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The human connectomewill provide a detailedmapping of the brain’s connectivity, with fundamental insights
for health and disease. However, further understanding of brain function and dysfunction will require an in-
tegrated framework that links brain connectivity with brain dynamics, as well as the biological details that
relate this connectivitymore directly to function. In this Perspective, we describe such a framework for study-
ing the brain’s ‘‘dynome’’ and its relationship to cognition.
It may seem ill-timed to be discussing postconnectome science

just when connectomics has become a major initiative within

neuroscience. Understanding the connectome presents many

technical and theoretical challenges, which will deliver insights

into brain function and dysfunction. However, it is already clear

what some of the limitations of connectomics will be. Further-

more, the connectome can be—and indeed needs to be—

studied at a very wide range of spatial scales, making any

endpoint seem very far in the future. We will argue here that

the neuroscience community needs to be thinking now about

how to extend the insights that will emerge from the kinds of

work highlighted in this special issue of Neuron to incorporate

additional features of brain dynamics and physiology; this is

needed to address function and dysfunction of cognition. A

shape for such a research program is already emerging in the

study of fast-time-scale (�millisecond) brain processes, which

is especially important when considering rapid changes in brain

activity (e.g., during cognition) and to supplement the static

observations and slower time scales available by other mea-

surements (e.g., fMRI).

In general, connectomics refers to a comprehensive struc-

tural description of the human brain, rendered as a network

(Sporns, 2013). These networks consist of two fundamental

components: nodes and edges. A node is usually identified

with a region of the brain, often taken in principled ways

from knowledge of brain anatomy and function, and can

vary in size and specificity from the scale of a microscopic

single neuron to a macroscopic brain region; in general, how

to best define a node remains an active research topic

(Stanley et al., 2013). An edge represents a connection be-

tween two nodes. In a structural network, an edge represents

an anatomical connection between two brain elements. In a

functional network, an edge represents the statistical associa-

tion between activities recorded from separate brain elements

(Park and Friston, 2013). The description of the anatomical

connections (in some versions) is often called the ‘‘connec-

tome,’’ while the dynamic networks associated with brain

activity during a particular brain state (such as attention or

rest) (Greicius et al., 2003; Fox et al., 2005; Bullmore and

Sporns, 2009; Bressler and Menon, 2010) represent a ‘‘func-

tional connectome.’’
In this essay, we emphasize that connections, even functional

connections, do not provide information critical to understanding

how the brain produces cognition. What is needed is not only

what is connected, but how and in what directions regions of

the brain are connected: what signals they convey and how

those signals are acted upon as part of a neural computational

process. As we describe below, the how is important for under-

standing the ways in which various parts of the brain combine

their particular computations to support cognitive function.

Indeed, we argue that how the brain generates temporal struc-

ture is critical to the ways in which signals are routed, combined,

and coordinated. We note that this viewpoint overlaps with the

philosophy of Bargmann and Marder (2013), although we focus

here more directly on observations from the vertebrate brain

and rhythms.

Brain dynamics are hugely complicated, in ways that we are

just beginning to chart. Measurements from EEG, MEG, ECoG,

local field potentials, and single-unit recordings (both intra-

and extracellular) are documenting complex temporal structures

that are far from random and are both reproducible and specific

to classes of cognitive activities (Engel et al., 1997; Wang, 2010).

Some of this structure is usually called ‘‘brain rhythms,’’ which

typically are broadly distributed across a frequency band. In

the analysis of brain electric andmagnetic field activity, standard

peak frequencies range from somewhat below 1 Hz to well over

100 Hz (Buzsáki and Draguhn, 2004). Many sophisticated tools

exist to characterize rhythms; however, care must be taken to

distinguish true brain rhythms from analysis artifacts (Kass

et al., 2005, 2014). Individual neurons can fire (somewhat) coher-

ently with the temporal structure of neuronal population activity

(Fries et al., 2007; Womelsdorf et al., 2007) or not (Senior et al.,

2008; Manning et al., 2009), in ways that can depend on the

behavioral condition and the neuron type.

The existence of this specific and reproducible temporal struc-

ture motivates the search for a kind of functional connectome

that relates directly to it. Statistical associations between the

spatially averaged ‘‘activity’’ in separate brain areas typically

do not provide insight into the mechanisms that support these

associations. That is, functional connectomics can provide

very insightful summary statistics describing how large-scale

brain networks correspond to cognitive states and how they
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change with learning or disease processes, but this framework is

typically not suited to describing or explaining the intricate

cellular processes that take part in producing what we call cogni-

tion, or even suggesting mechanisms by which regions are

coordinated.

More specifically, the description of the brain as nodes and

edges de-emphasizes the questions of what signals get sent

over the edges and how those signals are processed. Also, dis-

tinctions that are clear in such a network framework (nodes

versus edges) can be unclear in brain tissue. For example, the

local field potential (LFP), measured at a point in space, depends

on both node activity that is local to the measurement and also

nonlocal synaptic input along edges targeting that point in

space; the LFP measurements do not distinguish these compo-

nents, though clues can be obtained by current source density

measurements or other techniques. We contend that to under-

stand the nature of a functional connection requires a more

detailed look at the local dynamics of the nodes (that is, not

considering them as points with ‘‘activity,’’ but acknowledging

more detailed physiological and dynamical structure) to under-

stand how local processing is done, how it is regulated by

neuromodulators, and how the language of signals coordinates

multiple parts of the brain in cognitive tasks.

This expanded description of brain activity is what we call the

‘‘dynome.’’ The dynome is the collection of experimental and

modeling observations having to do with dynamical structure

(and its physiological and pathophysiological implementation)

in the brain and its relationship to cognition. It includes what is

usually known as the functional connectome but expands the

notion to go beyond statistical associations to the mechanisms

involved in producing and processing signals within the brain.

In the dynome context, understanding brain activity means un-

covering the functions and dysfunctions provided by the brain’s

temporal dynamics. Like the connectome, the dynome proposes

a framework for a broad research program. Yet the dynome does

not have to be constructed de novo: there is already a body of

work on which further efforts can be based, and in the next

part of this essay we describe some of it. However, we note

that, though much cognitively important dynamical structure

has been uncovered, the field is still in its infancy.

What Constitutes the Dynome?
In this section we discuss a framework for constructing the dy-

nome, along with examples of such work. Dynomics involves

charting the dynamical structure of local and global networks,

studied mainly in vitro and in vivo, respectively, and connecting

those dynamics to biophysical mechanisms and cognitively

important computations via modeling of detailed neuron and

network biophysics. This complements other approaches,

including dynamical causal modeling, which tends to focus on

more abstract, neural mass models (e.g., Kiebel et al., 2009;

Moran et al., 2013), which may not reflect the biophysical prop-

erties critical to some neural computations. We focus on brain

rhythms, which reflect and influence spiking activity; however,

dynamic processes can also happen in the absence of rhythmic

brain activity (Ecker et al., 2010; Renart et al., 2010; Ainsworth

et al., 2012; Histed andMaunsell, 2014) and the dynome includes

other temporal structures as well (Larson-Prior et al., 2013).
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Local Temporal Structure
By ‘‘local,’’ we mean a network whose components are physi-

cally close and which participate in similar computations, as

described by functional anatomy. This could be a single cortical

column or a larger but related group of columns (e.g., hypercol-

umns in visual cortex). This is similar to the idea of a node, but

encompasses all the anatomical and physiological structure

within the local network, including cortical layers, distinct

neuronal populations, intrinsic currents, local synaptic connec-

tivity, and responses to neuromodulation.

The dynamics within such a local network can be extremely

complex. In vitro and in vivo preparations reveal the intrinsic

properties of these local networks. The amount of reproducible

temporal structure is astonishing, and the task of charting such

structure is by no means finished. Structure found in vitro in-

cludes multiple mechanistically different versions of a rhythm in

the same frequency band (Roopun et al., 2010), multiple mech-

anistically different rhythms in the same cortical region (Ains-

worth et al., 2011), different rhythms appearing simultaneously

in different cortical layers (Oke et al., 2010; Ainsworth et al.,

2012), different effects of neuromodulators on rhythms in

different brain areas (Middleton et al., 2008; Roopun et al.,

2008a), switches in temporal structure with changes in activation

(Roopun et al., 2008b), fast rhythms nested inside slower

rhythms (Gloveli et al., 2005; Carracedo et al., 2013), and faster

intrinsic rhythms suppressed by slower ones (Pietersen et al.,

2014). Some of this structure observed in vitro has also been

found in vivo, for example, the properties of gamma rhythms

as interactions of excitation and inhibition (Atallah and Scanziani,

2009; Cardin et al., 2009) and laminar differences in rhythms

(Buffalo et al., 2011). Understanding the substrates and mecha-

nisms that support these rhythms, their interactions, and their

function is one goal of dynomics.

In vivo, brain rhythms are rarely seen in isolation. Indeed, a

widespread motif is that faster rhythms are nested in slower

rhythms (Chrobak and Buzsáki, 1998; Lakatos et al., 2005; Palva

and Palva, 2007; Colgin et al., 2009). Experiments and modeling

have begun to illuminate the possible mechanisms of cross-

frequency coupling, including an important role for inhibition

(Wulff et al., 2009). However, major challenges remain in detect-

ing and understanding cross-frequency coupling. Quantitative

characterization of cross-frequency coupling from in vivo re-

cordings is fraught with difficulties (e.g., due to complicated,

nonsinusoidal nature of brain activity) (Kramer et al., 2008b).

Moreover, a meaningful understanding of cross-frequency

coupling—beyond a biomarker of brain dynamics—requires

knowledge of the biological mechanisms that support the

observed activity in the different frequency bands expressed.

It remains to be established which aspects of in vitro dynamics

manifest meaningfully in vivo, especially in the context of cogni-

tive tasks. This is difficult, partly because in vivo recordings with

behavior require the entire brain, which necessarily introduces

uncertainty regarding important features that shape the

observed dynamics (e.g., the neuromodulatory state of the

area of interest, the nature of the inputs to the area, etc.).

In vitro experiments, on the other hand, sacrifice a direct link

with behavior to allow controlled observations of the dynamics

produced by a physically isolated area of interest. Though all
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spectral bands that are seen in vitro appear with remarkable con-

sistency in vivo, we generally still do not know the underlying

mechanisms of the in vivo rhythms. Moreover, the variety of

mechanisms that support the same rhythm in vitro means that

we cannot assume from the frequency of an observed rhythm

the underlying physiology without, for example, local pharmaco-

logical manipulation or carefully designed, neuron-subtype-

specific optogenetic/pharmacogenetic interference.

In order to address the issues of how dynamic structure

affects cognitive computations, it is necessary to understand

how the physiology of local regions gives rise to local rhythms

and their interactions. The most thoroughly studied rhythms

are the class of gamma (30–90 Hz) rhythms (Whittington et al.,

2000; Buzsáki and Wang, 2012). Though there are many subtle-

ties to the underlying mechanisms and their consequences for

spatiotemporal interactions of this set of rhythms, the basic phe-

nomenon involves feedback inhibition from fast-spiking cells,

notably parvalbumin-positive (PV+) cells, to pyramidal cells (in

pyramidal interneuron network gamma or PING) or to the inhib-

itory cells themselves (interneuron network gamma or ING): the

decaying feedback inhibition provides a window of opportunity

for cells to fire, and the decay time of the inhibition is central in

determining the period of the rhythms. Other slower brain

rhythms appear to depend more on voltage-dependent intrinsic

currents, especially M-currents (outward currents suppressed

by activation of muscarinic receptors) (Roopun et al., 2006)

and h-currents (inward currents activated by hyperpolarization)

(Lüthi and McCormick, 1998). Both of these currents are sensi-

tive to inhibition on fast time scales, so feedback inhibition

from fast-spiking PV+ cells (with fast decay times) and somato-

statin-positive (SOM+) cells (with synaptic decay kinetics several

times slower than that of PV+ cells) can affect multiple intrinsic

currents, leading to complex local dynamics inwhich the intrinsic

time scales of the activation and deactivation of the currents—

combined with synaptic input—shape the period. At still lower

frequencies (<4 Hz), even slower inhibition (GABAB receptor-

mediated) and metabolic/metabotropic effects can support the

slower time scales (Sherman, 2014). Modeling has been done

for many of the above frequencies to illuminate the roles of the

various currents and the effects of neuromodulators in support-

ing and disrupting neuronal rhythms (Whittington et al., 2000;

Destexhe and Sejnowski, 2003; Rotstein et al., 2005; Tort

et al., 2007; Kramer et al., 2008a; Vierling-Claassen et al.,

2010; Skinner, 2012; Lee et al., 2013; Cannon et al., 2014).

These observations only partially illustrate the tremendous

complexity in local brain dynamics. However, this complexity is

not arbitrary. There is structure to the complexity induced by

neurobiology, as there is in the connectome, with much of that

structure left to be uncovered.

Temporal Structure and Cognition
There is now a large and growing literature documenting the

different electrophysiological rhythms associated with distinct

cognitive operations, occurring across different spatiotemporal

scales, and within broadly and narrowly defined anatomical re-

gions (for reviews see Engel et al., 2001; Womelsdorf and Fries,

2006; Siegel et al., 2012). Studies over the last two decades have

revealed that rhythms can support a variety of cognitively rele-
vant functions from enhancing thalamocortical inputs locally

(Le Masson et al., 2002; Lakatos et al., 2008) to enabling two

or more different regions to be bound together through coher-

ence, thus enhancing feature discrimination or memory encod-

ing (Fries, 2005; Sejnowski and Paulsen, 2006; Buffalo et al.,

2011; Igarashi et al., 2014). Cognitive tasks often encompass a

multitude of discrete processes that co-occur simultaneously

in different brain regions. Dynomics focuses on understanding

these processes, how they are coordinated, and the conse-

quences of their disruption. Despite the complexity of these

questions, some progress has been made, revealing insight

into the dynamics of cognition, as we describe in the examples

below.

Cognitive processes often begin with the presentation of

multimodal task-relevant stimuli, and rhythms seem to play a

key role in the integration of these signals (Senkowski et al.,

2008; Hipp et al., 2011). This process is dependent on special-

ized regions being actively engaged during task performance,

and studies from humans have revealed that large-scale net-

works are recruited and synchronized at a particular frequency

band(s) in a region-specific manner (Senkowski et al., 2008).

The brain rhythm proposed to be most instrumental to task-

based functional connections between neuronal populations in

different brain areas is the set of beta (12–30 Hz) rhythms (Don-

ner and Siegel, 2011). This set is also the most mysterious: there

appear to be a large number of mechanistically different versions

of these rhythms, produced in different parts of the nervous sys-

tem (Cannon et al., 2014). These rhythms may involve different

classes of cells, and use synaptic excitation and/or inhibition,

as well as intrinsic currents (Roopun et al., 2006; Kopell et al.,

2011). Other slower-frequency ranges have also been found to

be important for macroscale interactions. Most notably, low-

frequency delta (1–4 Hz) rhythms are known to coordinate large

portions of the brain (Fujisawa and Buzsáki, 2011; Nácher et al.,

2013). Some of this coordination is done through subcortical

structures, notably the thalamus and the basal ganglia (Amzica

and Steriade, 1998; López-Azcárate et al., 2013; Antzoulatos

and Miller, 2014).

Faster rhythms are generally thought to play a prominent role

in localized processing, usually within a particular region or even

within a cortical column; again, the most-well-studied oscilla-

tions are gamma rhythms associated with attention. Gamma

oscillations play a prominent role in stimulus detection locally

by modulating spike timing relative to a specific phase of the

local field potential (Fries et al., 2001; Bichot et al., 2005). This

process is thought to improve signal discriminability by elevating

firing rates to near-saturation levels and by decreasing spike-

count variability (Masuda and Doiron, 2007; Mitchell et al.,

2007). In addition to local processing, gamma rhythms support

cross-regional coupling, particularly as it relates to attentional

and working memory networks. For example, as demands on

attention increase, different association areas show strongest

coupling between one another at gamma frequencies (Gregoriou

et al., 2009) and demands on attention can also recruit other fre-

quency bands that interact with gamma oscillations through

cross-frequency coupling (Lakatos et al., 2008).

Other frequency bands are often coordinated or coupled

between regions during cognitive tasks and the strength of
Neuron 83, September 17, 2014 ª2014 Elsevier Inc. 1321
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coupling at a given frequency band between two regions can be

modulated by task conditions (Buschman and Miller, 2007). In

this sense, multiple networks, all associated with different fre-

quency bands, may contribute to the same task at task-relevant

time points through different rhythms (Palva et al., 2010). Brain

rhythms also appear in cortical and subcortical structures whose

coordination is essential for certain types of sensory perception

and learning. Multiple frequency bands can contribute to this

process, and the level of synchronization across large-scale net-

works can be predictive of both sensory perception and task

performance (Hipp et al., 2011). Functional connectivity between

the striatum and prefrontal cortex, for example, has been shown

to strengthen as rules associated with categories are acquired in

a category-specific manner (Antzoulatos andMiller, 2011, 2014).

This coupling, particularly in the beta frequency range, seems

to be important for selecting task rules and dissociating ensem-

bles associated with rule-relevant behavior from overlapping

neuronal populations (Buschman et al., 2012). These examples

suggest that rhythms are dynamically modulated by task de-

mands and they can change over the course of learning. Further-

more, cross-frequency coupling across structures important for

different aspects of task performance may set the stage for

cooperation among neuronal ensembles that are recruited de-

pending on task conditions (Tort et al., 2008).

While some rhythms may be better suited to enable change

during learning, other rhythms may be important for stability

once learning has occurred. Studies from hippocampal slices

reveal that calcium entry through NMDA receptors or voltage-

gated calcium channels provide the basis for both LTP and

LTD depending on the frequency with which the input arrives

(Bear and Malenka, 1994), and recent studies have revealed

that the nesting of gamma rhythms in hippocampal theta

rhythms support memory encoding and retrieval depending on

the phase of the theta cycle (Colgin et al., 2009; Tort et al.,

2009; Igarashi et al., 2014). Modeling work has suggested that

the interaction of gamma and theta rhythms are important for

promoting spike-timing-dependent plasticity through NMDA re-

ceptors (Lee et al., 2009). Just as importantly, other rhythms

have been suggested to promote stabilization and the continua-

tion of on-going processes, themost prominent being beta oscil-

lations in theories where beta is important for maintaining the

status quo (Engel and Fries, 2010).

The ubiquity of brain rhythms, their specificity, and their dy-

namic nature strongly suggest their importance in cognition

and behavioral outcome. The question then remains: through

what mechanism can rhythms be regulated with the specificity

to support and coordinate discrete aspects of cognitive opera-

tions both temporally and spatially? We suggest that part of

the answer to this questionmust involve the primary neuromodu-

lator systems. Neuromodulators can act locally or globally in

ways that have profound influences on overall network function.

Widespread regulation by neuromodulators is most evident in

conditions of sleep onset or sleep transitions, where specific

rhythms come to characterize these states (McGinty and Harper,

1976; Kayama et al., 1992; Carter et al., 2012). Neuromodulators,

however, can also function to convey information in a very

discrete and targeted way by communicating information about

task relevant stimuli to some regions of neocortex and not others
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(Parikh et al., 2007; Howe et al., 2013) and by promoting oscilla-

tions at specific frequency bands in a region-specific manner

(Roopun et al., 2010).

As described above, by changing physiology, neuromodula-

tors change dynamics which, in turn, changes the processing

of inputs. Hence, an important function of neuromodulators

may be to change which regions are ‘‘on-line;’’ emerging evi-

dence suggests that neuromodulators effectively regulate what

inputs a region can ‘‘hear ’’ (Disney et al., 2007; Lee et al.,

2013). Slice physiology experiments combined with modeling

have elucidated a mechanism by which cholinergic-mediated

changes in signaling can support different cognitive functions

through rhythm modulation; for example, pharmacology experi-

ments in visual cortex first noted that cholinergic signaling

has the potential to regulate the direction of information flow

within cortical columns based on differences in muscarinic and

nicotinic receptor expression across two classes of inhibitory

interneurons (Xiang et al., 1998). Modeling built upon this finding

provides a functional mechanism through which the emergence

of deep layer beta-oscillations, associated with periods of

top-down attention, could be explained by the enhanced

excitability of slow-inhibitory interneurons in the presence

of acetylcholine (Lee et al., 2013). Other modeling studies

have also offered insight into the details of stimulus competition

where neuromodulators are essential to recruiting interneuron

networks to promote gamma rhythmicity (Börgers et al., 2008)

or to promote synaptic weakening (Lee et al., 2009). Future

insight into cognitive function will depend on understanding

the mechanisms by which neuromodulators change physiolog-

ical processes in a way that recruits or alters rhythms during

cognition.

Bridging the Scales: Physiology and Modeling
Most of the work that has been done so far on fast temporal

structure (such as brain rhythms) has focused on two categories:

either finding the biophysical bases of brain rhythms or charting

the association of cognitive activity with rhythms. By contrast,

there has been much less work attempting to understand how,

or even whether, the physiological properties underlying fast

dynamics are used in cognitive computations. This section de-

scribes some of that work and the kinds of questions that need

to be addressed.

A central question concerns how the signals that are trans-

mitted along the anatomy of the connectome are heard (or not)

and how these transmitted signals interact with local dynamics

to transform and coordinate local activity. The investigation of

that question is often done via modeling. For example, we

know that unpatterned input can give rise to gamma rhythms

(Börgers and Kopell, 2005) and that gamma rhythms are ideal

for the creation of cell assemblies (Harris et al., 2003) and their

protection against distractors (Olufsen et al., 2003; Börgers

et al., 2005, 2008). The ability of gamma rhythms to facilitate

such a computation through competition comes directly from

the physiological properties of the gamma rhythm: it is the feed-

back inhibition underlying its formation that allows the most acti-

vated cells to fire in unison and suppress activity of other cells via

the feedback inhibition. Another rhythm whose physiology is

important to transmission and coordination is a form of the
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beta 1 rhythm: in rodent association cortex in vitro, the superfi-

cial layers produce a gamma rhythm in the presence of the gluta-

mate receptor agonist kainate and the deep layers produce a

beta 2 (25 Hz) rhythm; when the kainate is partially removed by

an antagonist after a period in which plasticity takes place, the

gamma and beta 2 rhythms are replaced in all layers by a beta

1 oscillation (15 Hz) (Roopun et al., 2008b). In this rhythm, the

activation is passed back and forth between the superficial

and deep layers via inhibitory rebound. Modeling has shown

that such a temporal pattern of activity has the ability to maintain

a representation of an input beyond the duration of a stimulus

and to coordinate cell assemblies from earlier and later inputs

(Kramer et al., 2008a; Kopell et al., 2011); this maintenance is

not possible in computational models when gamma-mediated

cell assemblies are coordinated only by common inhibition in

the superficial layers (Börgers et al., 2005, 2008). Furthermore,

relationships exist between the gamma and beta frequency

bands; for example, signals that are transmitted at beta fre-

quency can be transformed to produce higher power in the

gamma frequency, leading to gain control of input (Lee et al.,

2013). In general, the physiology of brain rhythms, especially

connected with feedback inhibition, is believed to be important

for creating the right phase relationship for coordination (Fries,

2005; Cannon et al., 2014) and therefore supportive of cognitive

computations (Roopun et al., 2010).

The above question is centrally involved in the relationship be-

tween a network’s structural connectivity and the dynamic func-

tional connectivity associated with a cognitive process (Honey

et al., 2010; Woolrich and Stephan, 2013). In addressing that

relationship, a natural approach is to simplify, for example, by

examining simple oscillator models embedded in a network.

However, an oscillator model typically consists of only one

degree of freedom for the oscillator, its phase, which is manipu-

lated by temporal input. For oscillations produced by the brain’s

networks, there are myriad internal degrees of freedom,

including participation of any given cell on a given cycle and

the state of all the conductances of each cell at any given time.

Thus, the literature on responses of simple oscillators to tempo-

ral input can give some direction, but not a complete picture.

Therefore, to understand the relationship between the brain’s

functional and structural networks, more biophysically realistic

models are required. In that direction, one approach is to simu-

late neural population activity on a static anatomical network.

This modeling approach has been used, for example, to suggest

important contributions of general features (such as signal

transmission delays and noise) to the organization of dynamic

resting state functional networks (Deco et al., 2011). An even

more complex modeling approach is to utilize detailed biophys-

ical models of neural activity, embedded in an anatomical

network. This approach requires much greater computational

effort but may be essential to examine the effects on functional

connectivity that arise from the actual biological dynamics of

cognitive function.

The available modeling and physiology is just the beginning of

investigations under the framework of the dynome. For example,

it is not known why there are so many different forms of beta

rhythm, but reasonable conjectures include that (1) regions

that produce—or resonate to—a given frequency can respond
in a stronger way to input from a similar frequency (Lee et al.,

2013); (2) the kinds of computations done in the various regions

are facilitated best by different biological implementations of the

same rhythm; (3) the various rhythms can be independently

modulated, leading to flexibility in computation (Somogyi et al.,

2003); and (4) different mechanisms impart different phase sen-

sitivities to input, so a set of beta rhythm generators may all have

statistically identical frequencies but respond very differently to a

shared spectral profile of input. To understand whether this is

correct requires knowledge of how each region responds to its

temporally patterned input. A critical feature is that the impact

of an input on a brain region is not generic; the signal traveling

along axons to some region can have effects on the target that

would not occur if the same input went to a different region. To

understand the impact of a neuronal input, we need to know fea-

tures of the targeted region, including: what classes of cells are

targeted, the time scales and nature (excitatory or inhibitory) of

the synaptic currents, the intrinsic currents of the target cells,

the state of the extracellular environment at the target, and the

neuromodulators present.

Interdependence of Dynamics and Connectomics
We have emphasized the importance of dynamics—and the

physiological implementation of these dynamics—in under-

standing the cognitive computations performed by the brain.

The signals created and routed throughout the brain are carried

by physical pathways that are studied by connectomics.

However, the consideration of the more extensive notion of

functional connection provided by dynomics—a notion that

includes an understanding of the physiology that supports dy-

namic coordination—helps to clarify what sorts of connectomics

information might be most useful. A very detailed anatomical

description of a piece of tissue that does not specify the kind

of information needed to understand the effect of neuronal input

(see end of last section) cannot be used to address the kinds of

questions posed in the dynome. We need to be able to add

physiological knowledge and functional significance to the

anatomical results. This situation is complicated by the interrela-

tionship between physical connectivity and network dynamics.

For example, as highlighted above, some dynamics are closely

related to neuronal plasticity underlying memory (Tort et al.,

2009; Igarashi et al., 2014), and both the frequency and timing

of neuronal events is critical for expression of this (e.g., Bear

and Malenka, 1994; Bi and Poo, 1998). As such, plasticity in-

duces structural changes in neuronal connectivity (Bailey and

Kandel, 1993), so changes in temporal structure are very likely

to change the connectome.

In ‘‘nonplastic’’ model systems, the close interrelationship be-

tween connectivity and dynamics can also be readily observed.

Even random connectivity graphs have discrete dynamic signa-

tures associated with activity propagating within them (Traub

et al., 2001) and different dynamic signatures appear to be corre-

lated with different conduction delays (Kopell et al., 2000; Tort

et al., 2007; Deco et al., 2009). This is one reason why the study

of the dynome needs to be engaged in parallel with that of the

connectome. Like connectomics, this program involves a daunt-

ing amount of work, but that work is well specified, and any addi-

tion to our knowledge driven by investigator-initiated research
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consistent with this program is likely to have immediate implica-

tions for understanding how coordination happens within the

nervous system.

As new technology has supported construction of the connec-

tome, so will new technology facilitate continuing study of the

dynome. Emerging technologies for the observation of the

brain’s dynamic activity include high-density electrode record-

ings (Viventi et al., 2011), optogenetic tools (Chow et al., 2010;

Klapoetke et al., 2014), and large-scale three-dimensional imag-

ing of single-neuron activity (Prevedel et al., 2014). These tech-

nologies make now an opportune time to study the dynome.

To do so will also require the development and application of

data analysis tools to characterize activity (Kass et al., 2014)

including interacting rhythms across temporal and spatial scales

(Tort et al., 2010), as well as principled approaches to link

neuronal data with computational models (Huys and Paninski,

2009; Meng et al., 2014).

Dynamics and Diseases
Finally, many neurological diseases involve dysregulation of

brain rhythms (Whittington et al., 2011; McCarthy et al., 2012;

Uhlhaas and Singer, 2012). For some of these, there are also

pathological changes in structural and functional connectivity

that come under the purview of connectomics (Kramer and

Cash, 2012; McCarthy et al., 2012; Anticevic et al., 2013). How-

ever, the relationship between the anatomical changes and the

cognitive changes in neurological disease remains unclear. By

contrast, dynomics provides a path to explanation that may

engender new interventions driven by the neurobiology. The

path has the following form: (1) changes in physical and anatom-

ical properties (via genetically related neurodevelopmental

changes, postbirth insults, or neurodegenration later in life) pro-

duce changes in local brain dynamics; (2) changes in local dy-

namics change the profile of interactions between brain regions;

and (3) such changes are pathological for producing the kinds of

computations important for cognitive functioning. A working

example of this approach can be found in attempts to link pri-

mary pathology with cognitive deficit in schizophrenia: many

markers for function of fast spiking interneurons are dysregu-

lated in this disorder (Lewis et al., 2012). As a consequence, local

network dynamics—particularly gamma rhythms—are disrupted

in specific brain regions (Cunningham et al., 2006; Pafundo et al.,

2013); gamma rhythms are mediators of mainly local functional

interactions (see above) and their disruption in schizophrenia is

associated with selective loss of short-range functional connec-

tions in patients with cognitive deficit (Alexander-Bloch et al.,

2013).

The promise of such a view of neurological disease is that it

can suggest ways to change the dynamics evenwhen underlying

disease etiology is not currently understood or able to be

changed. In this case, therapy directly affects the dynamical

brain pathology. A very promising technology for such interven-

tions is deep brain stimulation, which has become a standard

treatment option for medication-resistant Parkinson’s disease

symptoms. Brain stimulation is also being investigated for a

variety of other diseases such as depression (Holtzheimer and

Mayberg, 2011; Holtzheimer et al., 2012), obsessive compulsive

disorder (de Koning et al., 2011), and epilepsy (Leuchter et al.,
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2012). The understanding of how such interventions could

work will depend on a description of how the dynamics are being

perturbed in these technologies. In particular, if the region of the

brain being stimulated is a hub, the stimulation is apt to effect

regions of the brain in ways that depend on hub dynamics and

connectivity.

Can We ‘‘Understand’’ the Brain without Studying the
Mechanisms of Its (Fast) Dynamics?
It might be argued that the sorts of details we are describing

above are important only for the implementation of principles

supported by the brain, and these principles can be described

in terms of networks of nodes and edges. The above examples

suggest that this is unlikely. First of all, in understanding what

might support a computation involved in cognition, we need to

know what the ‘‘wetware’’ is capable of. Second, an immersion

in the physiology supporting temporal dynamics suggests

mechanisms that would not be obvious if one were thinking

abstractly about computation and rhythms; as discussed above,

different mechanisms may support the same rhythm, and there-

fore respond to input, or changes in neuromodulation, in different

ways.

Indeed, the functional connectome (as described in a graph) is

known to be dynamic (Bassett et al., 2011; Chu et al., 2012).

However, it largely remains to be understood how the rich diver-

sity of observed functional network dynamics are regulated.

Here fast temporal dynamics can provide essential cues. As dis-

cussed above, the details of the local dynamics can be essential

to how a signal is heard and processed, both locally at a node

and nonlocally throughout the network. Thus, all modulations

that change fast-time-scale dynamics impact not only the statis-

tically related activities captured in functional networks, but also

details of how signals are routed, combined, and coordinated

over the brain’s ‘‘wires.’’ Because cognitive outcomes depend

on stages of processing that can happen in tens to hundreds

of milliseconds, we need a framework that allows assessment

of information at this time scale to be considered. The dynome

is exactly such a framework.

We are not advocating implementation of the dynome frame-

work as a mega-project to be addressed on a highly condensed

time scale. Rather, we propose continued efforts to balance the

research activity of the neuroscience community, in which brain

dynamics (including fast dynamics such as rhythms, as well as

other nonoscillatory dynamics) are studied along with connectiv-

ity to reveal how such dynamics facilitate the flexible and dy-

namic coordination of brain regions. Further understanding the

brain’s dynome would benefit from larger-scale consortium

projects and individual investigator-driven projects to advance

our knowledge and understanding of brain processing. We

have given some details about what research already exists

and which areas could benefit from more attention. To under-

stand the brain’s dynome, knowledge of the biological details

that support the brain’s dynamics remains critical. However,

we do not propose solely a bottom-up approach focused only

on these biological details. Instead, we envision a feedback

loop between (1) observations of large-scale neurological phe-

nomena in vivo, (2) implementation of the basic elements of

these phenomena in experimental laboratory models in vitro,
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and (3) analytical and predictive computational models that

feed back into experimental models to assess their validity

against the large-scale observations. Like connectomics (and

unlike the original aims of genomics), the goals are open-ended

and the progress from many specific research projects will be

of use.

There is another aspect of dynomics that makes this frame-

work different from that of connectomics: the study of brain

dynamics has the potential to bridge insights across levels of

function. Studying how genes affect anatomy and physiology

leads naturally to the study of small network dynamics; any infor-

mation we have about small network activity provides the basis

for further understanding how networks interact to produce

meso- and macro-level behavior. Interactions of large networks

are critical to understanding cognition and pathologies of cogni-

tion. We do not think this work needs to (or can) be finished

through a linear progression of stages, from molecules to

behavior; rather, work must occur at multiple levels simulta-

neously. We have employed the ‘‘omics’’ label here to empha-

size the broad nature of this framework to understand brain

dynamics.We propose that coordination of efforts to understand

the mechanisms of brain dynamics across spatial and temporal

scales will drive new understanding of brain function and

dysfunction in cognition.
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