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Abstract

Development of the human brain follows a complex trajectory of age-specific anatomical and physiological changes. The applica-
tion of network analysis provides an illuminating perspective on the dynamic interregional and global properties of this intricate
and complex system. Here, we provide a critical synopsis of methods of network analysis with a focus on developing brain net-
works. After discussing basic concepts and approaches to network analysis, we explore the primary events of anatomical cortical
development from gestation through adolescence. Upon this framework, we describe early work revealing the evolution of age-
specific functional brain networks in normal neurodevelopment. Finally, we review how these relationships can be altered in dis-
ease and perhaps even rectified with treatment. While this method of description and inquiry remains in early form, there is
already substantial evidence that the application of network models and analysis to understanding normal and abnormal human

neural development holds tremendous promise for future discovery.
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The developing human brain is a dynamic, complex system.
Over the course of development, the human brain evolves from
a few immature connections to an estimated 20 billion neocor-
tical neurons each with an average 7000 synaptic connections
and linked by over 150 km of myelinated axonal projections.’
Historically, rigorous investigation laid the foundation for clin-
ical neurology and systems neuroscience by evaluating
restricted or focal components of a system. These reductionist
methods are by their nature insensitive to the unique and emer-
gent properties that are evident when evaluating the system as
an integrated whole. Over the last decade, many new tech-
niques for exploring complex and dynamic systems have been
applied toward understanding the nervous system. Drawing
from graph theory, these techniques use information regarding
network components and their connections to characterize the
overall structure of a system. Analysis of these networks offers
a rich and tractable means of describing and categorizing the
architecture of complex networks, including the developing
human brain. The wide utility of these approaches facilitates
applications in neuroscience that include characterizing anato-
mical relationships between brain regions as well as temporally
correlated activity patterns in different brain regions. Network
methods are especially valuable for child neurologists, given
the profound changes that occur throughout neurodevelopment
in both normal and pathological circumstances.

In this review, we will highlight recent work analyzing
neural networks of the normal developing brain as well as
potential clinical applications. We will focus on 4 related
topics: basic attributes of network analysis with a particular
focus on functional brain networks, a brief overview of the pri-
mary histogenetic events and sequences of anatomical cortical
development, an examination of what is known for the devel-
opment of functional cortical networks, and the clinical impli-
cations of these findings as well as future directions.

Analysis of Structural and Functional
Networks

Many examples of networks exist in the world. These include
structural networks (eg, the network of roads that connect cities
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Figure |. Example illustration of constructing functional networks from voltage signals. (A) In this simulated example, electroencephalogram
(EEG) data are recorded from 2 electrodes on the scalp surface. The EEG data (black and upper gray curve) are simple sinusoids with added
noise, and the lower gray trace is the middle trace shifted to the right by ~25 ms—this time advance of the EEG signal causes it to align with the
top (black) trace, indicated by the vertical dashed lines. Because the 2 signals align, the cross correlation is strong enough, and we connect
the 2 electrodes with an edge (black line) to form a simple 2-node network. (B) In this contrasting example, the EEG data never match, no matter
the choice of time shift, and the 2-node network lacks an edge. (C) Simulated multivariate data recorded from many EEG electrodes, results in

(D) a much more complicated network.

and towns), social networks (eg, the networks of film actors
that collaborate in movies), and biological networks (eg, a
network of neurons connected with synapses). In each instance,
we can represent the network with 2 fundamental components:
nodes (the cities, actors, or neurons) and edges (the roads,
films, or synapses) that connect any 2 nodes. In what follows,
we will focus on binary, undirected networks. In these simpli-
fied networks, an edge either exists between 2 nodes or does
not, and the presence of an edge provides no directional (ie,
causal) information. In neuroscience, networks are typically
divided into 2 categories: structural networks and functional
networks.? In structural networks, the edges represent physical
connections between nodes. At the microscopic spatial scale,
these include synaptic or gap junctional connections between
individual neurons.>* At the macroscopic spatial scale, white
matter tracts are used to infer synaptic connections between
brain regions and construct structural networks.>”’

A functional network is defined by analysis of dynamic
physiological activities, rather than by anatomy per se. Any
time-varying physiological signal, such as electrical activity,
magnetic activity, or blood oxygenation, can be the basis for
inferring a functional network of brain activity. Generating the
network requires recording such signals from multiple spatial
locations and a metric to analyze coupling between these sig-
nals. The most commonly available clinical measure of brain
activity is the routine electroencephalogram (EEG). To identify
a functional network from the EEG, a coupling measure is
applied to pairs of voltage signals recorded at separate EEG
electrodes. Strong coupling between the activities recorded at
2 EEG electrodes defines an edge in the network, and the EEG
sensors define the network nodes.

Figure 1 illustrates this process in a simplified case of EEG
data recorded from 2 scalp electrodes. To determine whether
the 2 recording sites are linked (or connected) in this 2-node
network, we must determine the extent to which the EEG data
recorded at the 2 electrodes match. There is no single method to
optimally characterize signal coupling and many choices
exist.® Here, we demonstrate the process with a simple measure
called the cross correlation. Cross correlation compares the
temporal patterns contained in the 2 signals over time to see

how well the voltage fluctuations align. One way to accomplish
this is to compare the signals directly (the trace of signal 1
versus signal 2 at each time point) as well as indirectly: we can
shift the traces in time with respect to one another to determine
if the signals match more strongly at a particular lead or lag. If
at some time shift the 2 signals match, then the cross correlation
between the 2 signals is strong and we represent this graphi-
cally in a network by drawing an edge between the 2 electrodes
(Figure 1A). On the other hand, if the 2 signals never match, no
matter our choice of time shift, then the cross correlation
between the 2 signals is weak and we leave the 2 electrodes dis-
connected in the network representation (Figure 1B). In this
simple illustration, we have described a 2-node network that
either contains 1 edge (Figure 1A) or does not (Figure 1B). The
2 nodes represent the 2 EEG electrodes, and the edge reflects
correlated activity (ie, coupling) between the voltage fluctua-
tions recorded from the 2 electrodes. This approach can be
extended to build larger networks by applying coupling mea-
sures to the voltage signals recorded from all electrode pairs,
for example, in routine 10-20 configuration EEGs (Figure
1C). These results can then be used to create a functional con-
nectivity network for the entire EEG montage (Figure 1D).

Having constructed a functional network, we now seek to
analyze its structure. A useful, first analysis is simple visual
inspection of the network (eg, visual inspection of the network
in Figure 1D). Even in this 10-20 configuration, the network
structure becomes difficult to visualize. In fact, as the number
of nodes in a network increases, so does the number of possible
edges, and visual inspection becomes less useful. For a network
of N nodes, the maximum possible number of edges is
N(N —1)/2. When N is large (eg, in a high density EEG
recording with 128 electrodes or a multielectrode array with
100 contacts) the networks typically become much too
complicated for visual inspection (Figure 2A, B). To go beyond
visual inspection and characterize the structure of these large
networks, many measures exist.”!! Here, we outline 3 of
these measures in common use: the degree, path length, and
clustering coefficient.

The degree (d) is simply the number of edges that touch a
node. In Figure 3, we show a 5-node network, and list the
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Figure 2. Two larger networks consisting of 200 nodes. (A,B) We arrange the nodes (gray) in the network as a ring, although this does not
suggest a literal spatial sensor location in the “real” recording space. Each node represents an individual electrode or sensor, and each edge
(black line) indicates sufficiently strong coupling between activity recorded simultaneously at 2 nodes. For such large networks, the network
structure becomes much more difficult to characterize through visual inspection. (C,D) The degree distributions for each network. For the
network in (A) most of the nodes have a degree near 5. For the network in (B), most of the nodes have a degree less than 5, but some nodes

have a high degree (up to 35 edges).

A iid=2 iii (d=2) B i ii

i (d=4)

iv (d=2) v (d=2)

Figure 3. An example 5-node network to illustrate 3 simple measures
of network structure. (A) We label the 5-nodes (circles) with roman
numerals and connect the nodes with edges (lines). The number in
parentheses next to each node indicates its degree (d). (B) To deter-
mine the clustering coefficient of node ii, we first determine its nearest
neighbors (the other 2 nodes in the network are grayed out). We then
determine if an edge exists between these neighbors (the dotted line).
Because this edge exists in (A), the 3 nodes form a triangle or cluster.

degree of each node (in this case, a value of either 2 or 4). To
summarize the degree values of the entire network, we compute
the average degree of all nodes, and find in this case 2.4. We note
that this average value lies between the degree values we
observe for each node (2 or 4), as expected. For much larger net-
works, the degree distribution is a useful measure that illustrates
the probability of observing a node of degree d (Figure 2C).

In many real world networks, including the film actor network
and neural networks,'* the degree distribution exhibits a power
law: the probability of observing a node of degree d decreases
as 1 over the degree to some power (Figure 2D)."? In these net-
works, high degree nodes (which appear less frequently than
the low degree nodes) can serve important functional roles in the
network (ie, can act as hubs) although this is not always the
case." Degree distributions with power law behavior are also
known as scale-free because the degree distribution looks the
same (just scaled by constant value) if we multiply the value
of d by a constant.

The path length is the minimum number of edges traversed
to go from any given node to another in the network. We
assume that each node is reachable from any other node, but
if this is not the case, care must be taken to adjust for unreach-
able nodes. In the example 5-node network, the path length
from node i to any other node is 1; node i can reach any other
node by traversing 1 edge. Nodes ii—v can reach any other
node in 1 or 2 steps. We note that many different paths exist
between nodes. For example, we can travel directly from node
ii to node iii, or we can pass through node i on the way to node
iii. When computing the path length, by convention we always
choose the shortest path between nodes. The average path
length is calculated from the path length between each node

Downloaded from jen.sagepub.com at BOSTON UNIV on February 18, 2012



Journal of Child Neurology 000(00)

and all other nodes in the network; for the 5-node network, the
average path length is 1.4, a value between 1 and 2, as
expected.

The final measure we consider here is the clustering coeffi-
cient. The clustering coefficient of a node is the number of con-
nections that exist between the nearest neighbors of a node,
expressed as a proportion of the maximum number of possible
connections between the nearest neighbors of the node. In this
context, nearest neighbor is not a spatial measure but a measure
of which nodes are connected. This definition is perhaps best
illustrated through the example network in Figure 3. In the
5-node network, choose node ii and notice that this node has
2 neighbors (ie, 2 nodes directly connected to node ii by a
single edge, nodes i and iii in Figure 3B). We now examine
whether an edge exists between the 2 neighbor nodes. In this
example, it does (see Figure 3A) so we complete a triangle
or cluster in the network. In social networks, clustering is
typically high; the friends (nearest neighbors) of an individual
(the chosen node) also tend to be friends (ie, edges connect the
nearest neighbors of the chosen node). For node i in the 5-node
network, the clustering coefficient is 1/3. This result indicates
that of all the possible completed triangles between the nearest
neighbors of node i, only one-third exist. To complete all of the
triangles between the nearest neighbors of node i would require
additional connections between nodes ii and iv, nodes ii and v,
nodes iii and iv, and nodes iii and v. For all other nodes, the
clustering coefficient equals 1. All possible triangles between
the nearest neighbors of these other nodes do exist. Often the
average clustering coefficient for all nodes in a network is
computed; for the S5-node network, the average clustering
coefficient is 13/15.

With even these 3 simple measures in hand, we can charac-
terize an arbitrarily large and complicated network easily and
can compare networks efficiently. These, and other measures,
therefore allow us to reduce the potentially overwhelming com-
plexity of a developing brain network into a few comparable
and informative measures. The next sections outline the
maturation of anatomical and functional brain networks at each
stage of development. We examine the application of network
analysis to track the complex, but orderly, network topologies
over neurodevelopment.

Development of Neocortical Anatomical
Connectivity

The human cortex develops its familiar laminated architecture
primarily in utero.'>' During the first 2 to 6 months of gesta-
tion,'” projection neuron precursors undergo massive prolifera-
tion in the ventricular zone,'®?* amplified by secondary
divisions in the subventricular zone.>*** Simultaneously, neu-
ronal precursors migrate radially to form the early cortical
plate. Directed along a glial scaffolding and guided by regula-
tory gene expression, these cortical neurons distribute primar-
ily in an inside-to-outside pattern based on time of
origin.zh22 Inhibitory interneurons, by contrast, arise in the
ganglionic eminences and reach their cortical positions by

means of tangential migrations.'®'? The distinctive laminar
and columnar arrays of the 6-layered mature neocortex are
evident by 8 months gestation.?>2%7

Cortical development continues to evolve after birth, and
extensive work has described changes in white and gray matter
from infancy through adolescence. Longitudinal MRI studies
demonstrated that cortical gray matter volume increases
through childhood to puberty, after which there is a net loss
of volume.?® This predictable sequence is observed in an
inverse-hierarchical manner, such that changes in primary
motor and sensory regions precede the association cortices and
prefrontal cortices that mediate executive functions®+° (see
Figure 4).

The mechanisms underlying the inverted U-shaped
temporal pattern of cortical volume are diverse®' (see Figure 5).
The initial proliferation during fetal development is later
sculpted by selective cell death.'”-*?3° Heightened synapto-
genesis beginning in the third trimester continues through
2 years of age but then is followed by a prolonged period
of dendritic pruning which extends through childhood and
adolescence. The final synaptic density is approximately
60% of the maximum values.** Similar to patterns of corti-
cal volume change, synaptic density reaches a maximum in
primary sensory cortical regions before association cortices.
For example, in the primary auditory cortex maximal synaptic
density is observed around 3 months of age, approximately
1 year earlier than maximal synaptic density is reached in the
prefrontal cortex.*® In addition, deeper cortical layers (4, 5, and
6) develop more rapidly than superficial layers (2 and 3).>* The
cortical volume loss evident on MRI correlates in time with
increased synaptic pruning, as observed in pathology speci-
mens of neurologically normal subjects.

In contrast to the expansion and pruning patterns of cortical
gray matter described above,***’ cerebral white matter volume
grows steadily over time, largely attributed to intra-cortical
fiber myelination. Myelination improves impulse conduction
to such an extent that signal velocity is primarily determined
by segments of unmyelinated intracortical conduction length.>®
Myelination begins during the second trimester of fetal devel-
opment and increases over the first 2 years of life.>* Myelina-
tion continues throughout the first 3 decades of life, but at a
much slower pace.*® The temporal sequence of white matter
myelination is similar to that of cortical development, with
fibers mediating primary sensory then motor systems myeli-
nated first (in infancy), followed by association and then pre-
frontal cortices (in childhood).**?

White matter tract visualization can be accomplished in vivo
with an MRI-based technique, diffusion tensor imaging. A full
review of diffusion tensor imaging and related techniques is
beyond the scope of this article but can be found in several
excellent reviews.*>** Briefly, the preferred direction of water
diffusion is used to define white matter tracts by a metric called
fractional anisotropy, even in unmyelinated fibers in immature
brains.*> Recent work has demonstrated that diffusion tensor
imaging can even distinguish glial fiber density between fetal
cortical layers effectively.*¢
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Figure 4. Dynamic sequence of gray matter maturation over the cortical surface from age 5 to 20 years, demonstrating maturation of primary
motor and sensory regions before association cortices and prefrontal cortices. (Reprinted with permission from Gogtay N, Giedd JN, Lusk L, et
al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A. 2004;101:8174-8179.
Copyright 2004 National Academy of Sciences.)
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Figure 5. Observed timeline of some of the progressive and regressive structural changes present over the course of prenatal through adolescent
brain development. This figure can be taken to represent the general hierarchical elaboration of forebrain neural systems where the events in
primary representations anticipate those in successively more integrative regions.>> (Reprinted with permission from Casey BJ, Tottenham N,
Liston C, Durston S. Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci. 2005;9:104-110. Copyright
2005 Elsevier Ltd.)
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Figure 6. Representative axial fractional anisotropy maps at 0, 3, 6, 9, 12, 24, 36, and 48 months. (Reprinted with permission from Hermoye L,
Saint-Martin C, Cosnard G, et al. Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early

childhood. Neuroimage. 2006;29:493-504. Copyright 2006 Elsevier, Ltd.)

Longitudinal studies of normal development have shown that
prominent white matter tracts can be visualized at birth,
although fractional anisotropy values are lower in the immature,
incompletely myelinated white matter.*’*®* As myelination
occurs, water diffusion becomes more directional with an
accompanying dramatic increase in fractional anisotropy values
over the first 2 years. Adult values are generally obtained by
4 years of age. Although the corpus callosum and anterior com-
missure are detected by diffusion tensor imaging in newborns,
association fibers (superior longitudinal fasciculus, inferior
longitudinal fasciculus, and inferior fronto-occipital fasciculus)
are not observed until 3 to 12 months of age*’(see Figure 6).
Localized age- and region-specific maturation of discrete white
matter tracts continues through adolescence.*”

Network topology has been evaluated using diffusion tensor
imaging-based connectivity graphs. Evaluation of cortico-
cortical anatomical connections reveals high clustering and
short characteristic path lengths, typical of “small-world” net-
works.’®>! In such networks, most nodes can be connected
through only a small number of steps, reflecting a high effi-
ciency of information transfer, computational power, and syn-
chronizability across the network.>'? Small-world topology of

brain anatomical networks is evident at 1 year of age and
increased efficiency and modular organization develops over
the first 2 years.52 Over adulthood, network efficiency
decreases, possibly due to age-dependent white matter
degeneration.>

Anatomical connectivity patterns are disrupted in a variety
of acquired, genetic, and idiopathic neurodevelopmental disor-
ders.>*>7 Much future work, characterizing the relationship
between network topology and clinical symptoms in pediatric
neurodevelopmental disorders remains to be done.

The developing anatomical networks reviewed here provide
the physical substrate for functional connections. Below we
describe observed functional network topologies over early
development in both normal and pathological circumstances.

Development of Neocortical Functional
Connectivity

Physiological interactions among brain regions are influenced
and constrained by the underlying anatomical frameworks that
arise from the developmental processes discussed above.’®
Similarly, spontaneous and experience-dependent neural
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activity guides all aspects of architectural development, from
neurogenesis, neuronal differentiation, and migration to
synaptogenesis and dendritic pruning.>®**® Thus, anatomy and
physiology interdependently direct the development, sculpting,
and stabilization of cortical functional networks. With the
advent of new measures for determining functional connectiv-
ity and analysis of networks, these physiological connectivity
patterns can now be observed over development.

As described above, networks can be constructed from cor-
related activity between EEG voltage traces. These networks
are taken to reflect both (relatively) static, anatomical connec-
tivity between the cortical neuronal populations being mea-
sured and dynamic connectivity between active neural
populations. Functional connectivity networks derived from
EEG therefore serve to capture anatomically mediated state-
dependent, dynamic and shifting physiological networks. One
recent study evaluated synchronization patterns between all
possible electrode pairs in routine scalp EEG in developmen-
tally normal children ages 5 and 7 years while at rest.®” The
older children demonstrated an overall decrease in functional
connectivity and increases in both average clustering and path
length, which the authors speculated could be related to synap-
tic pruning. High-density (128-channel) EEG has been used to
investigate differences in coherence between EEG channels of
school-aged children compared with young adults in the alpha
frequency (8—12 Hz) range.®® Local coherence between nearby
pairs of electrodes was similar between the groups. However,
young adults exhibited increased coherence between longer
range pairs of electrodes, in particular between anterior and
posterior electrodes. Similar findings have been reported by
other groups,®®”® possibly reflecting increased myelination of
long-distance fasciculi or increased small-world properties in
the older maturing brain.

Another technique for probing functional connectivity pat-
terns involves use of sensory stimulation to perturb or trigger
physiological signals (or evoked responses) and measure phase
synchronization of the signals by EEG. Delta brushes, charac-
terized by asynchronous delta activity (0.3—1.5 Hz) with over-
riding faster (8—22 Hz) frequencies are normal features of the
EEG recording in premature infants.”' Spontaneous move-
ments and sensory stimulation have been shown to evoke
somatotopically organized delta brushes in the contralateral
sensorimotor cortical region of premature infants, possibly
reflecting early organization of sensory neural circuits.”> By
8 months of age, bursts of gamma frequency activity (~ 40 Hz)
can be evoked in the left frontal region in response to complex
visual stimuli.”® Gamma oscillations can be related to the process
of “binding,” or conceptual association of sensory inputs, and in
this case can be involved in the development of complex visual
processing. Age-specific changes in visually to evoked gamma
oscillation patterns have been demonstrated from childhood
through young adulthood.®®7*

Other frequency bands also demonstrate maturation in
visual stimulus-evoked synchrony, as one group demonstrated
with high density EEG over the age range of 6 to 21 years.”
For example, a period of relative desynchronization in the beta

band (12-16 Hz) correlated with task performance (stimulus
detection rate and reaction time to stimulus onset), with adoles-
cents showing both decreased synchronization and lower per-
formance compared with other age groups. Furthermore,
younger age groups demonstrated widespread synchrony
whereas the older group showed more focal synchronization
patterns. Such age-specific dynamics suggest that the normal
maturation of functional cortical connections likely involves
complex system dynamics rather than a simple incremental
process. Although these groups did not map synchronization
patterns into a network space, their findings are in essence an
unstructured map with altered degrees of connectivity. Future
work involving formal application of graph theoretic
approaches will allow for further characterization of these
functional relationships.

One area of intense research involves measuring brain activ-
ity under task-free or “resting” conditions. This so-called
“default” network shows activity that is higher at rest than dur-
ing tasks requiring attention,”>’® although there is ongoing dis-
cussion of the meaning and definition of this network.” Low
frequency (<0.1 Hz) fluctuations in blood oxygenation level-
dependent signals can be treated similarly to EEG voltage fluc-
tuations, with correlations measured between voxels or brain
regions of interest. Resting activity is obtained while a subject
is awake, usually with eyes closed and without any particular
task or instruction, such that the blood oxygenation level-
dependent fluctuations are thought to indirectly reflect sponta-
neous neural activity. Brain regions of interests are considered
as nodes in a network in the same sense that EEG channels can
be, and the connections between the nodes are determined by
the strength of the coupling between blood oxygenation
level-dependent signals.

Functional connectivity in the default network has been
measured across development using functional connectivity
MRI in quiet or resting states. Even in preterm infants, resting
state functional connectivity MRI identified 5 networks, in this
case observed during sleep.® This activity can represent a pre-
cursor to the default network seen in adults (which also persists
into sleep, interestingly®"). In preterm infants, coherence was
prominent between homotopic cortical regions likely mediated
by the relatively mature underlying transcallosal white matter
tracts in this age group. A separate study similarly identified
a putative precursor to the default network in term infants.®?
Of interest, there was no indication of default network activity
in preterm infants scanned at term-equivalent. The gradual
maturation of the default functional network is further sug-
gested by the finding of an intermediate, sparsely connected
network profile evident in school age children, distinct from the
pattern seen in infancy and the mature form of adulthood®®
(Figure 7). The apparent incremental evolution of the default
network over development and the relative persistence of this
network through wakefulness and sleep suggest that it can
reflect the robustness of underlying structural connectivity pat-
terns as opposed to less stable, state-dependent, shifting phy-
siological frameworks, which can be more apparent in
modalities with higher temporal resolution.
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Figure 7. Graph visualization of the correlation between default network regions in children (aged 7-9 years) and in adults (aged 21-31 years)
represented in pseudoanatomical organization. Statistically significant differences in functional connectivity between children and adults are
highlighted on the right. Connections between interhemispheric homotopic regions are relatively prominent in both children and adults, however
the default network is fragmented with sparse connections in children compared with adults. (Adapted with permission from Fair DA, Cohen AL,
Dosenbach NU, et al. The maturing architecture of the brain’s default network. Proc Natl Acad Sci U S A. 2008;105: 4028-4032. Copyright 2008

National Academy of Sciences.)

Near-infrared spectroscopy is a related indirect metric of
neuronal activity, which measures cerebral blood oxygenation
by means of hemoglobin saturation content. Like blood
oxygenation level-dependent fluctuations of functional MRI,
fluctuations in near-infrared spectroscopy signals can also be
used to infer correlated activity between brain regions. Using
this method, functional connectivity networks have been
defined by correlated near-infrared spectroscopy fluctuations
during sleep in infants 0 to 6 months of age.®* Connectivity
between homotopic temporal regions was evident by 3 months
of age and persisted. In addition, high coherence between par-
ietal and temporal regions on the left was seen at 6 months of
age, which the authors speculated can be related to the devel-
opment of early language networks.

Another example of immature versions of adult connectivity
patterns was evident in a resting state functional connectivity
MRI study of school-aged children. Decreased segregation
between, as well as decreased connectivity within, 2 previously
identified adult attention networks (fronto-parietal and

cingulo-opercular)®®> was found in this age group.®® Older
children, in the adolescent range (10 to 15 years) showed an
intermediate network structure. Older children also had more
long-range connections and less short-range connections. The
authors suggest that developmental remodeling of these 2 net-
works contributes to the acquisition of task controlling behaviors.

Graph theory analysis methods applied to functional net-
works are also proving useful for quantifying developmental
changes in activity patterns defined by resting state functional
connectivity MRI.¥” Small-world properties (networks with
high clustering coefficient and low path length, as described
above) were observed in children aged 7 to 9 years as well as
young adults age 19 to 22 years. Also, a measure of global effi-
ciency, the harmonic mean of the minimum path length
between each pair of nodes, was similar between these age
groups. Differences were however notable in cortical-
subcortical connectivity, which was greater in children. In
addition, young adults exhibited increased network hierarchy
(characterized by the presence of small densely connected
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clusters that combine to form large less-interconnected clus-
ters) and stronger cortico-cortical connections. These attributes
are consistent with the development of advanced network spe-
cialization with age. The finding of increased distant and
decreased local connections in adolescents could reflect the
combined influence of improved myelination and relative weak-
ening of local, nonspecific connections as networks become more
specialized and distributed.

Not all studies of functional connectivity support or parallel
gross anatomical development. For example, beta frequency
activity measured in a large cohort ranging in age from infants
to adolescents reported an initial increase in connectivity
between all electrode pairs followed by a sharp decline by age
~3 years, and then a steady rise in short-range connections
(6-12 cm in this study) subsequently.®® The suggested decrease
in long-distance connections over development appears to
contrast with myelination patterns and EEG®**7® and resting
state functional connectivity MRI work above.®87% This
discrepancy highlights the challenges in comparing functional
networks defined by different measures of neuronal activity
such as EEG versus functional MRI, which use distinct
frequency preferences (lower in functional MRI) and distinct
anatomical resolutions (higher in functional MRI), as well as
distinct analysis strategies (only intrahemispheric coherence
versus intra- and interhemispheric coherence, for example).
Although further studies, particularly simultancous EEG and
functional MRI recordings, can shed some light on these differ-
ences, it is worth noting that, unlike anatomically defined
networks, there is no gold standard against which to compare
functional connectivity networks.

Clinical Implications

Although many questions remain regarding how brain net-
works change over the course of development, the tools and
approaches hold tremendous promise for future discovery.
Improved characterization of the developmental changes in
brain network connectivity, by anatomical and functional mea-
surements, is beginning to provide a framework for understand-
ing how dysregulation at various stages can cause significant
neurodevelopmental pathology. Although only a few investiga-
tions have been reported thus far, the techniques of network
analysis can prove useful for children suffering from neurolo-
gical disorders, whether through improved phenotypic charac-
terization, natural history prediction, or, ideally, improved
treatment strategies.

From the standpoint of phenotypic characterization, one
study used functional MRI during an auditory listening task
in 8-year-old children with a history of premature birth as well
as low intelligence scores.”® Increased functional connectivity
was observed among language processing regions (Wernicke’s
area, right inferior frontal gyrus, left and right supramarginal
gyri, and components of the inferior parietal lobules).
It remains unknown whether the abnormal functional connec-
tivity caused the cognitive impairment, resulted from it, or
whether both observations are merely epiphenomena.

Despite the limitations of extrapolating mechanism from
correlational studies, in many cases, the network abnormalities
appear reasonably linked to clinical observations. For example,
adolescents with Tourette syndrome exhibit immature func-
tional connectivity patterns in networks thought to be involved
in impulse control, such as fronto-parietal and cingulo-
opercular networks.”' Both resting and task-related functional
MRI studies in untreated children diagnosed with attention def-
icit hyperactivity disorder revealed decreased functional con-
nectivity in the cortical-striatal-thalamic circuit, and increased
connectivity in the orbitofrontal and superior temporal cor-
tices.”? Observed network abnormalities improved or reversed
with treatment,” highlighting the potential utility of network
analysis for treatment monitoring and/or response prediction.

The clinical suggestion that a common theme in autism
spectrum disorders is disrupted sensory integration matches
well with the concepts emphasized in functional connectivity
approaches.”® Consistent with abnormal connectivity, diffusion
tensor imaging studies reveal white matter abnormalities in the
corpus callosum, superior temporal gyrus, and temporal stem in
patients with autism spectrum disorders.”>¢ Similarly, func-
tional MRI network connectivity studies show overall weaker
functional connectivity in the resting state as well as during a
social attribution task.”” Further studies have identified
decreased functional connectivity in specific regions, including
the insula®® and multiple default mode sub-networks™ in
patients with autism spectrum disorders. Importantly, the extent
or severity of the clinical syndrome (measured across social
interactions, behavioral restrictions, and language difficulties)
correlated with functional connectivity abnormalities, including
the default network.””'°" Functional connectivity patterns,
however, were independent of treatment status, suggesting a
possible role for these biomarkers to guide treatment selection®.

At present, only a single study has evaluated functional con-
nectivity networks in children with epilepsy.'*> Twelve children
with continuous spike and waves during slow wave sleep, an epi-
leptic encephalopathy typically characterized by epileptiform
discharges during at least 85% of slow wave sleep and progres-
sive cognitive deficits, were evaluated with simultaneous EEG
and functional MRI. Although individual differences were
noted, all children were found to have activation of bilateral
perisylvian regions and the cingulate gyrus. Since epilepsy is a
disorder of aberrant neurophysiology, functional connectivity
networks analysis can provide a sensitive clinical tool to track
and better understand the pathophysiological impact of altered
neurophysiology during critical periods of neurodevelopment.

Although research in this field is still at the earliest stages,
these early studies identify network analysis as an important
toolkit with potential applicability ranging from diagnostic bio-
markers to the prognosis and treatment guidance in pediatric
neurodevelopmental disorders.

Conclusions

The developing human brain follows a complex and tightly
regulated trajectory of dramatic anatomical and physiological
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changes. The majority of studies in both animals and humans
have examined focal abnormalities or only specific
components of the brain from embryogenesis on. The establish-
ment and continued advancement of network measures provide
a tractable method to evaluate and compare the dynamic global
and interdependent properties present in this complex, plastic
system taken as a whole. As new technologies that allow for
precise characterization of the evolution of functional and ana-
tomical networks in the immature brain are increasingly avail-
able, investigation of developmental brain networks is
exploding with rapid advances in both basic science and
therapeutic applications. Work in this field has thus far demon-
strated that, at each stage in normal neurodevelopment,
age-specific skill sets correlate with age-specific distributed
brain networks, which progress in a nonlinear, nonincremental,
and yet predictable manner. Ultimately, insights from these
approaches can offer new opportunities for early detection,
prognostication, and guided clinical intervention in a variety
of neurodevelopmental disorders. Further work will help us
to better understand the short and long-term clinical conse-
quences of focal and global network disruptions in the develop-
ing brain, and perhaps reveal new pathways to treatment.
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