, the difference in magnitude
between the surface Laplacian approximation and the exact cor-
tical surface potential is large. This difference in magnitude does
not effect , but is clearly revealed in . For this reason,

is greater than , although the surface Laplacian ap-
proximation does correlate well with the exact cortical surface
potential. The TSE method improves both the CC and the EE
of the scalp surface potential. Thus, we claim that the TSE re-
sult is quantitative while the surface Laplacian method in (3) is
only proportional. Quantitative knowledge of the cortical sur-
face potential may be useful when making comparisons across
subjects. For example, the power spectrum (with units V) is
known to be different in different subjects, but it is usually un-
clear whether this is due to differences in neurophysiology or
merely differences in head volume conduction properties [12].
The TSE method could allow direct neurophysiological com-
parisons, provided an accurate head model is known. Thus, in
comparisons across clinical subjects, it may be useful to develop
a quantitative cortical surface potential estimate.

The TSE algorithm provides a better quantitative approxi-
mation to the cortical surface potential than the scalp surface
potential or the surface Laplacian in (3). In the simulations

above, inclusion of the biharmonic correction in (23)—the
term—does not significantly improve the approximation of the
TSE method. The importance of the biharmonic correction
becomes significant when high spatial frequencies
are detectable on the scalp, as discussed in Appendix I.

V. DISCUSSION

The analysis in Section IV shows that the TSE method
provides a more accurate estimation of the cortical surface
potential than the surface Laplacian in (3). The improvement
is most clearly displayed in the EE values of Table III; the
TSE method reduces the EE by approximately a factor of
five compared to the surface Laplacian method. The reduced
Euclidian errors are due to the quantitative formulation of the
TSE method. Unlike (3), the TSE method is model-dependent,
but the conductivities and interface radii may be specified
locally for each electrode. The local nature of the TSE method
produces a four-shell spherical head model with conductivities
and radii appropriate to each electrode. The TSE method is
flexible and allows for realistic variations in the conductivities
and radii, which can be experimentally determined through
electrical impedance tomography [7].

There are shortcomings to the TSE method and SL methods
in general. In Section III, we applied the TSE method to the
simple four-shell spherical head model. We show in Appendix II
how the TSE method can be extended to more realistic geome-
tries. A drawback of the TSE and other SL methods is that an-
alytic expressions for the SL become more cumbersome as the
geometry becomes more realistic. Also, noise often gives rise
to the highest spatial frequencies in experimental scalp surface
potential data. This noise will be amplified by the SL, and even
more so by the surface biharmonic, in (23). As mentioned in
Section IV-D, we can account for noisy scalp surface poten-
tial data by a regularization (or smoothing) of the spline in-
terpolation. This regularization is a cumbersome and computa-
tionally expensive procedure. Finally, unlike boundary element
methods, the TSE method ignores boundary conditions intro-
duced by the recording electrodes. Even with these drawbacks
the TSE method offers a straight forward and rigorous means of
deblurring the scalp surface potential.

APPENDIX I
IMPORTANCE OF

In this Appendix, we will show that the term in (23) be-
comes important when there are components of the signal with

. From (23), we have

(48)

The term in (48) becomes significant in the approximation
when the third term is 10% of the second term, i.e., when

(49)

The scalp surface potential can be expressed in terms of
Legendre polynomials, as in (28) or (41). The application of
or to a Legendre polynomial of order introduces a factor
of or , respectively. Hence (49) becomes

(50)
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This expression is satisfied when . Thus, the biharmonic
term becomes an important correction to the surface Laplacian
in the TSE method when we can detect Legendre polynomials of
order 17 and greater. This analysis is easily extended to cortical
measurements (36).

APPENDIX II
EXTENSION TO MORE REALISTIC GEOMETRIES

In Section III, we applied the TSE method to the simple four-
shell spherical head model. We show in this Appendix how the
TSE method applies to more general geometries. Consider the
interface between two regions with uniform conductivities
and , respectively. We can define a local orthogonal curvi-
linear coordinate system with one axis perpendicular to the
interface and two axes parallel to the interface. Knowing the
potential in region 1, we write a TSE in for the
unknown potential in region 2 as

(51)

where is the location of the interface along . The boundary
conditions are equivalent to those in (6) and (7) and are given as
follows:

(52)

Here, we obtain expressions for the first two terms of (51) using
the known quantity . An expression for the third term
in (51) may be derived from Laplace’s equation

(53)

Here, we have written the Laplacian in general form for orthog-
onal curvilinear coordinates and grouped all derivatives tangen-
tial to the interface in . The terms , and are the usual
scale factors. We expand and rearrange (53) to obtain

(54)

where . Then (51) can be written as

(55)

where we have made use of the boundary conditions. In (55), we
have expressed the unknown quantity in terms of the
known quantity . The TSE method may be extended
to nonspherical geometries by replacing (4) with (55) and pro-
ceeding as in Section III.
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