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Three synchronization measures are applied to scalp electroencephalogram (EEG) data collected
from 20 patients diagnosed to have either: (1) no dementia, (2) mild cognitive impairment (MCI), or
(3) Alzheimer’s disease (AD). We apply the three synchronization measures — the phase synchronization,
and two measures of nonlinear interdependency — to the data collected from awake patients resting with
eyes closed. We show that the synchronization in potential between electrodes near the left and right
occipital lobes provides a statistically significant discriminant between the healthy and AD subjects, and
the MCI and AD subjects. None of the three measures appears able to distinguish between the healthy and
MCI subjects, although MCI subjects show synchronization values intermediate between healthy subjects
(with high synchronization values) and AD subjects (with low synchronization values) on average.
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1. Introduction

The most common form of dementia, Alzheimer’s
disease (AD), affects 4.5 million people in the U.S.1

At present, no cure for AD exists, although some
medications may delay memory decline or treat
behavioral and emotional symptoms.2 The primary
treatment for AD is supportive care provided both

to patients and their families. In 1991, the costs of
treating AD in America were estimated to exceed
67 billion dollars, and are expected to increase
dramatically during the next 25 years.3

Although prevalent, AD is difficult to diagnose.
The gold standard for diagnosis occurs post-mortem
when an autopsy reveals neurofibrillary tangles or
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amyloid plaques in the cortex and hippocampus. The
clinical diagnosis of AD is often accurate (in greater
than 80% of cases), yet the similarity of symptoms
expressed in AD and other forms of dementia and
depression often hinders the diagnosis.4 In addi-
tion, physicians must diagnose patients intermedi-
ate between cognitively normal elderly individuals
and those with dementia.2 This intermediate zone
is referred to as mild cognitive impairment (MCI)
and patients diagnosed with MCI are 5 to 10 times
more likely to develop dementia.2 That MCI symp-
toms often precede AD suggests the possibility of
detecting AD before its complete onset. Early detec-
tion of AD would provide individuals more time to
make special arrangements and perhaps allow future
preventative treatments to be administered.

The scalp electroencephalogram (EEG) reveals
changes in cortical electrical activity associated with
normal aging, MCI, and AD. The most established
of these EEG diagnostic techniques analyze changes
in the power spectrum. Many researchers have found
that AD patients exhibit increased power in the δ

(≈ 1 − 3 Hz) and θ (≈ 4 − 7 Hz) frequency bands,
and decreased power in the α (≈ 8 − 12 Hz) and β

(≈ 13−28 Hz) frequency bands compared to healthy
controls.4–6 This “slowing” of the EEG occurs across
the scalp with a nearly uniform spatial distribu-
tion. Recently, researchers have shown that measures
adopted from dynamical systems theory, such as the
correlation dimension, reveal decreased complexity
of EEG traces from AD patients.7,8

Both the power spectrum and correlation dimen-
sion are computed from EEG data collected at indi-
vidual electrodes. Thus, these two measures reveal
changes in the spatially localized voltage produced
near each electrode. Coupling measures, on the other
hand, reveal changes in the interdependence of EEG
data recorded at two different electrodes. For exam-
ple, linear coherence is a frequency-domain measure
of coupling between two time series. Researchers
have applied linear coherence measures to EEG data
and found that patients diagnosed with AD often
exhibit a lower coherence between electrode pairs
than healthy controls.9 These decreased coherence
values are typically localized in both frequency and
location (e.g., decreased frontal cortex coupling and
central cortex coupling in the θ, α, and β bands,10

decreased temporofrontal coupling and temporopari-
etal coupling in the α band,6 decreased temporal

lobe coupling in the α band.11) Recently, measures
of nonlinear coupling between two time series have
been developed.12–15 In Ref. 16 the authors apply
one of these measures to EEG data collected from
healthy, MCI, and AD subjects. They find that cor-
tical interactions in AD patients decrease in the β

band compared to healthy controls.
Here we study resting scalp EEG collected from

20 individuals clinically diagnosed to have either no
dementia (7 healthy controls, ages 62± 14 years, we
denote as N), MCI (5 subjects, ages 71 ± 5 years),
or AD (8 subjects, ages 81 ± 6 years.) In Sec. 2
we discuss the clinical diagnosis of these conditions
and the data collection procedure, and in Sec. 3 we
describe three synchronization measures in common
use. We apply the synchronization measures to the
EEG data in Sec. 4 and show that the synchroniza-
tion between EEG time series recorded at electrodes
O1 and O2 — above the left and right occipital lobes,
respectively — provides a quantitative means to dis-
criminate AD subjects from healthy and MCI sub-
jects. In Sec. 5 we discuss how these synchronization
results suggest changes in neural connectivity.

2. Clinical Diagnosis and Data
Collection

Each subject was assigned a clinical diagnosis by
a team of physicians at the Fort Wayne Neurolog-
ical Center in Fort Wayne, Indiana. These diagnoses
were based on a medical history, a neurocognitive
history, neurological examination, neuropsychologi-
cal tests, brain images, and blood tests. As part of
the assessment, scalp EEG data were collected from
each subject. These data were recorded using the
standard 10–20 electrode configuration with a linked-
ears reference and a sampling rate of 256 Hz. Dur-
ing the data collection, typically lasting 30 minutes,
each subject was instructed to relax and close his or
her eyes. Deviations from this behavior, such as eye
movements or sleep, were noted and the associated
time intervals were omitted from further analysis. In
what follows we analyze these EEG data in accor-
dance with human subjects guidelines established by
the University of California, Berkeley. Research pro-
tocol were approved by the University of California,
San Francisco and the Parkview Hospital IRB at Fort
Wayne, Indiana.
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3. Methods

The goal of the analysis is to provide a concise, quan-
titative measure capable of distinguishing between
AD, MCI, and healthy subjects from the scalp EEG
data. To do so, we apply three synchronization mea-
sures to the EEG data and determine the nonlinear
coupling between time series recorded at two, neigh-
boring electrodes. In this section, we describe the
preprocessing of the data and the additional process-
ing we perform on the results of the three synchro-
nization measures. We apply these measures to the
data in Sec. 4.

We start the analysis by choosing two neighbor-
ing electrodes (O1 and O2, say) from one subject. For
convenience, we label the time series recorded at the
two electrodes x[t] and y[t] where t = {0, . . . , T} is
the time index, and T is the total number of data
points collected. We note that to derive the time
(in seconds) from the time index, we multiply t by
the sampling interval 1/256 s. The preprocessing of
x[t] and y[t] consists of three steps. First, we average
reference the data with respect to the remaining 19
electrodes; for one subject, we computed the aver-
age reference over 18 electrodes because the voltage
at the omitted 19th electrode reached saturation.
We note that — in the unprocessed data — the
linked-ears reference electrodes act as a common
signal added to each channel and may induce an
artificial increase in the coupling results. To avoid
this, we compute the average reference of the data
as a crude approximation of reference-independent
voltages.17 Second, we bandpass digital filter the
data between 1 Hz and 50 Hz, subtract the mean
from each electrode, and scale the data to have a
maximum absolute value of one. Third, we divide
x[t] and y[t] into 120, consecutive, one second inter-
vals (256 index points per interval). We choose these
intervals from simultaneous segments of x[t] and y[t].
For example, if we choose the first segment in x[t]
from 256 ≤ t ≤ 511, then the first segment in y[t]
is from 256 ≤ t ≤ 511. We label the data in each
interval chosen in this way from x[t] and y[t] as
xi[t] and yi[t], respectively. We note that the super-
script i denotes the ith interval. Finally, we label the
data from x[t] and y[t] referenced, filtered, with fixed
mean, scaled, and divided into intervals, as x̃i[t] and
ỹi[t], respectively. In this way, we create an ensemble
of measurements.

To determine the coupling between the ensembles
x̃i[t] and ỹi[t] we apply three different synchroniza-
tion measures. These synchronization measures are
recent algorithms adapted from dynamical systems
theory. The advantage of synchronization measures
over traditional techniques of time series analysis
(such as the linear coherence results in Refs. 6, 9,
10 and 11) is that synchronization measures detect
nonlinear coupling between two time series. A mea-
sure of nonlinear interdependence may be especially
important when studying complicated systems, such
as the human neocortex. It is reasonable to assume
that, because of the nonlinear processing of single
neurons and the high density of cortical connec-
tions, the EEG does possess a nonlinear component
(i.e., the EEG cannot be modeled only as a col-
lection of independent oscillators or modes.18) To
apply these ideas, we must also assume that the
EEG is the result of a low dimensional, determin-
istic process.19 Without these assumptions, we may
still apply the synchronization measures to charac-
terize the EEG signal. Here we need not interpret
the results in terms of low dimensional dynamical
systems; instead we apply the synchronization mea-
sures to discriminate between the healthy, MCI, and
AD subjects.

Before applying the three synchronization mea-
sures to the EEG data, we outline how each is com-
puted. Two of the synchronization measures, S(x|y)
and H(x|y), are similar and defined in Refs. 13
and 14. To compute S(x|y) or H(x|y), we first delay-
time embed the data x̃i[t] and ỹi[t] from interval i.
The embedding procedure creates d-dimensional vec-
tors X̃ i[t] and Ỹ i[t] from the 1-dimensional vectors
x̃i[t] and ỹi[t], respectively. For example, we may
define the 3-dimensional vector X̃ i[t] = {x̃i[t], x̃i[t +
τ ], x̃i[t+2τ ]}. Here X̃ i[t] is expressed in terms of x̃i[t]
and the value of x̃i[t] shifted by time τ . There exist
procedures to choose the dimension d and delay-time
τ for noise-free data.21 We do not apply these pro-
cedures here; instead, we choose different values of
d and τ and show that the results are invariant. In
Refs. 7 and 8, the authors follow a similar procedure
and compute the correlation dimension for different
values of d and τ .

After embedding the data in interval i, we
compute the synchronization measures S(x|y) and
H(x|y) by determining neighborhoods in X̃ i[t] and
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ỹi[t] in the higher-dimensional space. To define the
neighborhood of Ỹ i[t] at t = 0, say, we locate the
points in Ỹ i[t] nearest to Ỹ i[0]. Here nearness is mea-
sured in terms of the Euclidean distance. We iden-
tify the 30 points closest to Ỹ i[0] by their indices;
for example, let t ∈ {11, 130, 145, . . .} index the
30 points closest to Ỹ i[0]. To avoid serial correla-
tions in the data, we choose neighbors to lie out-
side a temporal window of size 10 (approximately
40 ms) around t = 0. Therefore the point Ỹ i[1]
is not considered as a neighbor of Ỹ i[0] no matter
how close in the embedded space these two points
may be. Now we consider the vector X̃ i[t] at t = 0,
and compute the distance from X̃ i[0] to X̃ i[t] with
indices t ∈ {11, 130, 145, . . .}. In this step, we use
the time indices from Ỹ i[t] to compute spatial dis-
tances in X̃ i[t]. If these distances are small, then the
time indices of neighbors of Ỹ i[0] also belong to a
neighborhood of X̃ i[0]. We then say that Ỹ i[0] and
X̃ i[0] are synchronous at t = 0. This is how neigh-
borhoods in Ỹ i[t] are compared to neighborhoods in
X̃ i[t], and is the fundamental concept of these two
synchronization measures.

The subsequent computation of S(x|y) and
H(x|y) that measure the level of this synchroniza-
tion is similar.13,14 Both involve an embedding proce-
dure, a determination of neighborhoods, and a ratio
of distances. Synchronization values near 0 represent
weak interdependence, while synchronization values
near 1 represent strong interdependence. The result
of applying these measures to x̃i[t] and ỹi[t] for each i

is the synchronization as a function of time t within
interval i. To provide a concise diagnostic measure
of dementia, we make two assumptions regarding
the stationarity of the synchronization results. First,
we assume that within each one second interval i

the synchronization between x̃i[t] and ỹi[t] remains
statistically approximately constant. We may then
average the synchronization values over time t for
fixed i. Second, we assume that the synchroniza-
tion results are stationary over the 120 intervals, and
therefore average the synchronization results across
intervals i. Both stationarity assumptions are likely
invalid — the neural activity of the neocortex con-
tinually evolves in response to input from, for exam-
ple, environmental stimuli and the thalamus. But,
we show below that these assumptions do not pre-
vent the goal of this work: to discriminate between
healthy, MCI, and AD subjects. The final result is

two scalar values representing the average S(x|y) and
H(x|y) results for each subject.

The third measure we employ is the phase syn-
chronization P (θ). There exist many definitions of
phase synchronization; the one we use here is similar
to that stated in Ref. 22. The first step in comput-
ing P (θ) is to apply the Hilbert transform to x̃i[t]
and ỹi[t], and extract the instantaneous phase θ from
each as a function of time index t. We then com-
pute the phase difference between x̃i[t] and ỹi[t] at
each t; this is identical to the 1 : 1 phase locking
in Ref. 22. Finally, we define P (θ) as the probabil-
ity that the phase difference between x̃i[t] and ỹi[t]
assumes the value θ, where 0 ≤ θ < 2π, during the
interval i.23 We compute P (θ) between x̃i[t] and ỹi[t]
for all intervals i. To provide a summary measure, we
average P (θ) over all intervals and over phases θ near
0; specifically, we average P (θ) over phases between
0.0 and 0.3, and between 2π − 0.3 and 2π. Here we
again assume the stationarity of the phase synchro-
nization over the intervals. In addition, we consider
only the 1 : 1 phase locking at near zero phase. We
have found, but do not show, that P (θ) is unimodal
with largest peak near θ = 0 in the data considered
here. The final result is a scalar value representing
the average P (θ) for each subject.

4. Results

Having defined the three synchronization measures
in common use, we now apply each measure to the
EEG data sets recorded from the neural system.
We illustrate the results with two examples. First,
we apply the three synchronization measures to the
EEG data collected at electrodes O1 and O2, located
near the left and right occipital lobes, respectively.
We show that two measures — S(x|y) and H(x|y) —
produce similar results and significant (or near sig-
nificant) separation between the healthy and AD
subjects and the MCI and AD subjects for differ-
ent embedding parameters d and τ . We note that
the measure P (θ) is independent of the embedding
parameters because it is estimated without need of
an embedding. Second, for d = 10 and τ = 1, we
compare the synchronization between electrodes P3
and P4 using each of the measures. In this case, we
find no significant separation between the conditions.
We find, but do not show, similar insignificant sep-
aration between the three subject groups for three
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Fig. 1. The synchronization values for the three mea-
sures S(x|y), H(x|y), and P (θ) between electrodes O1
and O2 averaged over the three subject groups: healthy
(N), mild cognitive impairment (MCI), and Alzheimer’s
disease (AD). We plot the results for the three synchro-
nization measures S(x|y), H(x|y), and P (θ) from left to
right, respectively. We indicate the average synchroniza-
tion values by asterisks and the standard deviation within
each subject group by vertical lines extending above and
below each asterisk. The synchronization values and stan-
dard deviations are also listed in Table 1. We indicate
statistically significant (p < 0.05) separations between
the N and AD values by drawing a small horizontal line
one standard deviation above the mean synchronization
values for the healthy and AD subjects. We indicate sta-
tistically significant (p < 0.05) separations between the
MCI and AD values by drawing a small horizontal line
one standard deviation below the mean synchronization
values for the MCI and AD subjects.

other pairs of interhemispheric electrodes: C3 and
C4, F3 and F4, and FP1 and FP2. We conclude
that the AD subjects show decreased synchroniza-
tion between the left and right occipital lobes com-
pared to the healthy and MCI subjects.

We start with the application of the synchroniza-
tion measures to the EEG data collected at elec-
trodes O1 and O2. We show the results for the
embedding parameters d = 10 and τ = 1 in Fig. 1.
For each of the three synchronization measures
(S(x|y), H(x|y), and P (θ)) we plot the results for the
three subject groups (N, MCI, and AD). We indicate
the mean value for each subject group and condition
with an asterisk, and the standard deviation by ver-
tical lines extending above and below each asterisk.
We also list the synchronization values and standard
deviations in Table 1. We note that the three syn-
chronization measures illustrated in Fig. 1 produce

Table 1. The value and standard deviation of
the synchronization between electrodes O1 and
O2 averaged over subject groups. We mark the
statistically significant separations (p < 0.05)
between the healthy and AD subjects, and
the MCI and AD subjects with an aster-
isk (∗) and double asterisk (∗∗), respectively.

S(x|y) H(x|y) [∗, ∗∗] P (θ) [∗]

N 0.35 ± 0.08 0.37 ± 0.08 0.27 ± 0.10
MCI 0.31 ± 0.04 0.36 ± 0.02 0.19 ± 0.13
AD 0.28 ± 0.05 0.25 ± 0.08 0.15 ± 0.5

similar results. Specifically, we find that the aver-
age synchronization values for the healthy subjects
exceeds the average synchronization values for the
AD subjects. The separation between these two val-
ues is statistically significant (t-means test p < 0.05)
for two measures: H(x|y) and P (θ). We indicate this
significant separation by drawing a small horizon-
tal line one standard deviation above the mean val-
ues for the healthy and AD subjects. We note that
the separation is near significance (p = 0.08) for
S(x|y). We also find that the average synchroniza-
tion for the MCI subjects is less than that of the
healthy subjects and greater than that of the AD
subjects. These differences are not statistically sig-
nificant except for the separation between the MCI
and AD subjects computed with H(x|y). We indicate
this significant separation by drawing a small hori-
zontal line one standard deviation below the mean
values for the MCI and AD subjects. We note that
we find identical trends and statistically significant
changes for S(x|y) and H(x|y) if we choose neigh-
borhoods in the embedded space of 20 or 40 points
instead of 30 points.

In Fig. 2 we show the synchronization measures
S(x|y) and H(x|y) computed with different embed-
ding parameters d. Here we fix τ = 1 and plot the
synchronization results for d = 4 (in squares and
dotted lines,) d = 10 (in asterisks and solid lines —
as in Fig. 1,) and d = 16 (in diamonds and dashed
lines.) We find that, compared to the d = 10 results,
the mean values of S(x|y) decrease for d = 4 and
increase for d = 16, while the values of H(x|y)
increase for d = 4 and decrease for d = 16. Yet the
trend — that the average synchronization values for
the healthy controls exceeds those of the MCI sub-
jects which exceeds those of the AD subjects — is
preserved. We find for both embedding parameters
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Fig. 2. The synchronization values S(x|y) and H(x|y)
computed for different embedding parameters between
electrodes O1 and O2 averaged over the three subject
groups: healthy (N), mild cognitive impairment (MCI),
and Alzheimer’s disease (AD). Here we fix τ = 1 and
set d ∈ {4, 10, 16}. We indicate the mean values and
standard deviations for d = 4 by squares and dotted
lines, respectively; for d = 10 by asterisks and solid lines,
respectively; and for d = 16 by diamonds and dashed
lines, respectively. We indicate statistically significant
separations between the healthy and AD subjects, and
the MCI and AD subjects in the same way as that used
to create Fig. 1.

d = 4 and d = 16 that the average synchronization
values for the healthy subjects exceeds the average
synchronization values for the AD subjects. This sep-
aration is significant for both S(x|y) and H(x|y) with
d = 4, and only for H(x|y) with d = 16. We indicate
this significant separation by drawing a small hor-
izontal line one standard deviation above the mean
values for the healthy and AD subjects. We note that
the separation between the healthy and AD subjects
is near significance (p = 0.09) for S(x|y) with d = 16.
As for the d = 10 case, the separation between the
MCI and AD subjects is statistically significant only
for H(x|y). We indicate this significant separation by
drawing a small horizontal line one standard devi-
ation below the mean values for the MCI and AD
subjects. Thus, we may discriminate between the
healthy and AD subjects with the synchronization
measures S(x|y) and H(x|y), and the MCI and AD
subjects with H(x|y) using the embedding parame-
ters d ∈ {4, 10, 16} and τ = 1.

We now perform a similar analysis for the embed-
ding parameter τ . Here we fix d = 10 and plot
in Fig. 3 the synchronization results for τ = 1
(in asterisks and solid lines — as in Fig. 1,) τ = 4

Fig. 3. The synchronization values S(x|y) and H(x|y)
computed for different embedding parameters between
electrodes O1 and O2 averaged over the three subject
groups: healthy (N), mild cognitive impairment (MCI),
and Alzheimer’s disease (AD). Here we fix d = 10 and set
τ = {1, 4, 8}. We indicate the mean values and standard
deviations for τ = 1 by asterisks and solid lines, respec-
tively; for τ = 4 by squares and dotted lines, respectively;
and for τ = 8 by diamonds and dashed lines, respectively.
We indicate statistically significant separations between
the healthy and AD subjects, and the MCI and AD sub-
jects in the same way as that used to create Fig. 1.

(in squares and dotted lines,) and τ = 8 (in diamonds
and dashed lines.) We find that, as τ increases, the
values of S(x|y) increase and the values of H(x|y)
decrease. For τ = 4, the separation between the
healthy and AD subjects is significant for both mea-
sures, and the separation between the MCI and AD
subjects is significant only for H(x|y). For the τ = 8
case, the separation between the healthy and AD
subjects is significant for both measures, and the sep-
aration between the MCI and AD subjects is signif-
icant only for S(x|y). In this case, the H(x|y) result
is near significance: p = 0.06. We indicate these sig-
nificant separations following the prescription we use
to create Fig. 2. We note that the trend illustrated in
Figs. 1 and 2, that the average synchronization val-
ues for healthy controls exceeds those for the MCI
subjects which exceeds those for the AD subjects, is
violated for τ = 8. In this case, the average synchro-
nization values for the MCI subjects exceeds those of
the healthy controls. We conclude that the synchro-
nization measures S(x|y) and H(x|y) discriminate
between the healthy and AD subjects, and the MCI
and AD subjects for d near 10 and τ near 1. In what
follows, we fix d = 10 and τ = 1.
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Fig. 4. The synchronization values between electrodes
P3 and P4 averaged over the three subject groups:
healthy (N), mild cognitive impairment (MCI), and
Alzheimer’s disease (AD). We plot the results for the
three synchronization measures S(x|y), H(x|y), and P (θ)
from left to right, respectively. For the three measures,
we find no statistically significant separations between
the three subject groups.

Table 2. The value and standard deviation
of the synchronization between electrodes P3
and P4 averaged over subject groups. There
are no statistically significant differences.

S(x|y) H(x|y) P (θ)

N 0.23 ± 0.04 0.19 ± 0.05 0.12 ± 0.05
MCI 0.23 ± 0.02 0.21 ± 0.07 0.15 ± 0.09
AD 0.21 ± 0.04 0.16 ± 0.02 0.13 ± 0.13

In Fig. 4 we show the synchronization results
computed for the EEG data collected at electrodes
P3 and P4 (located over the left and right parietal
regions, respectively.) We plot these results in the
same way as those shown in Fig. 1. For this inter-
hemispheric electrode pair, we find no significant dif-
ferences in the synchronization results for the three
subject conditions. We list the results in Table 2.
We find, but do not show, similar results when we
compute the synchronization between electrodes: C3
and C4, F3 and F4, and FP1 and FP2. None of
these electrode pairs possesses significant differences
in coupling between the three subject conditions.
We conclude that the only neighboring interhemi-
spheric electrodes with significant synchronization
differences between the healthy and AD, and MCI
and AD conditions, are electrodes O1 and O2.

5. Discussion

In Sec. 4 we applied three synchronization measures
to EEG data collected from three subjects groups:
healthy controls, patients diagnosed with MCI, and
patients diagnosed with AD. We showed that the
synchronization between the EEG data recorded
at electrodes O1 and O2 decreased for the AD
subjects compared to the healthy controls. This
decrease was significant for two of the measures —
H(x|y) and P (θ) — and near significance for S(x|y).
We computed the S(x|y) and H(x|y) measures
with different embedding parameters and showed
that the results are robust. Finally, we reported
no significant differences in the synchronization val-
ues measured at other interhemispheric electrode
pairs (e.g., P3 and P4) for the three subject
groups.

The methods of analysis we present differ from
those used in previous studies of healthy versus AD
subjects. Here we employ synchronization measures
that operate in the time domain. A common coupling
measure for the study of AD is the coherence — a lin-
ear measure that operates in the frequency domain.
Linear coherence analysis (and some nonlinear syn-
chronization analysis, as in Ref. 16) reveals the cou-
pling between EEG data within different frequency
bands. Here, we bandpass filter the EEG time series
between 1 Hz and 50 Hz, and apply the three syn-
chronization measures to the data within this wide
frequency range. Therefore, we cannot use the syn-
chronization results to determine changes in coupling
confined to specific frequency intervals. Instead, we
chose to consider the nonlinear coupling between the
EEG data throughout a broad frequency band. One
may repeat the analysis presented here for data fil-
tered to emphasize other (e.g., more specific) fre-
quency ranges.

We may interpret the results in Sec. 4 in
terms of the disconnection model of AD. To do
so, we use the synchronization results to infer
changes in cortical connectivity. We showed that
the synchronization between EEG data recorded
at electrodes O1 and O2 decreased significantly
for AD subjects compared to healthy controls.
We infer from this result a decreased functional
connectivity, or disconnection, between the left
and right occipital lobes. Such changes in func-
tional connectivity may occur in many ways. At
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the cortex, the death of pyramidal neurons and
the associated corticocortical connections decreases
functional connectivity. In subcortical regions, the
loss of white matter decreases functional connec-
tivity. In this study, we infer a disconnection only
between the left and right occipital lobes. We do not
detect losses in functional connectivity between other
interhemispheric regions. This spatial specificity may
be due to the experimental conditions because α fre-
quency band activity is more prominent at electrodes
O1 and O2 with eyes closed in awake subjects.

We note that the trend of decreased synchroniza-
tion between electrodes O1 and O2 corresponds to
the trend of increased age of the three subject groups.
One might therefore attribute the decreased synchro-
nization to normal aging rather than dementia. For
example, we find that — assuming the subject ages
are drawn from a normal distribution — the sepa-
ration in the mean ages of the N and AD subjects,
and the MCI and AD subjects is statistically sig-
nificant with p = 0.042 and p = 0.04, respectively,
using the two-sided t-test. (The separation in the
mean ages of the N and MCI subjects is not statis-
tically significant, although the power of the test is
0.28.) To determine whether the decreased synchro-
nization results from typical aging or dementia, we
will include more (preferably age-matched) subjects
in future studies. But, we also note the following:
if we exclude the eldest subject from the AD group
(age 87), then the mean and standard deviation of
the AD subjects becomes 80 ± 5. For this reduced
number of total subjects (of 19 instead of 20), the
separation of the mean ages between the N and AD
subjects, and the MCI and AD subjects is nearly
statistically significant (p = 0.052 with power 0.79,
and p = 0.057 with power 0.78, respectively.) We
find — but do not show — that the synchronization
results are similar for this reduced subject total. For
the electrodes O1 and O2, we observe the general
trend of decreased synchronization for the N, MCI,
and AD groups. The separation between the N and
AD subjects, and between the MCI and AD subjects
is statistically significant for the measure H(x|y) and
near significance between the N and AD subjects for
the measure P (θ). We observe no trend and find no
significant separation of the synchronization results
for electrodes P3 and P4 in this reduced group of
subjects.

The synchronization results we present here do
not indicate the anatomical changes associated with
decreased interdependence between the left and
right occipital lobes. One method to identify these
anatomical changes may be a post-mortem exami-
nation. Such examinations are the gold-standard for
the diagnosis of AD. In this study, no post-mortem
examinations were performed. Thus an uncertainty
results both in the clinical diagnosis and in the inter-
pretation of the synchronization results. Most stud-
ies that distinguish between MCI and AD suffer
from this limitation. In the future, synchronization
measures combined with traditional linear measures
(e.g., power spectra and linear coherence) may pro-
vide physicians with additional diagnostic tools per-
haps as reliable as the current gold-standard.
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