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Over the past two decades, the increased ability to analyze network relationships among neural structures has provided novel insights
into brain function. Most network approaches, however, focus on static representations of the brain’s physical or statistical connectivity.
Few studies have examined how brain functional networks evolve spontaneously over long epochs of continuous time. To address this, we
examine functional connectivity networks deduced from continuous long-term electrocorticogram recordings. For a population of six
human patients, we identify a persistent pattern of connections that form a frequency-band-dependent network template, and a set of
core connections that appear frequently and together. These structures are robust, emerging from brief time intervals (�100 s) regardless
of cognitive state. These results suggest that a metastable, frequency-band-dependent scaffold of brain connectivity exists from which
transient activity emerges and recedes.

Introduction
The human brain is an extraordinarily complex system in which
neuronal components interact across wide spatiotemporal scales.
Understanding this complexity requires the characterization of
coordinated neuronal activity, typically associated with neuronal
rhythms (Buzsáki and Draguhn, 2004) linking activity across
functionally distinct brain areas (Engel et al., 2001; Varela et al.,
2001). Recent advances have allowed the study of neuronal coor-
dination in large networks of interacting elements from single
neurons (Salinas and Sejnowski, 2001) to neuronal populations
(Schnitzler and Gross, 2005). A complete characterization of the
structure and function of human brain networks promises im-
portant insights for understanding normal and pathological
brain activity (Reijneveld et al., 2007; Bullmore and Sporns,
2009).

One approach to studying complex brain networks is to char-
acterize functional connectivity, represented by statistical rela-
tionships between dynamic activity recorded from distinct brain
areas (Friston, 1994; Bullmore and Sporns, 2009). This functional
connectivity can be studied both during active, stimulus-driven
behavior and during the spontaneous brain activity characteristic
of mental operations at “rest” (e.g., imagery and memory re-

trieval). Measures of brain metabolic activity— e.g., the func-
tional magnetic resonance imaging (fMRI) blood oxygen level-
dependent (BOLD) signal—suggest that certain brain regions
become more active during rest (Nyberg et al., 1996; Shulman et
al., 1997; Raichle et al., 2001; Greicius et al., 2003; Fox et al., 2005;
Buckner et al., 2008) and exhibit correlations in their BOLD dy-
namics (Biswal et al., 1995; Lowe et al., 1998; Greicius et al., 2003;
Fox et al., 2005; Honey et al., 2009). What functions these corre-
lated spontaneous brain activities at rest serve remains unclear
(Deco et al., 2011).

Although important to understanding brain function and
dysfunction (Fox and Greicius, 2010), the observation of resting
fMRI BOLD activity provides a limited view of neuronal activity
for three reasons. First, neuroimaging strategies that measure
blood flow or metabolic activity have a temporal resolution near
1 s; how networks evolve on shorter time intervals remains an
open question (Deco et al., 2011). Second, fMRI recordings are
necessarily time-limited due to practical constraints of scanner
access, with typical recording intervals lasting tens of minutes.
Third, observations typically focus on the resting brain state (i.e.,
quiet rest with eyes open). Understanding how brain functional
networks evolve during unconstrained spontaneous activity
(which includes intervals of speaking, sleeping, eating, and rest-
ing) would compliment resting state studies and further charac-
terize the complex “metastable” spatiotemporal mechanisms of
cerebral function (Kelso, 1995; Friston, 1997; Fingelkurts and
Fingelkurts, 2004).

Here we describe a functional network analysis of chronic
intracranial EEG recordings obtained from six patients with epi-
lepsy. From continuous �24 h blocks of unconstrained sponta-
neous activity, we infer functional networks and address two
questions: (1) What topological properties characterize the func-
tional networks? (2) Are there persistent network structures? We
find that the networks exhibit striking variability from moment
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to moment, yet persistent templates emerge throughout. These
network templates appear on a relatively short (�100 s) time-
scale, are independent of brain state, and consist of common
“core” links that tend to appear together. These results suggest
that brain voltage activity may evolve through transient states
that manifest with moment to moment variability, but maintain
an underlying, recurrent core structure.

Materials and Methods
Patients. Twenty-four hours of electrocorticography from six patients
(two women, with a minimum age of 22, maximum age of 52, and mean
age of 35) with long-standing pharmacoresistant complex partial sei-
zures were analyzed. All recordings were performed using a standard
clinical recording system (XLTEK, subsidiary of Natus Medical) with a
500 Hz sampling rate. Analysis of the data from these patients was per-
formed retrospectively under protocols monitored by the local Institu-
tional Review Boards according to NIH guidelines. Two-dimensional
subdural electrode array grids as well as linear electrode array strips (Ad-
tech Medical) were placed to confirm the hypothesized seizure focus, and
locate epileptogenic tissue in relation to essential cortex, thus directing
surgical treatment. All patients were investigated with surface electrodes
placed on the pia (grids and strips of electrodes) that allowed sampling of

both neocortical structures and the inferior and mesial temporal lobe
(Fig. 1 A). The reference electrode was a strip of electrodes placed outside
the dura and facing the skull at a region remote from the other grid and
strip electrodes. The decision to implant and the selection of the elec-
trode targets and the duration of implantation were made entirely on
clinical grounds without reference to this research study.

We note that a potential concern in these data is the spatial spreading
of electrical activity propagating through conductive tissue from a brain
source to an electrode. To reach the scalp surface, electrical activity from
a cortical source propagates through the cortex, CSF, skull, and scalp.
The result is significant spatial spreading (or blurring) of the original
source voltage. For the electrocorticogram (ECoG) data of interest here,
this spreading is much less severe (Zaveri et al., 2009). As a result, we do
not expect that passive voltage spread will have a significant effect on the
results.

For each patient, two �24 h intervals were considered (mean duration
23 h, minimum 18 h, maximum 26 h, N � 6). Most intervals were chosen
to begin and end in the morning. All intervals were chosen to avoid
recording interruptions, which might have occurred for clinical reasons
(e.g., patient went to a test and was temporarily disconnected from the
recording equipment) or technical reasons (e.g., needing to restart the
acquisition to allocate additional data storage). The average separation

Figure 1. Construction of functional networks from high-density, multivariate ECoG data. A, Left, Example 10 min of ECoG data recorded from 30 electrodes. Right, Electrode locations (black
circles) on the lateral and inferior surfaces of the brain for a single subject (left) and composite for all subjects (right) projected onto the left hemisphere. B, Zoom of 1 s of ECoG data (left). For two
of these traces, their cross-correlation as a function of lead/lag time is show (right). The maximum of the absolute value of the cross-correlation (blue circle) determines the significance of the
coupling. C, Example networks constructed for a single 1 s interval in the low (5–15 Hz), high (35– 45 Hz), and wide bands. Notice that the high-band network possesses fewer edges (i.e., less
significant coupling between electrodes) in this case. D, Example evolution of wide-band dynamic networks, proceeding from left to right, top to bottom in 1 s intervals. From moment to moment,
the networks exhibit variable topologies.
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between the two �24 h intervals was 67 h (minimum 7 h, maximum
144 h, N � 6).

Calculation of functional networks. Many different approaches exist to
determine functional connectivity from time series data (Pereda et al.,
2005). Different methods employ distinct coupling measures (e.g., linear
or nonlinear measures) and different strategies for assigning network
edges. In this work, we use two measures of linear coupling: the cross-
correlation and coherence. We outline here our particular data analysis
approach; a detailed discussion, including the statistical properties and
simulation results for the cross-correlation measure, has been provided
by Kramer et al. (2009). Before applying the coupling analysis, we process
the ECoG data from each seizure and subject in the following way. For
the cross-correlation analysis, we first notch filter (third-order Butter-
worth, zero-phase digital filtering) the data at 60 Hz and 120 Hz to
remove line noise, high-pass filter the data above 1 Hz to avoid slow drift,
and low-pass filter the data below 150 Hz to avoid higher-frequency line
noise harmonics. For the coherence measure, we do not perform these
filtering operations, and instead focus on frequency intervals that
exclude narrowband noise peaks and slow drift oscillations. Next, we
subtract the average reference from each electrode to reduce the contri-
bution of the reference electrode to coupling (Towle et al., 1999). Then
we divide the ECoG data into non-overlapping windows of duration
1.024 s. We choose �1 s intervals here to balance the requirements of
approximate stationarity of the time series (requiring short epochs) and
of sufficient data to allow accurate coupling estimates (requiring long
epochs). Finally, we normalize the data from each electrode within each
window to have zero mean and unit variance.

With the data processed in this way, we construct functional networks
for each window in three steps. We briefly describe these steps here; a
complete discussion has been provided by Kramer et al. (2009). In the
first step, we choose two electrodes, and apply either the cross-
correlation or the coherence to the ECoG data. For the correlation, we
select the maximum correlation within time delays of �250 ms. This
interval of delays allows an assessment of the variance in the cross-
correlation over time delays, which is used to calculate the significance of
the correlation (Kramer et al., 2009). For the coherence, we use the
multitaper method with a time-bandwidth product of 5 and 8 tapers. For
the choices of window size (�1 s) and time-bandwidth product (5), the
half-bandwidth is 5 Hz. We therefore analyze the coherence in evenly
spaced 10 Hz bands (the full bandwidth)—{5–15 Hz, 15–25 Hz, 25–35
Hz, and 35– 45 Hz}—for all electrode pairs. These bands cover tradi-
tional oscillatory classes: 5–15 Hz, theta and alpha; 15–25 Hz, beta; 25–35
Hz and 35– 45 Hz, gamma (Buzsáki and Draguhn, 2004). Low frequen-
cies are omitted to avoid low-frequency drift in the data. Second, we
determine the statistical significance of these coupling results through
analytic procedures (Mitra and Bokil, 2008; Kramer et al., 2009). Third,
we correct for multiple significance tests using a linear step-up procedure
controlling the false detection rate (FDR) with q � 0.05. For this choice of
q, 5% of the network connections are expected to be falsely declared
(Benjamini and Hochberg, 1995). This procedure results in a threshold-
ing of the significance tests (i.e., the p values) of the coupling measure—
not of the correlation or coherence value itself—for each interval of data
(Kramer et al., 2009). The resulting network in each window possesses an
associated measure of uncertainty, namely the expected number of edges
incorrectly declared present.

Analysis of topologies. We illustrate the connectivity of the ECoG data
as a network. In doing so, we represent each electrode as a node and
statistically significant coupling between electrodes as an edge. The asso-
ciation measures we use do not distinguish the direction of coupling, and
the resulting networks are therefore undirected. We choose to ignore the
direction of coupling (determined by the lag or phase of coupling) for
two reasons. First, the cross-correlation and coherence are poor indica-
tors of coupling direction for rhythmic time series. Second, we developed
the statistical methods only to detect nonzero correlations (Kramer et al.,
2009). To make inferences about more subtle aspects of the cross-
correlation, such as the sign, would require the development of a new
measure and appropriate statistical tests. We show examples of the func-
tional networks in Figure 1. Our analysis focuses on characterizing the

large number of network topologies observed and their consistency over
time.

To analyze the functional networks derived from the ECoG data, we
apply seven network measures in common use: density, size of the largest
component, assortativity, participation coefficient, within-module de-
gree, and for the largest component the characteristic path length and
clustering coefficient. These measures were chosen to provide a detailed
characterization of the observed topologies. A wide variety of other mea-
sures are available, but we focus only on this subset of measures here. We
briefly define these measures in Results; more detailed descriptions have
been published previously (Wasserman and Faust, 1994; Newman, 2003;
Kolaczyk, 2009; Sporns, 2011). To compute the density, assortativity,
participation coefficient, within-module degree, and clustering coeffi-
cient, we use algorithms from the Brain Connectivity Toolbox (Rubinov
and Sporns, 2010). To determine the largest connected component and
average path length, we use algorithms from the MATALB Bioinformat-
ics Toolbox. For each network, we scale the observed clustering coeffi-
cient and path length by the value for a one-dimensional regular lattice
with the same number of nodes and average degree as the observed
network. We do so because computationally efficient formulas exist for
computing the average path length and clustering coefficient (Barrat and
Weigt, 2000) that do not require the generation of many random net-
works. Finally, to compute the similarity between two networks, we
recast each network as a matrix and compute the normalized two-
dimensional cross-correlation with zero shift between the two networks.
The normalization requires first computing, for each matrix, the scale S
equal to the sum of its elements squared. The two-dimensional cross-
correlation is then normalized by the square root of the product of S for
each matrix.

To test the results of the similarity analysis, three types of surrogate
data are considered. The first consists of shuffled networks. Shuffled
network construction begins with a single functional network deduced
from 1 s of ECoG data, as described above. Edges from this observed
network are then reassigned through random permutations to create a
new undirected network—the “shuffled network” (Rubinov and Sporns,
2010). We shuffle each network (for each 1 s interval over all �24 h for all
frequency bands) individually to create a shuffled surrogate for each
patient. The second surrogate type consists of pink noise time series data.
To generate the pink noise, we first simulate white noise data (with zero
mean and unit variance) in the time domain. These data are then Fourier
transformed to the frequency domain, and the amplitude of the resulting
complex signal replaced with a function that decreases with frequency (f )
as 1/f. The inverse Fourier transform of these amplitude scaled data re-
sults in the pink noise time series surrogate. In this way, we simulate
19,500 instances of 1 s intervals of pink noise time series data (sampling
rate 500 Hz) from 88 electrodes. The third surrogate type consists of
time-shifted ECoG data. To perform the time shift, a 1 s interval is chosen
with uniform random start time from 12 h of ECoG data. This time shift
is performed for each electrode individually, so that the resulting multi-
electrode surrogate consists of ECoG data observed at randomly chosen
times, rather than simultaneously. The shifts preserve the autocovariance
structure from the segments in which the data were taken, but disrupt the
correlations between electrodes. The time-shifted surrogate data were
constructed 20,000 times for each patient. For the pink noise and time-
shifted surrogates, functional networks are computed from each 1 s in-
terval of time series data using the coupling measures described above.
For all surrogates, we compute template networks and the similarity of
the surrogate networks to these templates, as described in Results.

Results
Establishment of dynamic functional networks
We analyzed functional connectivity networks deduced from
ECoG data recorded from six patients with epilepsy. For each
patient, the ECoG data consist of two recordings each spanning
�24 h collected from pial surface electrodes (Fig. 1A). From
these multichannel ECoG data, we construct functional networks
based on the strength of coupling between voltage activities. We
briefly outline the network construction procedure here; detailed
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information is provided in Materials and Methods. Functional
networks are constructed based on two measures of linear cou-
pling: the cross-correlation and the coherence. The former results
in networks reflecting a broad frequency range (up to 150 Hz),
while the latter results in frequency-dependent networks (in 10
Hz bands, see Materials and Methods). For both measures, we
consider time intervals of duration 1 s covering the entire 24 h
ECoG recording (with no overlap), and within each interval a
functional network is deduced (Fig. 1A–C). We choose linear
coupling measures for two main reasons: simple linear and so-
phisticated nonlinear measures appear to perform equally well
when applied to ECoG data (Mormann et al., 2005; Ansari-Asl et
al., 2006; Kreuz et al., 2007; Osterhage et al., 2007), and each
measure possesses a computationally efficient significance test
(Mitra and Bokil, 2008; Kramer et al., 2009). An edge (or link) in
a network represents significant coupling in the ECoG activity of
two electrodes (Fig. 1B). To correct for multiple comparisons, we
control the false discovery rate so that each functional network
possesses the same uncertainty—5% of the edges indicated may
be false positives (Fig. 1C). Repeating the network construction
procedure for each interval, we create a dynamic network span-
ning the entire 24 h of recording for a patient (Fig. 1D). Charac-
terizing the properties of these time-indexed networks, and their
persistence, are the main focuses of this work.

Characterization of dynamic networks
We examine the properties of the observed dynamic networks in
two ways. First, we describe the structural characteristics of the
networks through the application of standard (static) graph the-
oretic network analysis measures. In doing so, we ignore the dy-
namic evolution of the network quantities and focus instead on
the overall distributions of these values. Second, we analyze the
evolution of the networks, with the specific goal of detecting
consistent patterns of network structure over time. We describe
below the emergent network structures, or templates, consisting
of “core” edges that appear regularly and in a correlated manner.

Topological characteristics of functional networks: sparse,
fractured, and modular
As a first step in understanding the topological properties of the
functional networks, we consider seven network measures in
common use (Newman, 2003; Kolaczyk, 2009; Sporns, 2011).
The first measure is the network density—the number of edges
observed in a network divided by the total number of possible
edges. Because an edge represents significant coupled ECoG ac-
tivity between two electrodes, a network with high density (i.e.,
density near 1) corresponds to highly coupled voltage activity
between many electrodes, while a network with near-zero density
corresponds to uncoupled voltage activity between nearly all
electrodes. Most networks possess a low mean density (�0.01),
although high-density networks do appear during the course of
the �24 h recording with low probability (Fig. 2A). The lower-
frequency bands (including the wide band, which is dominated
by lower-frequency rhythms) have higher mean density, consis-
tent with the observation that robust correlations between mac-
roscopic brain areas occur at lower frequencies (Chrobak and
Buzsáki, 1998; von Stein and Sarnthein, 2000; Fries, 2005; Sirota
et al., 2008). These results suggest that, no matter the choice of
frequency band, most functional connectivity networks are
sparsely connected (i.e., possess �1% of all possible edges).

The second measure we consider is the normalized size of the
maximum component—the largest group of nodes connected by
edges. In a network with a large maximum component (near 1),

nearly each node is reachable from any other node via a path of
edges. A network with small maximum component (near 0) con-
sists of disjointed, smaller components (i.e., a fractured network)
or many unconnected nodes. For all frequency bands, the mean
maximal components encompass �40% of the nodes, with mean
maximal components larger in the lower-frequency bands com-
pared to the higher-frequency bands (Fig. 2B). These results are,
again, consistent with the notion of spatially localized coupling
occurring in higher-frequency bands, which results in more dis-
jointed, fractured networks with smaller maximum components.
Conversely, more global coupling at the lower frequencies man-
ifests here as larger maximum components in these bands.

The third measure we consider is the assortativity— here, the
correlation between the degree of connected nodes (Newman,
2002; Bullmore and Sporns, 2009). The mean assortativities are
positive for all frequency bands (Fig. 2C), indicative of networks
in which highly connected nodes tend to connect to one another.

We next consider two measures in combination: the average
path length and average clustering coefficient. The former char-
acterizes the average number of edges separating any two con-
nected nodes in the network, while the latter characterizes the
number of completed triangles—nearest neighbors of a node that
also connect to one another (Watts and Strogatz, 1998). We only
apply these measures to maximum components that include at
least 50% of the network nodes, and normalize each value by the
corresponding value for a regular one-dimensional lattice (Kramer
et al., 2010). The same trend appears across a range of frequency
bands: networks with smaller path lengths and clustering coefficients
than those expected for a regular lattice (Fig. 2D).

The final two measures we consider assess the connections
within and between community structures in a network, known
as modules. To define a module, we apply a spectral measure of
bipartite structure (Newman, 2006). We then compute the
within-module degree (a measure of within module connectiv-
ity) and participation coefficient (a measure of between module
connectivity) of each node (Guimera and Amaral, 2005). From
these two measures, the nodes may be classified into seven categories
on the basis of their within and between module connectivity (Gui-
mera and Amaral, 2005). For all frequency bands, we find that most
nodes are “peripheral nodes” or “nonhub connectors”: nodes with
few edges, at least half of which connect to other nodes within the
same module (R1&R2, R3 in Fig. 2E). Nodes with many edges—at
least half of which link within the module (i.e., “connector hubs,”
R6)—also appear. Combining these results suggests that most nodes
connect to other nodes within the same community, i.e., that mod-
ular structures dominate node connectivity.

Stable network templates emerge on minute timescales
At a first approximation, the variability of network structure
from moment to moment (e.g., Fig. 1D) suggests that no persis-
tent pattern of functional connectivity exists. This variability cor-
responds with the intuitive notion that correlated brain activity
continually adapts and evolves through metastable states to meet
momentary, transient demands (Kelso, 1995; Friston, 1997; Fin-
gelkurts and Fingelkurts, 2004). We might therefore expect that,
over extended periods of time, all edges possess a similar proba-
bility of appearance. If so, then a long-term “average network”
(computed as the mean network over an �24 h interval) would
exhibit no spatial structure. However, we find instead that the
average network—which we label the “network template”— ex-
hibits rich spatial structure (Fig. 3A).

In the representative example (Fig. 3A), we use the entire du-
ration of data (�24 h) to construct the network template. Yet we

15760 • J. Neurosci., November 2, 2011 • 31(44):15757–15767 Kramer et al. • Persistent Networks in Intracranial EEG



find that templates emerge on a much shorter timescale; visual
inspection suggests that the template structure emerges after av-
eraging only 100 –200 s of data. To characterize the timescale
on which network templates emerge, we compute the two-
dimensional cross-correlation (at zero lag) between the network
template (constructed using the entire �24 h of data) and a col-
lection of networks averaged over time intervals of shorter dura-
tion. For example, consider a series of wide-band networks
constructed every �1 s (Fig. 1D). From these dynamic networks,
select a 10 s interval and compute the average wide-band net-
work, which corresponds to the average probability of appear-
ance of each edge within this time interval. If a specific edge never
appears within the 10 s interval, then this edge receives a value of
zero in the average network, while if an edge appears in each
network within the 10 s interval, then this edge receives a value of
1 in the average network. Repeating this averaging procedure for
all non-overlapping 10 s intervals covering the entire duration
of the recording (�24 h) produces �8800 average networks.
Finally, compute the normalized two-dimensional cross-correlation
between each average network (constructed using 10 s intervals) and
the network template (constructed using the entire �24 h dataset).
We find that as the averaging duration increases (from 10 s to 100 s to
1000 s), so does the correlation with the network template (Fig. 3B).
This general trend is expected—as the averaging duration increases

to �24 h and includes all of the data, the correlation approaches 1.
But, large correlations between the average and template networks
appear for much shorter durations. For the low-frequency and wide-
band networks, the correlation increases rapidly over the first 100 s
and thereafter saturates (Fig. 3B); the correlation of the higher-
frequency networks with their respective templates increases more
slowly.

To illustrate how the network similarity depends on frequency
band, we compute the average template correlation at 100 s for
the observed networks (Fig. 3C). The mean correlation is highest
in the low frequencies and wide band, and decreases with increas-
ing frequency, although always remaining well above 0. We test
the robustness of these stability results through the analysis of
three different types of surrogate data. The first type consists of
“shuffled networks,” in which the edges for each �1 s network are
reassigned through random permutations (Rubinov and Sporns,
2010). In this surrogate dataset, the number of edges (or equiva-
lently the density) is preserved for each �1 s interval. The second
type of surrogate data consists of simulated pink noise time series,
which capture one important feature of the ECoG data—the 1/f
nature of the power spectrum (He et al., 2010). The third type of
surrogate data consists of time-shifted versions of the original
ECoG data recorded from each electrode (see Materials and
Methods).

Figure 2. Structural characteristics of functional networks: sparse, fractured, and modular. A–C, The cumulative density functions (CDF) of density (A), size of maximum component (B), and
assortativity (C). The low-frequency networks possess higher mean densities and larger maximum components than the high-frequency networks, and positive assortativities appear for all
frequency bands. D, The scaled clustering coefficient (CC) versus scaled average path length (APL). The path lengths and clustering coefficients tend to be less than expected for a regular lattice. E,
Within-module degree versus participation coefficient. The node roles consist of “peripheral nodes” (R1&R2), “nonhub connectors” (R3), and “connector hubs” (R6). In D and E, warm (cool) colors
indicate higher (lower) proportions.
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For the shuffled and time-shifted surrogate types, network
templates were constructed using the entire duration of the
surrogate data and average networks constructed using (non-
overlapping) 100 s intervals. The two-dimensional cross-
correlation computed between the average and template
networks shows that each frequency band possesses significantly
stronger correlations in the observed data compared to the sur-
rogate networks (Fig. 3C). These results suggest that the strong
correlations after 100 s of averaging in the observed data reflects
organized (i.e., nonrandom) network structure. The pink noise
data resulted in low-density functional networks (average density
�1 � 10�6 for the correlation networks and �1 � 10�4 for the
coherence networks). In all bands, �75% of the pink noise net-
works contained no edges, and in these networks the similarity
measure is indeterminate. The 1/f surrogate data partially vali-
date the coupling measures: the dominance of low-frequency
activity in the ECoG data may perhaps bias the coupling measures
to produce template networks. However, analysis of pink noise
surrogate data— dominated by low-frequency activity—results
in low-density networks without robust template structure. We
conclude that deducing network templates from the ECoG data does
not require �24 h of recording; instead, the template—a persistent
metastable structure—typically hidden by the moment-to-moment
variability of the activity, emerges on a much shorter timescale, on
the order of 100 s.

Consistent network templates appear across multiple days
In the previous sections, we considered �24 h recordings from
individual patients and used these data to construct network tem-
plates. We now repeat the analysis for each patient using a second
�24 h interval. Visual inspection of an illustrative example sug-
gests that similar network templates appear in the two �24 h
intervals (Fig. 4A,B). To characterize this similarity, we compute

the normalized two-dimensional cross-correlation between the
network templates created from two separate �24 h intervals
recorded from each subject (Fig. 4C). In all cases, we find strong
correlations in the wide band (mean 0.83, N � 6) and in the
lower-frequency bands (mean � 0.8 for 5–15 Hz and 15–25 Hz
bands N � 6). The higher-frequency bands exhibit slightly
weaker mean correlations (mean � 0.75 at frequencies 25 Hz and
greater, N � 6) consistent with the expectation of more variable
high-frequency coupling at the macroscopic spatial scale of these
recordings. These results suggest that network templates, which
emerge on a timescale of minutes, persist from day to day for each
subject.

The preceding analyses suggest that �100 s of ECoG data are
sufficient to define a persistent functional network structure or
template. One might expect that the choice of a particular time
interval is critical; for example, average networks from data re-
corded during sleep could perhaps differ from average networks
during wakefulness. To explore this, we divide the �24 h data
from two subjects into four cognitive state—awake, drowsy,
Stage II sleep, and Stage III sleep—as per the standard sleep stag-
ing criteria (Rechtschaffen and Kales, 1968). For each state, we
compute the average functional network, and then compare these
networks with the template network (averaged over all �24 h).
For all states and patients considered, the state averaged net-
works and the network templates are strongly correlated (two-
dimensional cross-correlation �0.9, N � 11 total stages for two
patients). These results indicate that with sufficient temporal av-
eraging, similar network templates appear, regardless of cognitive
state.

Exploring the network template: what constitutes the core?
We have observed that, despite moment to moment variability,
persistent network templates emerge. To further explore the ele-

Figure 3. Stable network templates appear on an �100 s timescale. A, Example 24 h network template (left), and average network connectivity over different timescales, for a single patient.
In each subfigure, a (row, column) element corresponds to an electrode pair, and the nodes are ordered to locate edges along the template diagonal. Darker shades of gray indicate more persistent
interactions between a pair (color bar indicates log10 probability of edge appearance). In the 1 s template, interactions either exist (black) or not (white). After �100 s of averaging, a network
connectivity similar to the 24 h average template emerges. B, The two-dimensional correlation of networks averaged over different durations (1 s to 3000 s) and the network template for all patients.
The different color curves indicate different frequency bands. At short averaging durations, a rapid increase in correlation emerges; this increase shifts to larger durations as the frequency band
increases. C, The average correlation at 100 s for the observed data (color bars, legend in B), time-shifted surrogates (gray bar), and shuffled networks surrogates (white bar). Notice the trend in the
observed data toward decreasing correlation with the template as the frequency band increases.
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ments that form these templates, we focus on the time evolution
of individual edges. In the binary networks considered here, at
each moment of time an edge between two nodes is either present
or not. We may therefore think of the edge as possessing two
states (present or absent) and visualize these dynamics as an edge

train, in the same way neuronal action po-
tential generation may be visualized as a
spike train of zeros and ones (Fig. 5A).
Inspection of the edge-train rates shows
that most edges rarely appear (i.e., have a
low rate), while a small number of edges
appear frequently (Fig. 5B). These obser-
vations suggest that two populations of
edges exist: many edges with low rates,
and a small subset of edges with high rates.
To test this observation, we modeled the
distribution of edge rates as consisting of
two Gaussians with different means and
standard deviations. More sophisticated
distributions may be appropriate, but we
focus initially on this basic model. We fit a
Gaussian mixture model to each patient’s
distribution of edge rates, and in this way
separate the low-rate edges (belonging to
the Gaussian with lower mean) from a
high-rate edge core (with edge rates ex-
ceeding 1 per minute). We note that the
members of the edge core correspond to
the highest-weighted (i.e., most common)
edges of the patient’s template network.
The success of this procedure depends
on the choice of frequency band (Fig. 5C);
the edge cores are only definable in the
wide band and lower-frequency bands
(5–15 Hz and 15–25 Hz). The mean edge
rates of the core tend to decrease with in-
creasing frequency bands (Fig. 5D), con-
sistent with longer tails of the edge rate
distribution in the low-frequency and
wide bands (Fig. 5B). When definable, the
core sizes are similar across frequency in-
tervals, and tend to incorporate only a
small percentage (near 5%) of the total
number of edges (Fig. 5E) as expected.

Core edges appear together
The definition of edge core used here does
not account for the fine temporal struc-
ture of the edge dynamics; a high rate of
appearance associates an edge with the
core, no matter when the edge appears in
relation to other edges. Analysis of the fine
temporal structure of the edge dynamics
reveals that core edges also tend to appear
together. To show this, we compute the
correlation coefficient between a subject’s
edge pairs over the entire (�24 h) record-
ing for three groups of edge pairs: (1) both
chosen from the core, (2) both chosen
outside of the core, and (3) one chosen
inside the core and the other outside the
core. For each group, we sample (with re-
placement) the edge pairs 1000 times, and

plot an example of the distributions of these correlations for a
single patient in Figure 6A. In this case, we find that edges within
each group (core and noncore) tend to exhibit stronger correla-
tions than edges between the two groups. To characterize this
effect, we compute the area under each distribution below a

Figure 4. Consistent network templates appear across multiple days. A, Network template for the wide-band frequency of a
single patient (same patient and color bar as in Fig. 3A) deduced from two separate �24 h intervals (top and bottom subfigures).
Visual inspection suggests similar templates appear in the 2 separate days. B, The same network templates as in A but displayed
with respect to this patient’s electrode configuration for the two �24 h intervals. Darker lines indicate more persistent edges. C,
The distribution of two-dimensional correlations between network templates across days.

Figure 5. High rate edges constitute a core. A, Ten example edge trains from a single subject. An edge is either present (stem)
or absent between two nodes at each moment of time. Edges exhibit high (top row) and low (bottom row) rates. B, Example
cumulative density functions (CDF) of the edge rate, normalized between 0 and 1, for a single subject. The different colors indicate
the different frequency bands. In all cases, few edges possess high rate. C, The proportion of patients with cores definable in a
Gaussian mixture model. D, E, The mean core rates (D) and core size divided by the total number of edges (E) for the different
frequency bands in which cores are definable.
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threshold correlation value (1 minus the shaded areas in Fig. 6A).
We illustrate these results in Figure 6B, which shows probability–
probability (P–P) plots comparing the distributions calculated
with different thresholds for all patients and frequency bands
with definable cores (Fig. 5C). Most curves remain below the
diagonal, indicating that edge pairs chosen within each group
(i.e., both within the core, or both outside the core) tend to ex-
hibit stronger correlations than edge pairs chosen between the
two groups, no matter the choice of threshold. These results sug-
gest that the low-rate, noncore edges tend to appear together as
infrequent, strong-coupling events resulting in sporadic network
densification. The high-rate, core edges appear often and also
together, but typically without the noncore counterparts.

Discussion
From prolonged recordings of intracranial EEG, functional con-
nectivity networks were constructed using two measures of linear
coupling. Both measures revealed sparse, fractured, and modular
network topologies with large moment to moment variability.
Yet, within this variability, persistent structures emerged: tem-
plates—weighted networks representing the probability of edge
appearance in time—showed consistent topologies across multi-
ple cognitive states and days of recording. Evaluation of surrogate
datasets suggested that these templates were not a statistical arti-
fact of the analysis, but instead were inherent in the coupled brain
voltage activity. Within the template structures, particularly in
lower-frequency bands, a subset of frequently appearing core
edges emerged. Within these cores, edges tended to appear to-
gether, without less frequent (noncore) edges. These results sug-
gest that an �100 s block of ECoG data, chosen from nearly any
interval of unconstrained spontaneous activity, provides an indi-
cation of the brain’s functional connectivity network with high
fidelity.

Frequency domain impact on the core
The most extensive and consistent templates were present in net-
works constructed in the lower-frequency bands and the broad-
band analysis, although the latter almost certainly results from
the dominance of low-frequency activity in the ECoG data. In the

higher-frequency bands (e.g., gamma �40 Hz), the functional
networks were less dense and less consistent compared to a given
template, and edge cores were not definable. These results concur
with a host of existing experimentation and theory positing that
low-frequency activity serves to consolidate and link action
across wide areas of the brain, while higher-frequency informa-
tion is more locally circumscribed and specific (Chrobak and
Buzsáki, 1998; von Stein and Sarnthein, 2000; Fries, 2005; Sirota
et al., 2008).

Metastability and brain networks
One theory of brain function posits a spatiotemporal organiza-
tion of dynamic activity through transient, metastable states
(Kelso, 1995). In this scenario, brain dynamics progress between
unstable attractors, dwelling in each state relatively briefly. Meta-
stable systems typically exhibit a balance of segregating and inte-
grating influences, and may support the flexible integration of
distributed cortical areas necessary for cognitive function
(Bressler and Kelso, 2001). The results presented here support
this scenario. Recurring spatiotemporal brain activity patterns
(Friston, 1997) manifest as repeated functional networks observ-
able in the ECoG data. The existence of connections that are
prevalent over long periods of time supports the well regarded
concept of a hierarchical organization of neural processing (En-
gel et al., 2001). That is, most events in the brain—sensory input,
motor output, or forms of internal ruminations—lead to activa-
tion of some of the same structures. At finer spatial scales down to
the level of individual neurons, repetitive patterns of sponta-
neous neuronal activity (“cortical songs”) have also emerged
(Ikegaya et al., 2004).

Within this framework, at least two interpretations are con-
sistent with the appearance of network templates and edge cores.
First, these networks may represent baseline or foundational in-
teractions, upon which transient connections form. In this sce-
nario, we interpret the edge cores as temporally persistent
structures, hidden by momentary “noise kicks” (Ghosh et al.,
2008). Second, the edge cores may represent the continual return
of brain dynamics to a common attractor state. From this core
state, perturbations (in response to internal or external inputs)
drive the brain dynamics to explore other attracting states (Blu-
menfeld et al., 2006; Deco et al., 2009). These transient explora-
tions then appear in the functional networks as infrequent
(noncore) edges, perhaps in which the individual content of a
given cognitive process or behavioral state resides. A complete
understanding of the role of metastability in integrating and seg-
regating brain activity will require both further observations (at
the scale of neuronal populations and individual neurons) and
theoretical development (Deco et al., 2011).

Small-world brain networks
Recent work has suggested that brain functional and structural
networks exhibit small-world topologies, with similar clustering
coefficients and smaller path lengths than expected for regular
networks (Watts and Strogatz, 1998; Sporns and Zwi, 2004;
Achard et al., 2006; Bassett and Bullmore, 2006; Bullmore and
Sporns, 2009; Gong et al., 2009). For the ECoG data examined
here, we found average path lengths and clustering coefficients
less than those expected for a regular lattice. In the wide-band
data, the average path length exhibited a larger decrease than the
clustering coefficient (Fig. 2D), consistent with a small-world
topology. In contrast, for the coherence networks, both the aver-
age path length and clustering coefficient decreased similarly.
Many possible reasons for these differences exist, including dif-

Figure 6. Core and noncore edges are correlated, but not with one another. A, Example
probability density function (PDF) of cross-correlations between edge pairs chosen from the
high-rate core (blue), low-rate noncore (green), and the core and noncore (red) for a single
patient and wide-band frequency. Correlations are higher within each rate group than between
the rate groups. Selecting a threshold of 0.1 correlation, the tail area of each distribution is
shaded. B, P–P plots for the cumulative distribution functions (CDF) of each group: core groups
versus between groups (top) and noncore groups versus between groups (bottom). In both
figures, only frequency bands with definable core networks are considered.
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ferences in the choice of coupling measure and threshold. We
note that paths in functional networks may not be directly inter-
preted in terms of information flow on anatomical connections
(Rubinov and Sporns, 2010), and that the role of small-world
architectures in functional brain networks remains a controver-
sial (Bialonski et al., 2010) and active area of research.

Relationship of templates to resting state networks
A wealth of recent work has shown that specific brain areas ex-
hibit ongoing activity in the resting state (Shulman et al., 1997;
Raichle et al., 2001; Fox and Raichle, 2007; Deco et al., 2011). The
template networks investigated here differ from, and comple-
ment, observations of resting state networks in three important
ways. First, observations of resting state networks are based pri-
marily on two neuroimaging strategies—positron emission to-
pography (PET) and fMRI— both of which measure blood flow
or metabolic activity as an indirect indication of neural activity,
and have temporal resolutions on the order of 1 s. The relation-
ship between BOLD fMRI signals and brain electrical activity
remains incompletely understood (Logothetis, 2008), although
recent work suggests that BOLD fMRI correlates with local field
potential activity, and perhaps with infra-slow fluctuations (He
and Raichle, 2009). The ECoG signal used here provides a more
direct measure of neuronal mass action and functional connec-
tivity (Fingelkurts and Fingelkurts, 2004, 2011) and allows mon-
itoring of brain activity on the millisecond timescale at which
variations in network structure are perhaps more accessible
(Deco et al., 2011). Second, PET and fMRI recordings are neces-
sarily time-limited due to practical constraints of scanner access
and subject capabilities. In general, although recordings may last
on the order of 1 h, the continuous acquisition of PET or fMRI
data for 24 h or longer is prohibitive. The chronic ECoG record-
ings discussed here allow uninterrupted surveillance of brain ac-
tivity over the course of days. Third, observations of resting state
networks constrain subject behavior to a particular state—
namely rest—in which areas of the brain remain active, perhaps
reflective of a subject’s internal state and cognitive activity (Deco
et al., 2011). The ECoG data analyzed here reflect relatively un-
constrained spontaneous states, in which subjects received no
behavioral instructions. Instead, each subject was free to conduct
routine active behaviors (e.g., eating, sleeping, reading, talking,
watching television), and engaged in periods of silent thought
(Andreasen et al., 1995).

Although important differences exist between fMRI BOLD
observations of resting state networks and the functional network
templates described here, both support the existence of persis-
tent brain functional interactions. The biophysical mechanisms
maintaining these functional interactions remain unclear. Slow
cortical oscillations (�1 Hz) are hypothesized to relate to the
fMRI signal and perhaps the default mode network (He and
Raichle, 2009; Raichle, 2010; Deco et al., 2011). We note that the
frequency of the infra-slow oscillation (0.01 Hz and 0.1 Hz) cor-
responds with the approximate duration for template structures
to emerge (�100 s), and that similarities have been observed
between fMRI and slow cortical potentials (He et al., 2008). The
robustness of the template network structure may reflect the in-
fluence of anatomical connections on the observed functional
connectivity networks. Computational studies have examined
the relationship between brain structural (i.e., synaptic interac-
tions between brain regions) and functional (Zemanova et al.,
2006; Zhou et al., 2006; Fernández Galán, 2008; Ponten et al.,
2010; Pernice et al., 2011) networks and suggested that at the
macroscopic spatial scale, the structure–function relationship

depends on the timescale of activity (Honey et al., 2007). At the
slow timescale of fMRI and BOLD signals, a general relationship
exists between brain structural and functional connectivity
(Koch et al., 2002; Hagmann et al., 2008).

Clinical implications
There are several important caveats relevant to the interpretation
of the dynamic functional networks presented here. First, the
intracranial voltage recordings only cover a selected subset of the
brain, and the spatial resolution of the ECoG is relatively large, on
the order of 1–2 cm 2 rather than the millimeter level of resolution
obtained in fMRI. Second, only patients with pharmacologically
resistant epilepsy were observed. However, several lines of evi-
dence suggest the robustness of the results. For example, similar
network characteristics and stabilities were observed in all of the
patients examined even though they differed in the etiology of
their epilepsy, medication regimen, age, sex, and other clinical
features. In addition, similar results have been found in the scalp
EEG in patients without epilepsy and in task-related EEG (Chen
et al., 2008; Fingelkurts and Fingelkurts, 2011).

While the generalizability of these results to other subject pop-
ulations requires further research, the specifics of a subject’s net-
works may also be of considerable clinical utility. The template
networks may provide a complementary view to pathological
alterations observed in the resting state BOLD fMRI signal
(Anand et al., 2005; Andrews-Hanna et al., 2007; Garrity et al.,
2007; Damoiseaux et al., 2008; Greicius, 2008; Rombouts et al.,
2009; Whitfield-Gabrieli et al., 2009; Zhang and Raichle, 2010).
We have shown here that for invasive ECoG data, even relatively
short-duration (�100 s) recordings during unconstrained spon-
taneous activity sufficiently capture persistent template structure
such that exhaustive long-term data acquisition may not be
necessary. How the topological characteristics of these tem-
plate networks—and fluctuations from these templates—re-
late to pathological processes, such as seizure initiation and
spread, may provide additional information for surgical treat-
ment of epilepsy. Understanding persistent functional network
structure—in individual patients and large populations—may
permit new insights into the characterization of both healthy and
diseased brain states.
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Zhou C, Zemanová L, Zamora G, Hilgetag CC, Kurths J (2006) Hierarchical
organization unveiled by functional connectivity in complex brain net-
works. Phys Rev Lett 97:238103.

Kramer et al. • Persistent Networks in Intracranial EEG J. Neurosci., November 2, 2011 • 31(44):15757–15767 • 15767


