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We consider as a mathematical model of human cortical electrical activity a system of fourteen ordinary
differential equations. With appropriate parameters, the model produces activity characteristic of a seizure. To
prevent such seizures, we incorporate feedback controllers into the model dynamics. We show that three
controllers—a linear feedback controller, a differential controller, and a filter controller—can be used to
eliminate seizing activity in the model system. We show how bifurcations induced by the linear controller alter
those present in the original dynamics.
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I. INTRODUCTION

Epilepsy—chronic unprovoked seizures—affects over 2.5
million people in the USA �1�. Unfortunately, an estimated
20% of people with epilepsy do not respond to medications
prescribed to control seizures �1�. For these patients, treat-
ment options are more invasive. Some patients may choose
to undergo resective surgery, in which surgeons remove the
brain region responsible for seizure genesis—the epileptoge-
nic zone. When the epileptogenic zone includes eloquent cor-
tex �e.g., motor or speech cortex� resective surgery may not
be safe, and the patient must consider alternative treatments.
Brain electrical stimulation �BES� represents an important
new treatment for intractable epilepsy. The most common—
and only U.S. Food and Drug Administration �FDA�
approved—BES method is vagus nerve stimulation. In this
method, electrodes �attached to a battery powered computer
implanted subcutaneously on the patient’s chest wall� peri-
odically deliver electrical pulses to the vagus nerve. This
chronic stimulation of the vagus nerve is thought to affect
brain regions �e.g., the thalamus� that might, in theory, in-
crease cortical inhibition and thereby lessen or modulate sei-
zures. Other, as yet experimental, BES methods target brain
regions such as the cerebellum, caudate nucleus, and thala-
mus �2�. The physiological mechanisms by which these BES
methods prevent or reduce seizures are unknown.

Seizures may also be aborted by direct electrical stimula-
tion of the cortex. For example, cortical afterdischarges
�seizure-like activity elicited by direct cortical electrical
stimulation, used for brain mapping� may be arrested by ap-
plying brief bursts �0.3–2.0 s� of pulse stimulation �0.3 ms
duration biphasic pulses delivered 50 times per second at
1.0–15.0 mA� to the cortex �3,4�. Others have found that
biphasic pulses delivered at high frequencies �e.g., 200 Hz in
�5��, moderate frequencies �e.g., 50 Hz in �6��, and low fre-
quencies �e.g., 0.9 Hz in �6�� can reduce seizure activity.
However, not all stimulation frequencies are appropriate.
Moderate frequency �5–20 Hz� stimulation delivered for

5–12 s may, in fact, increase baseline epileptiform activity
�7�.

For cortical BES, there may exist optimal stimulation
sites, transducers, and parameters for terminating seizures.
Of course, the most important consideration for physicians
and researchers is patient safety. Animal models of epilepsy
may allow researchers to explore different BES methods that
may pose unacceptable risks to human subjects. In �8�, the
authors show that small, uniform electric fields—directed
from the soma to the apical dendrites—transiently suppress
epileptiform activity in rat hippocampal slices in vitro. An
improvement to this method is reported in �9�, where the
authors apply time varying electric fields via a continuous,
proportional feedback algorithm to rat hippocampal slices in
vitro. They find that this feedback controller reduces seizure-
like activity with more success than the uniform electric
fields.

Mathematical models provide another means to safely ex-
plore the effects of new BES techniques. Detailed models
exist that describe the behavior of individual neurons during
seizure �10�. To compare these model results with experi-
mental data, researchers record single neuron activity and
local field potentials from, for example, CA1 of the rat in
vitro �11�. In humans, we can take advantage of a common
clinical scenario: the use of subdural electrodes to record
brain wave activity, including seizures, in patients undergo-
ing surgery for intractable epilepsy. We may then compare
the results of mathematical models with this electrocortico-
gram �ECoG� data recorded from the seizing human cortex.
The relationship between the single neuron models and the
ECoG data—which records the summed activity from neu-
ronal populations—is not obvious. To facilitate a comparison
with the observed data we consider a mathematical model of
the mesoscopic cortical electrical activity.

Our goal in this work is a theoretical exploration of new
BES techniques. In what follows, we apply three feedback
controllers—a proportional controller, differential controller,
and filter controller—to a mathematical model of human cor-
tical electrical activity. Others have employed mathematical
systems to model the effects of BES �12,13�. In those works,
the authors consider the activity of individual neurons and
networks of neurons. Here we implement a model of mesos-*Electronic address: aszeri@me.berkeley.edu
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cale cortical electrical activity �a system of fourteen ordinary
differential equations� and show how to make the model
“seize” in Sec. II. In Sec. III we apply the linear proportional

feedback controller to one model variable �h̃e—the spatially
averaged soma membrane potential of excitatory cortical
neurons�. We show that, when the controller gain exceeds a
threshold value, the controller suppresses seizure-like oscil-
lations occurring in the dynamics. The controller works
through control of bifurcations; to make the discussion pre-
cise we make use of the taxonomy introduced in �14�. We
discuss the types of bifurcations that both produce �subHopf/
fold cycle� and destroy the large amplitude, stable oscilla-
tions characteristic of a seizure. In Secs. IV and V we apply
a differential controller and filter controller, respectively, to
the dynamics. We show that both controllers suppress
seizure-like oscillations—although bifurcation analysis is not
as readily performed for these controllers. In Sec. VII we
discuss the results and possible future applications.

II. MODEL

In this section, we define the equations, variables, and
parameters we employ to model the seizing human cortex.

Ideally, one would describe human cortical electrical activity
in terms of individual neurons. For example, such a model
may consist of an interconnected network of physiologically
accurate cortical neurons. To implement this model one
would have to �at least� define the characteristics of each
neuron �e.g., pyramidal or stellate, extent of dendritic
branching, location�, the connections between neurons, and
the connections from other brain regions. Unfortunately, a
complete description of human cortical physiology does not
exist. Even if we approximate this complicated physiology,
computational limits still make detailed simulations infea-
sible �although see �15,16��.

To avoid these difficulties we employ a mesoscale model
of human cortical electrical activity. Two of the earliest me-
soscale models were developed by Wilson and Cowan �17�
and Freeman �18�. Here we employ a recent formulation first
proposed by Liley, Cadusch, and Wright �LCW� in �19�, and
later expanded by others in �20–22�. To create this model,
LCW spatially averaged the microscopic properties of indi-
vidual neurons over cortical columns �23�. A cortical column
represents the approximate cortical volume synapsed by the
branching dendrites of subcortical input; it extends across the
five layers of cortex �approximately 3 mm in depth� and has

TABLE I. Dynamical variable definitions for the dimensionless ODEs neural macrocolumn model. The
dimensionless variables �left column� are defined in terms of the dimensional symbols �middle column� found
in Table 1 of �21�. The variables are described in the right column. Subscripts e and i refer to excitatory and
inhibitory, respectively.

Symbol Definition Description

h̃e,i
he,i /hrest Population mean

soma dimensionless
electric potential

Ĩee,ie
Iee,ie�e / �Ge exp�1�Smax� Total e→e, i→e

input to excitatory
synapses

J̃ee,ie
�

dIee,ie

dt
�e/�Ge exp�1�Smax�

Time derivative of
the total e→e, i→e
input to excitatory

synapses

Ĩei,ii
Iei,ii�i / (Gi exp�1�Smax) Total e→ i, i→ i

input to inhibitory
synapses

J̃ei,ii
�

dIei,ii

dt
�i/„Gi exp�1�Smax

…

Time derivative of
the total e→ i, i→ i
input to inhibitory

synapses

�̃e,i �e,i /Smax Long range
�corticocortical�

input to e , i
populations

�̃e,i

�
d�e,i

dt
/Smax

Time derivative of
long range

�corticocortical�
input to e , i
populations

t̃ t /� Dimensionless time
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a cortical surface area of approximately 2 mm2. The cortical
column �and not the neuron� is the smallest unit of activity in
the mesoscale model �24�. We can easily compare the results
computed from such mesoscale models with ECoG data,
which is thought to record the summed electrical activity of
cortical columns.

Here we employ a formulation of this mesoscale model
developed in �22�. The �nondimensionalized� system consists
of 14 stochastic partial differential equations �SPDEs� first-
order in time and second-order in space, and 20 parameters.
We showed in �22� that the model can approximate the elec-
trical activity recorded from the seizing human cortex at cer-
tain parameter values. Specifically, we adjusted two model
parameters: Pee—the excitatory subcortical input to excita-
tory cortical neurons, and �e—the strength of excitatory syn-
aptic input to both excitatory and inhibitory cortical neurons.
We chose to adjust these two parameters because both affect
the excitation of the model, and a state of cortical hyper-
excitation is characteristic of some seizures �25�. In addition,
we have found that increases in �e or Pee depolarize he—the
�dimensional� spatially averaged soma membrane potential

of the excitatory cells; we define the relationship between h̃e
and he, and between the other dimensionless model variables
and their dimensional counterparts in Table I. Such an in-
crease in he is thought to be an important control factor in
inducing seizures �26,27�.

We showed in �22� that large increases �greater than
2200%� in Pee and small decreases �as small as 12%� in �e
produced seizure-like activity in the �dimensionless� variable

h̃e. We note that the increase in Pee, although large, is appro-
priate. In Table I of �28� the authors suggest a range of values

that the �dimensional� parameters may assume. We use these
tabulated values and the parameter definitions in Table II to
compute the typical ranges for the �dimensionless� param-
eters Pee and �e. We find 0� Pee�200, and 0.056�10−3

��e�250�10−3, and note the typical parameter values
Pee=11.0 and �e=1.42�10−3. Thus, to induce seizure-like
activity in the model, we may decrease �e to a value within
the typical parameter range �e.g., �e=1.25�10−3� and we
must increase Pee to a value outside the typical range �e.g.,
Pee=250.0�. That seizures result when we vary a parameter
�here Pee� to values outside its typical range is, perhaps, ap-
propriate; we expect that seizures result from pathological
changes in cortical physiology. We will discuss the relation-
ships between model parameters and cortical physiology in a
future manuscript �29�.

We sought to validate the mathematical model by compar-
ing h̃e, which is proportional to the voltage observed at the
cortex, with ECoG time series data recorded from a human
subject during four of his seizures. To illustrate this compari-
son, we show in the upper �red� traces of Fig. 1 two epochs
of ECoG data recorded from the subject preceding and dur-
ing a seizure. We show in the lower �blue� traces numerical
solutions derived from the model equations with typical and
pathological �i.e., Pee dramatically increased and �e slightly
decreased� parameter values. We scale both intervals in the
observed time series by the same amount and both intervals
in the simulated time series by the same amount to allow
visual comparison. We note that the observed ECoG time
series data and the model results agree qualitatively; the data
recorded during seizure or simulated in the model with
pathological values of Pee and �e both possess large ampli-
tude oscillations relative to the nonseizing state with ap-

TABLE II. Parameter values for the dimensionless ODEs neural macrocolumn model. The dimensionless
symbols �first column� are defined in terms of the dimensional variables �second column� found in Table I of
�21�. The variables are described in the third column and typical values are shown in the fourth column.

Symbol Definition Description Typical Value

e , i �As subscript� excitatory, inhibitory cell
populations

�e,i

Ge,i exp�1�Smax

�e,i�he,i
rev − hrest�

Influence of input on the mean soma membrane
values

1.42�10−3, 0.0774

he,i
0 he,i

rev/hrest Dimensionless cell reversal potential −0.643, 1.29

Te,i ��e,i Dimensionless neurotransmitter rate constant 12.0, 2.6

	e,i �ṽ
ee,ei Dimensionless characteristic corticocortical
inverse-length scale

11.2, 18.2

Pee,ie pee,ie /Smax Subcortical input to e population 11.0, 16.0

Pei,ii pei,ii /Smax Subcortical input to i population 16.0, 11.0

Ne,i
� — Total number of synaptic connections from distant

e populations
4000, 2000

Ne,i
� — Total number of local e and i synaptic

connections
3034, 536

g̃e,i ge,ih
rest Dimensionless sigmoid slope at inflection point −19.6, −9.8


̃e,i

e,i /hrest Dimensionless inflection-point for sigmoid

function
0.857, 0.857
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proximately the same frequency. We quantify this result in
�22� and show that the model results and ictal ECoG data
agree in two important ways: the temporal frequency of os-
cillations, and the propagation speed of electrical activity.
We conclude that the model system—derived from human
cortical physiology—approximates the temporal frequency
and wave speed of electrical signals in the seizing human
cortex. We will compare the mathematical model with obser-
vational data from more human subjects in a future manu-
script �29�.

In the present work, in the interest of simplicity, we do not
employ the full dimensionless SPDEs. Instead, we ignore the
spatial dependence and stochastic input and consider a sim-
pler system of dimensionless ordinary differential equations
�ODEs�. We state these equations and define the variables
and parameters in the Appendix. We examined these dimen-
sionless ODEs in �22� to gain insight into the complete sys-
tem and found that Hopf bifurcations in the dimensionless
ODEs correspond to traveling waves in the complete dimen-
sionless SPDEs. In what follows we compute numerical so-
lutions to the dimensionless ODEs and bifurcation diagrams
using the software package AUTO �continuation and bifurca-
tion software for ordinary differential equations� �30�. In
Secs. III–V we apply a linear, differential, and filter feedback
controller, respectively, to the dynamics. Here we do not at-
tempt to apply rigorous control theory. Instead, we illustrate
the effects of each controller on the bifurcations present in
the dynamics. We show that all three controllers can prevent
seizures �i.e., the large amplitude oscillations illustrated in
Fig. 2� from occurring in the dynamics.

III. LINEAR CONTROLLER

We could attempt to control the model system through
many different methods; a controller may depend on any of
the 14 variables or 20 parameters, and may apply to any of
the 14 differential equations in �A1�. Here we employ prac-
tical considerations to constrain the form of the controller.

Most of the model variables and parameters �e.g., �̃e—the
corticocortical input to excitatory cortical neurons, or
Ne

�—the total number of synaptic connections from distant
excitatory neurons to excitatory cortical neurons� are difficult
to observe and perhaps impossible to manipulate in practice.

The main observable in the model is h̃e=he /hrest

=he / �−70 mV�; this variable is proportional to the �dimen-
sional� voltage he recorded in the ECoG. In practice, it is
possible to manipulate cortical voltages through applied elec-
tric fields: an applied electric field polarizes the excitatory
�i.e., pyramidal� neurons and thus alters the transmembrane
potentials �31,32�. Following these practical considerations,
we implement a controller that depends only on the variable

h̃e and effects only �A1a�.
We must still choose the form of the controller. In this

section, we set the controller to be linear in h̃e. As we men-
tioned in Sec. I, linear feedback controllers have been shown
to ameliorate seizures in rat hippocampal brain slices in vitro
�9�. To apply the linear controller, we redefine �A1a� as,

�h̃e

�t̃
= 1 − h̃e + �e�he

0 − h̃e�Ĩee + �i�hi
0 − h̃e�Ĩie + ah̃e, �1�

where the controller is the last term in the equation, and the
parameter a represents the controller gain.

To determine how the controller effects the dynamics, we
compute bifurcation diagrams of �A1� with �A1a� replaced
by �1�. We study bifurcation diagrams to learn which param-
eter changes �in �e, say� dramatically alter the model dynam-
ics. We are particularly interested in bifurcations in which
the soma membrane potential changes from a relatively con-
stant voltage to large amplitude, stable oscillations character-
istic of a seizure. We compute each bifurcation diagram with
all parameters fixed at the typical values �listed in Table II�
except for Pee and �e. In each bifurcation diagram, we plot
the �dimensional� variable he as a function of the �dimension-
less� parameter �e. We note that the typical values of Pee and

FIG. 1. �Color online� ECoG data recorded from the human cortex �upper traces in red� and data simulated in the ODE model �lower
traces in blue.� �a� ECoG data recorded during the preictal state and simulated in the model with �e=1.42�10−3 and Pee=11.0. �b� ECoG
data recorded during the ictal state and simulated in the model with �e=0.8�10−3 and Pee=548.066. To compute the simulated data, we
employed a fourth-order Runge-Kutta method with a time step of 0.4 ms and included stochastic input. We have scaled the ECoG data in �a�
and �b� by the same amount, and scaled the simulated data in �a� and �b� by the same amount to allow visual comparison.
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�e are 11.0 and 1.42�10−3, respectively. In Sec. III A we
consider a pathological parameter value of Pee=548.066 �at
nearly fifty times the typical value�. We will show that, with-
out the feedback controller, the variable he undergoes large
amplitude oscillations characteristic of a seizure at a patho-
logical combination of parameters. However, by setting an
appropriate value for the the controller gain a it is possible to
abort these oscillations.

A. The pathological case of hyper-excitation Pee=548.066

Here we set the parameter Pee=548.066; we found in �22�
that values of Pee between 200 and 1000 could produce
stable, large amplitude oscillations in he characteristic of the
ictal ECoG data. In Fig. 2�a� we plot a bifurcation diagram of
�A1� without the applied controller �i.e., a=0 in �1��. We plot
the stable and unstable fixed points in he as solid and dashed
curves, respectively. Two Hopf bifurcations occur at �e
=0.66�10−3 and �e=0.96�10−3, each marked by an aster-
isk. Both Hopf bifurcations are subcritical and give rise to
unstable limit cycles. �For an introduction to Hopf bifurca-
tions, see Sec. V.2 of �33�.� These unstable limit cycles do
not approximate the oscillatory activity we record in the
ECoG during seizure. To induce stable, large amplitude os-
cillations in he, we adjust �e until the limit cycles undergo
saddle-node bifurcations at �e=0.64�10−3 and �e=1.15
�10−3 and stabilize. We plot the maxima and minima of he
achieved during these unstable and stable limit cycles as dot-
ted and dot-dash curves, respectively. The model “seizes”—
large amplitude oscillations occur in he—for values of �e
between the two saddle-node bifurcations of limit cycles
�i.e., 0.64�10−3��e�1.15�10−3�. We note that the dy-
namics possess a subHopf/fold cycle type of bifurcation, or
equivalently, the dynamics undergo elliptic bursting �14�. We
define this and some other bifurcation types in Table III.

To illustrate this seizing activity—characterized by large
amplitude oscillations in he—we plot in Fig. 2�b� a numeri-

cal solution to �A1�. Here we fix the parameters to the typical
values except Pee=548.066 and �e=0.8�10−3. We indicate
this value of �e between the two Hopf bifurcations with a
vertical �red� line in Fig. 2�a�. To compute the numerical
solution, we use a fourth order Runge-Kutta method with a
�dimensional� time step of 0.4 ms. We show in Fig. 2�b� that
he is immediately drawn to the stable limit cycle with a
maximum of −36 mV and a minimum −82 mV. These ex-
trema correspond to the intersections of the vertical �red� line
and dot-dash curves in Fig. 2�a�.

Having considered the uncontrolled dynamics �a=0.0�,
we now consider the controlled case. In Fig. 3 we show the
bifurcation diagrams of �A1� with �A1a� replaced by �1� for
six values of the gain a. To help visualize these results, we
plot in Fig. 3�a� only the stable and unstable fixed points as
solid and dashed curves, respectively, and denote the Hopf
bifurcations as asterisks. We plot the results for the uncon-
trolled dynamics in black, and the controlled dynamics in
color. We note that the bifurcation diagram for the uncon-
trolled dynamics is also shown in Fig. 2�a�. The colors in
Fig. 3 correspond to the controller gain as follows: Red a=
−0.1, orange a=−0.5, light green a=−1.0, dark green a=
−1.67, blue a=−1.86, and purple a=−1.96. We find that for
negative gains of small magnitude the two Hopf bifurcations,
originally separated by 0.28�10−3 in �e, separate further;
for a=−1.0 �the light green curve� the separation between the
Hopf bifurcations is 0.55�10−3. As we reduce a toward
−1.96, the Hopf bifurcations approach one another. At a=
−1.96 �the purple curve� no Hopf bifurcations occur and only
stable fixed points remain.

To investigate the limit cycles born in the Hopf bifurca-
tions, we plot in Fig. 3�b� the maxima and minima of he
achieved during the stable �solid curves� and unstable �dotted
curves� limit cycles. We note that the solid curves in this
figure correspond to the extrema of stable limit cycles, and
not to stable fixed points. The color scheme is identical to

FIG. 2. �Color online� �a� Bifurcation diagram for the uncontrolled dimensionless ODEs at the pathological parameter value Pee

=548.066. The parameter �e is varied and the stable �solid curves� and unstable �dashed curves� fixed points in he are shown. The asterisks
denote two Hopf bifurcations. The dash-dot curves denote the maximum and minimum values of he achieved during a stable limit cycle. The
dotted curves denote the maximum and minimum values of he achieved during an unstable limit cycle. The branch of limit cycles is born and
dies in two subcritical Hopf bifurcations; two saddle-node bifurcations of limit cycles lead to large amplitude stable oscillations with sudden
onset. The vertical �red� line denotes the value of �e �=0.80�10−3� used in �b�. �b� Numerical solution to the dimensionless ODEs at Pee

=548.066 and �e=0.80�10−3, marked by the vertical �red� line in �a�. Dimensional he is plotted as a function of dimensional time t. The
oscillations in he occur at a frequency near 7.5 Hz and are stable to perturbations.
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that in Fig. 3�a�; the black and color curves correspond to the
uncontrolled and controlled dynamics, respectively. We de-
note the Hopf bifurcations with asterisks; the values of the
Hopf bifurcations are identical in Figs. 3�a� and 3�b�. We find
that for negative gains of small magnitude both Hopf bifur-
cations are subcritical; the limit cycles born in these Hopf
bifurcations are unstable. At a=−0.5 �the orange curve�, the
left Hopf bifurcation at �e=0.32�10−3 is supercritical, and
the right Hopf bifurcation at �e=0.83�10−3 remains sub-
critical. We find, but do not show here, that this change from
a subcritical Hopf bifurcation to a supercritical Hopf bifur-
cation results from a co-dimension two Bautin bifurcation
�34�.

The stabilities of the limit cycles born in the two Hopf
bifurcations are preserved for more negative gains. For a=
−1.86 �the blue curve�, the two Hopf bifurcations are close in
both he and �e, and the amplitudes of the limit cycles are
small. Finally, for a=−1.96 we find that neither the subcriti-
cal nor supercritical Hopf bifurcations remain. The transition

between the state with two Hopf bifurcations �as for a=
−1.86� and no Hopf bifurcations �as for a=−1.96� can be
quite involved �see, for example, Fig. 4.6 of Ref. �35�.� Here
we are not concerned with the details of this transition. In-
stead, our goal is more practical and modest: the elimination
of seizure-like oscillations from the dynamics. Because no
Hopf bifurcations remain, we cannot plot a purple curve �a
=−1.96� in Fig. 3�b�.

Our goal in implementing the feedback controller is to
eliminate large amplitude oscillations in he �i.e., seizures�
from the model dynamics. We may use the results shown in
Figs. 3�a� and 3�b� to suggest how we might achieve this
goal. We found that for negative gains with small magnitude
the two Hopf bifurcations separate in �e. As we make the
gain more negative, the two Hopf bifurcations approach and
eventually disappear. Thus, for values of the gain a�−1.96,
we expect no large amplitude oscillations in he. To show how
the controller effects the dynamics, we compute a numerical
solution to �A1� with �A1a� replaced by �1�. Here we use the

TABLE III. Glossary of relevant bifurcations.

Bifurcation name Definition Illustration

Bautin bifurcation A codimension two bifurcation in which a
saddle-node of limit cycles and a subcritical Hopf
bifurcation meet tangentially.

Fig. 1.13 of Ref. �14�.

Hopf bifurcation A bifurcation of a fixed point of a vector field
that gives rise to a unique periodic orbit �47�.
Here, when the branch of periodic orbits is stable
�unstable� we call the Hopf bifurcation
supercritical �subcritical�.

Fig. 20.2.1 of Ref. �47�.
Fig. 12 of Ref. �33�.

subHopf/fold cycle a series of bifurcations in which the rest state
loses stability via a subcritical Hopf bifurcation.
The unstable limit cycle born in this Hopf
bifurcation stabilizes in a saddle-node bifurcation
of limit cycles. The limit cycle attractor
disappears via another saddle-node bifurcation of
limit cycles.

Fig. 1.8 of Ref. �14�.

FIG. 3. �Color online� Bifurcation diagrams for the uncontrolled and controlled dynamics with pathological hyper-excitation �Pee

=548.066�. �a� The parameter �e is varied and the stable fixed points �solid curves�, unstable fixed points �dashed curves�, and Hopf
bifurcations �asterisks� in he are shown. �b� The Hopf bifurcations �asterisks� and maxima and minima in he achieved during the stable �solid
curves� and unstable �dotted curves� limit cycle oscillations as �e is varied. The legend in both subfigures indicates the color assigned to each
gain a.
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same parameters �Pee=548.066 and �e=0.8�10−3� and al-
gorithm �fourth-order Runge-Kutta with time step 0.4 ms�
we used to create Fig. 2�b�. In that figure, we fixed a=0.0.
Here we set a=−1.96 for 1 s� t�3 s, and a=0.0 otherwise.
We plot the results in Fig. 4. Initially, in the uncontrolled
state, he undergoes large amplitude oscillations. At t=1 s, we
turn on the controller and within 0.2 s the oscillations cease
and he approaches a stable fixed point. When we turn off the
controller at t=3 s, oscillations in he immediately develop.
We note that Gluckman et al. find a similar seizure-after-
release affect in their experimental work on rat hippocampal
slices �9�.

With the simple linear feedback controller, we cannot
avoid the seizure-after-release phenomenon. Upon changing
from the controlled �e.g., a=−1.96� to the uncontrolled �a

=0.0� dynamics, the bifurcation diagram reverts to that
shown in Fig. 2�a�. Because we have kept the parameters
Pee=548.066 and �e=0.8�10−3 fixed, he becomes entrained
by the large amplitude, stable limit limit cycle shown in Fig.
2�b�. To eliminate the seizure-after-release phenomenon, we
could change one of these parameters before returning to the
uncontrolled state. For example, we could increase �e from
0.8�10−3 to 1.3�10−3 while the controller was active.
Then, upon disabling the controller, he would approach a
stable fixed point instead of entering a stable limit cycle. We
discuss this mechanism further in Sec. VII. In the next sec-
tion, we set Pee to the typical value of 11.0 and show how
the controller affects the model dynamics.

B. The case of normal excitation Pee=11.0

In Sec. III A, we showed that the linear controller can
eliminate oscillations in the model variable he. To induce
these oscillations, we increased the parameter Pee to nearly
fifty times its normal value �i.e., we set Pee=548.066�. We
now set Pee to its typical value �Pee=11.0� and show how the
controller affects the normal model dynamics. This case is of
practical importance; should the controller incorrectly acti-
vate during normal brain activity, it must not induce a sei-
zure.

To start, we fix Pee=11.0 and compute bifurcation dia-
grams of �A1� with �A1a� replaced by �1�. In Fig. 5�a� we
plot the stable �solid curves� and unstable �dashed curves�
fixed points and Hopf bifurcations �asterisks� for five values
of the gain a. We denote the values of a as follows: black
a=0.0, red a=−0.3, orange a=−1.0, light-green a=−1.96,
and purple a=−2.2. We note that the color scheme in Figs.
3�a� and 5�a� are different. For a=0.0 we find only one Hopf
bifurcation at �e=1.21�10−3. At a=−0.3 a second Hopf bi-
furcation appears at �e=2.07�10−3. As we make the gain a
more negative �to −1.0 and −1.96�, we find that the two Hopf
bifurcations approach in �e and that neither Hopf bifurcation
remains near a=−2.2.

The Hopf bifurcations shown in Fig. 5�a� affect the dy-
namics differently. To illustrate these effects, we plot in Fig.

FIG. 4. Numerical solution to the dimensionless ODEs with the
applied linear controller. We set parameters to the pathological val-
ues Pee=548.066, �e=0.80�10−3, and the controller gain a=
−1.96 for 1 s� t�3 s, and a=0.0 otherwise. We plot dimensional
he as a function of dimensional time t. At t=1 s �indicated by the
left vertical dashed line� the active controller rapidly terminates the
oscillations in he. At t=3 s �indicated by the right vertical dashed
line� the controller becomes inactive and oscillations immediately
develop.

FIG. 5. �Color online� Bifurcation diagrams for the uncontrolled and controlled normal �Pee=11.0� dynamics. �a� The parameter �e is
varied and the stable fixed points �solid curves�, unstable fixed points �dashed curves�, and Hopf bifurcations �asterisks� in he are shown. �b�
The Hopf bifurcations �asterisks� and maxima and minima in he achieved during the stable �solid curves� and unstable �dotted curves� limit
cycle oscillations as �e is varied. The legend in both subfigures indicates the color assigned to each gain a.
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5�b� the maxima and minima achieved by he during stable
�solid curves� and unstable �dotted curves� limit cycles. For
a=0.0, the Hopf bifurcation is supercritical. The unstable
limit cycle born in this Hopf bifurcation increases in ampli-
tude, and immediately intersects the branch of unstable fixed
points in he. This transition is so abrupt that we cannot show
the unstable limit cycle branch in Fig. 5�b�. The resulting low
amplitude, transient oscillations in he do not mimic the large
amplitude, persistent oscillations we observe in ECoG data
recorded during seizure. Thus we do not require that the
controller eliminate this low amplitude, oscillatory behavior
and its subsequent transition to a stable fixed point.

With this understanding of the uncontrolled �a=0.0� dy-
namics, we now consider the controlled behavior. For
a=−0.3 we find two Hopf bifurcations, one at �e=1.13
�10−3—near the Hopf bifurcation found for the a=0.0
case—and the other at �e=2.07�10−3. Both Hopf bifurca-
tions are subcritical and produce unstable limit cycles. The
limit cycles increase in amplitude and intersect the curve of
unstable fixed points. To illustrate this behavior, we show in
Fig. 6 the complete bifurcation diagram for gain a=−0.3. We
note that the �red� curves in this figure correspond to the
�red� curves shown in Figs. 5�a� and 5�b�. The Hopf bifurca-
tions give rise to unstable limit cycles. The amplitudes and
periods of the oscillations �dotted curves� increase until the
limit cycles reach the branch of unstable fixed points �dashed
curves� near �e=1.25�10−3 and �e=2.02�10−3. At these
intersections the oscillations in he cease, and he approaches a
stable fixed point. Thus for small negative gains the con-
trolled dynamics enter unstable, low amplitude limit cycles,
not the high amplitude, stable limit cycles characteristic of a
seizure. As we decrease the magnitude of a further we find,
but do not show, that the Hopf bifurcation with a lower value
of he undergoes a Bautin bifurcation near a=−0.75. Then the
stable limit cycles born in the supercritical Hopf bifurcations

undergo a saddle-node bifurcation of limit cycles with the
unstable limit cycles born in the subcritical Hopf bifurcation.
We illustrate this limit cycle behavior in Fig. 5�b� for a=
−1.0 and a=−1.96. We note that with gain a=−1.96 the con-
troller successfully terminates seizures in the hyper-excited
�Pee=548.066� model cortex as we show in Fig. 4. Unfortu-
nately, the same controller and gain induces large amplitude,
stable oscillations in he characteristic of seizures for Pee

=11.0—the typical value of subcortical excitation.
We now summarize how the Hopf bifurcations depend on

the gain a and parameter �e for Pee=11.0 �the typical value.�
At a=0.0, we find only one Hopf bifurcation at �e=1.21
�10−3. As we make a more negative we find a second Hopf
bifurcation near a=−0.3. This Hopf bifurcation undergoes a
Bautin bifurcation at a=−0.75 and the limit cycle stabilizes.
The supercritical and subcritical Hopf bifurcations approach
as we make a more negative and at a=−2.15 no Hopf bifur-
cations remain.

We have shown in Sec. III A that with gain a=−1.96, the
controller eliminates seizures from the hyper-excited �Pee

=548.066� model cortex. Unfortunately, the same controller
induces seizures in the model cortex with typical excitation
�Pee=11.0�. We do not consider such a controller successful.
Should the controller activate during near-normal activity—
requiring a 40% decrease in the typical value of �e—the
controller may induce a seizure. To avoid this unwanted be-
havior, we set the gain a=−2.4. At this gain, we do not
expect to find any Hopf bifurcations in the hyper-excited or
typical dynamics. To verify this result, we compute numeri-
cal solutions to the dimensionless ODEs for 11.0� Pee
�1000.0, 0.02�10−3��e�1.3�10−3, and a=0.0, a=
−1.96, and a=−2.2. We use the fourth-order Runge-Kutta
method with a �dimensional� time step of 0.4 ms. We then
determine the difference between the maximum and mini-
mum achieved by the solution he after transient behavior has
decayed. If he approaches a fixed point, then the maximum
and minimum are nearly equal and their difference ap-
proaches zero. But, if he is entrained by a limit cycle then the
difference between the maximum and minimum achieved by
he is nonzero. In Fig. 7�a� we fix a=0.0 and plot the differ-
ence between the maximum and minimum achieved by he as
a function of the parameters Pee and �e. Here white repre-
sents a 0 mV difference and purple �or black� a 50 mV dif-
ference. We find that oscillations in he �represented by the
color �or dark� regions in Fig. 7�a�� extend over a broad
range of parameter values beginning near Pee=250.0 and
�e=1.3�10−3. These regions of oscillatory activity in he il-
lustrate the parameter values at which the uncontrolled di-
mensionless ODEs “seize.” In Fig. 7�b� we show the results
of a similar computation with linear control with gain a=
−1.96. The color scheme is identical to that in Fig. 7�a�. We
note that oscillations develop at smaller values of Pee and �e.
We find, but do not show, that no seizure-like oscillations
occur when we fix the gain a=−2.4. Thus we conclude that
the linear feedback controller with gain a=−2.4 eliminates
seizures in the hyper-excited �Pee�11.0� model cortex and
does not induce seizures in the model cortex with typical
excitation �Pee�11.0�.

FIG. 6. �Color online� Bifurcation diagram for the controlled
dimensionless ODEs at Pee=11.0 and gain a=−0.3. The parameter
�e is varied and the stable �solid curves� and unstable �dashed
curves� fixed points in he are shown. The asterisks denote the two
Hopf bifurcations. The dotted curves denote the maximum and
minimum values of he achieved during the unstable limit cycles.
Both unstable limit cycles intersect the curve of unstable fixed
points and terminate in a catastrophic event. The bifurcation dia-
gram in this figure corresponds to red curves shown in Figs. 5�a�
and 5�b�.
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IV. DIFFERENTIAL CONTROLLER

We have shown in Sec. III how we can use a feedback
controller linear in he to halt seizures in the model cortex.
Although successful in the model, the linear controller would
fail in practice. To prevent tissue damage a controller should
inject charge balanced currents �e.g., the biphasic pulses dis-
cussed in Sec. I� into the cortex �36�. The linear controller
we discuss in Sec. III violates this important restriction. In-
stead, with a=−1.96, say, the active controller establishes a
constant voltage across the cortical tissue. We show an ex-
ample of this in Fig. 4. For 1 s� t�3 s, the controller main-
tains he at −51 mV and, therefore, establishes a constant

voltage of ah̃e= �−1.96�� �−51 mV�=100 mV across the
cortical tissue. This constant voltage requires a constant—not
a charge balanced—continuous, current. In practice, the con-
stant current produced by the linear controller would create
unacceptable damage to cortical tissue �36�.

To implement a controller that avoids damaging cortical
tissue, we consider a differential controller. In �13�, the au-
thors apply a differential controller to a population of neu-
rons interacting through global coupling. They find that, once
initiated, the controller rapidly suppresses synchronous activ-
ity and decays to the noise level. We note that in Fig. 3 of
Ref. �13� the controller value appears to oscillate around zero
and is suggestive of a charge balanced intervention.

To apply a differential controller to �A1�, we set �A1a� to:

�h̃e�t�

�t̃
= 1 − h̃e�t� + �e�he

0 − h̃e�t��Ĩee�t� + �i�hi
0 − h̃e�t��Ĩie�t�

+ b�h̃e�t� − h̃e�t − ��� . �2�

Here we explicitly state the time dependence in square
brackets following each variable. The last term on the right
hand side of �2� represents the controller; b denotes the con-
troller gain, and � the delay time. By introducing the differ-
ential controller, we change the system of ODEs in �A1� into
a system of delay differential equations �DDEs�. One may
compute bifurcation diagrams for the DDEs �see, for ex-

ample, �37�� but we will not do so here. Instead we compute
numerical solutions and response diagrams to the DDEs and
show how the differential controller affects the dynamics.
We will show that the differential controller can stop the
model dynamics from seizing with minimal net intervention.

We start by computing a numerical solution to �A1� with
�A1a� replaced by �2�. We fix the model parameters to the
typical values except for Pee and �e which we set to the
pathological values: Pee=548.066 and �e=0.80�10−3. We
fix the delay time of the controller �=20 ms and vary the
gain b as follows: For 1 s� t�3 s we set b=−10.0; other-
wise b=0.0. We choose this value of � from the range
18 ms���36 ms we have found through numerical simu-
lation to halt seizure-like oscillations in the dynamics. We
note that this range depends on the gain b. We compute the
numerical solution using a fourth order Runge-Kutta method
with time step of 0.4 ms and show the results in Fig. 8. We
plot in the lower curve the model results for the dimensional
he, and in the upper curve the value of the controller �i.e., the
last term on the right hand side of �2��. For t�1 s, the con-
troller is inactive and the model “seizes.” At t=1 s we acti-
vate the differential controller and its voltage quickly in-
creases to a maximum value of 190 mV �outside of the range
shown in this figure�. The controller halts the seizure and,
within one second, he approaches a fixed point. Soon after-
ward, the applied voltage delivered by the controller ap-
proaches zero, but continues to act weakly on the dynamics.
Upon deactivating the controller at t=3 s, he drifts from the
steady value and becomes entrained in the limit cycle behav-
ior characteristic of the seizure-after-release effect.

We have shown in Fig. 8 that the differential controller
with delay �=20 ms and gain b=−10.0 can halt seizures in
the model cortex. We now consider response diagrams for
the controlled dynamics with different values of the gain b.
To compute each response diagram, we fix the parameters at
the typical values except for Pee=548.066 �the pathological
value� and �e chosen from the range 0.3�10−3��e�1.3
�10−3. For each value of �e we solve the dimensionless
DDEs using a fourth-order Runge-Kutta method with time
step of 0.4 ms and total time of 1600 ms. We then compute

FIG. 7. �Color online� The difference between the maximum and minimum achieved by �the dimensional� he in solutions of the
dimensionless ODEs for parameters Pee and �e. The difference is plotted in a linear color �gray� scale with white representing a 0 mV
difference and purple �black� representing a 50 mV difference. �a� Gain a=0.0, the uncontrolled system. The dark region corresponds to
stable “seizure” oscillations of he and broadens as Pee is increased. �b� Gain a=−1.96. Stable “seizure” oscillations in he occur for Pee

�11.0 �the typical value of Pee� but at lower than the typical value of �e.
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the maximum and minimum achieved by he during the last
400 ms of the solution. If the dynamics approach a fixed
point, then the maximum and minimum of he are equal. Oth-
erwise, �e.g., if the dynamics enter a limit cycle� then the
maximum and minimum are unequal. We repeat this compu-
tation for different values �e that deviate from the current
value by 0.01�10−3. We note that the response diagram is
similar to the bifurcation diagrams shown in Sec. III. An
important difference is that, in the response diagrams, we can
only show stable �not unstable� fixed points and limit cycles.

We show the response diagrams in Fig. 9. We plot in
black the response diagram for the uncontrolled �b=0.0� dy-
namics. Where the maximum and minimum of he are equal,
we plot black solid curves; otherwise we plot dot-dash
curves. Here we find two curves of stable fixed points �the
black, solid curves� and two curves of stable oscillations �the
black, dot-dash curves of largest and smallest amplitudes�.
The stable oscillations occur for 0.65�10−3��e�1.15
�10−3. We note the similarity between the black curves
shown in this response diagram and the stable fixed points
and limit cycles shown in Fig. 2�a�. As we decrease the gain
b to −2.5 �the red curves� and −5.0 �the light green curves�
we find that the stable oscillations—represented by the dot-
dash curves—decrease in amplitude, and that the branches of
stable fixed points extend over more of �e. We note that the
curves of stable fixed points are nearly identical in he
throughout the regions of overlap in �e. At b=−10.0 �the
blue curves� we find no stable oscillations in the dynamics;
we only find two curves of stable fixed points. We conclude
that the differential controller with delay time �=20 ms and
gain b=−10.0 can prevent seizure-like oscillations in the
model cortex with pathological hyper-excitation �Pee

=548.066�.
To show that the differential controller is robust to

changes in the model parameters Pee and �e, we compute

two numerical solutions to the dimensionless DDEs over the
parameters 11.0� Pee�1000.0 and 0.3�10−3��e�1.3
�10−3. In the first solution, we fix the delay time of the
differential controller �=20 ms and the gain b=−5.0. We
then follow the same procedure and implement the same
color scale as we used to create Figs. 7�a� and 7�b�. We have
shown the uncontrolled dynamics �b=0.0� in Fig. 7�a�, and
found that oscillatory activity �denoted by the color �or dark�
regions� extends over a wide range of parameter space. In
Fig. 10 we show the results for the controlled dynamics with
gain b=−5.0. We find that oscillations remain over the same
region of parameter space, although with lower amplitude.

FIG. 8. Numerical solution to the dimensionless DDEs with the
applied differential controller. We set parameters to the pathological
values Pee=548.066, �e=0.80�10−3, and the controller gain b=
−10.0 for 1 s� t�3 s, and b=0.0 otherwise. We plot the model
results for dimensional he as a function of dimensional time t in the
lower curve. We plot the dimensional value of the differential con-
troller in the upper curve. At t=1 s �indicated by the left vertical
dashed line� the active controller rapidly terminates the oscillations
in he. At t=3 s �indicated by the right vertical dashed line� the
controller becomes inactive and oscillations soon return.

FIG. 9. �Color online� Response diagrams for the uncontrolled
and differential controlled dynamics with pathological hyper-
excitation �Pee=548.066�. The parameter �e is varied and the stable
fixed points �solid curves� and stable limit cycles �dot-dash curves�
are shown. The legend indicates the color assigned to each gain b.
We note that the curves of stable fixed points are nearly identical
throughout the region of overlap in �e.

FIG. 10. �Color online� The difference between the maximum
and minimum achieved by �the dimensional� he in solutions of the
dimensionless DDEs for parameters Pee and �e. For the differential
controller we set the delay time �=20 ms and gain b=−5.0. The
difference is plotted in a linear color �gray� scale with white repre-
senting a 0 mV difference and purple �black� representing a 50 mV
difference. The stable “seizure” oscillations of he broaden as Pee is
increased. No seizures are found over this range of parameters if
b=−10.0.
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For b=−10.0, we find no oscillations in he for any values of
Pee and �e.

We have shown that the differential controller, like the
linear controller, can halt seizures in the model cortex over a
wide range of parameter values. The differential controller
provides two important improvements to the linear control-
ler. First, the applied voltage delivered by the differential
controller quickly approaches zero. After he achieves the
stable value �near −60 mV in Fig. 8� the controller may re-
main active with only minimal effect on the tissue. Second,
the applied voltage delivered by the differential controller
fluctuates around zero. For the results shown in Fig. 8, the
net voltage applied by the controller is 14 mV. This voltage
is much smaller—and much less damaging to cortical
tissue—than that delivered by the linear controller. Here we
have only considered a cursory exploration of the differential
controller parameters �delay time � and gain b.� A more de-
tailed analysis may reveal a set of optimal parameters that
further improve the differential controller over the linear
controller. In the next section we consider a third type of
controller: a filter controller.

V. FILTER CONTROLLER

The third strategy we employ to halt seizures in the model

cortex is the application of a filter controller in h̃e. In this
case, the form of �A1a� becomes,

�h̃e

�t̃
= 1 − h̃e + �e�he

0 − h̃e�Ĩee + �i�hi
0 − h̃e�Ĩie + ch̃filtered.

�3�

Here c is the controller gain, and h̃filtered is the result of send-

ing h̃e through a notch filter to remove the large amplitude
oscillations from the signal. The maximum attenuation of
this frequency-based filter occurs at 6.75 Hz, near the natural

frequency of the large amplitude oscillations that occur in h̃e,
which we identify with seizures. Frequencies much higher or
lower than this value are not affected by the filter.

In this section, we analyze the effects of the filter control-
ler in the same way we analyzed the differential controller in
Sec. IV. Specifically, we compute numerical solutions to
�A1� with �A1a� replaced by �3� for Pee=548.066 and Pee
=11.0. We show that the filter controller can prevent seizure-
like oscillations in the model dynamics for a specific value of
the gain. We determine response diagrams in �e for different
gain values and both values of Pee, and illustrate the values
of Pee and �e at which seizure-like oscillations occur.

To begin our analysis, we compute a numerical solution to
the 14 dimensionless ODEs with the applied frequency-
based filter controller. We fix two parameters at the values
for pathological behavior: Pee=548.066 and �e=0.8�10−3,
and all other parameters at the typical values. We set the
controller gain c=0.75 and we apply the filter controller in
the SIMULINK software package of MATLAB using a positive
unity feedback loop �38�. In this simulation, we turn the
controller on and off at t=1 s and t=3 s, respectively.

We show the results of one of these simulations in Fig. 11.
In the upper subplot we show c ·hfiltered—the �dimensional�

output of the filter controller—which would act as the volt-
age input to the brain. In the lower subplot, we show the
dynamics of �dimensional� he. We find that he initially de-
creases rapidly, as if oscillations are going to occur. How-
ever, the magnitude of the controller output steadily in-
creases and prevents the oscillatory activity. Both the
controller output and he reach steady values within approxi-
mately 1 s. When we turn off the controller at t=3 s, the
seizing behavior immediately returns.

We conclude that the filter controller with gain c=0.75
can prevent seizure-like oscillations in the model. We now
explore the effects of the controller for different values of the
gain. As in Sec. IV, we create a response diagram to show the
maximum and minimum values achieved by he after tran-
sients decay in the numerical solution. We show the response
diagram for Pee=548.066 and 0.2�10−3��e�1.6�10−3 in
Fig. 12. As we increase the controller gain from c=0.15 �the
red curves� to c=0.3 �the green curves�, the lower branch of
stable fixed points decreases in he, while the upper branch
remains nearly the same for all values of the gain. We also
find that the maximum values achieved by the stable oscilla-
tions decrease as the gain increases, while the minimum val-
ues remain nearly unaffected. For c=0.75, we find two
branches of stable fixed points and no stable oscillations.
Thus we conclude that the filter controller with c=0.75 suc-
cessfully prevents large amplitude, seizure-like oscillations
from occurring in the dynamics.

Having shown that the filter controller can prevent
seizure-like oscillations in the hyper-excited model �Pee

=548.066�, we also consider the dynamics of the controlled
system when Pee is at a typical value �Pee=11.0�. We find
�but do not show� that no stable oscillations occur for any
value of the gain. Therefore, we conclude that the filter con-

FIG. 11. �Color online� Numerical solution to the dimensionless
ODEs with the applied filter controller. The parameters are set to
their pathological values: Pee=548.066 and �e=0.80�10−3. The
controller turns on at t=1 s with a gain of c=0.75, and it turns off
at t=3 s. We indicate the interval of active control with two vertical
dashed lines. The upper plot shows the dimensional value of the
filter controller, while the lower plot displays the dimensional he as
affected by the filter controller.
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troller does not induce seizure-like oscillations when the pa-
rameters are in the normal operating ranges.

Finally, to characterize how the values of Pee and �e af-
fect the controlled system, we compute a difference plot in
the same way we computed those shown in Fig. 7 for the
linear controller and Fig. 10 for the differential controller. In
Fig. 13 we show the difference between the maximum and
minimum values achieved by he for different values of Pee
and �e for the controlled dynamics with gain c=0.6. We use
the same color scheme as that applied in the previous differ-
ence plots. Comparing this figure to the uncontrolled system

�Fig. 7�a��, we find that the region of oscillatory behavior has
the same shape in both cases. However, as we increase the
gain of the filter controller, we find that the region of oscil-
lations shrinks and moves toward higher values of Pee. When
the gain is high enough �c=0.75� we find no oscillatory be-
havior in he.

We have shown that the filter controller can halt seizure-
like oscillations in the model cortex. This method may not be
useful in practice, however, because it relies on sending a
voltage to the brain that constantly increases over a few sec-
onds. This could damage brain tissue—the input current is
not charge balanced. On the other hand, the signal from the
controller, c ·hfiltered, changes gradually and has a relatively
low maximum magnitude. The highest magnitude achieved
by the filter controller is roughly 60 mV, while the differen-
tial controller �shown in Fig. 8� undergoes a large increase to
190 mV at its onset. We note that in the examples considered
here the effect of the filter controller is to hyperpolarize he.
As suggested by an anonymous referee, the controller re-
moves the dominant seizure frequency from he and inputs the
residual to the dynamics; in this case a constant, negative
voltage—as shown in the top of Fig. 11—dominates the re-
sidual input. We find, but do not show, that for negative gains
of large magnitude �e.g., c=−5� the filter controller also suc-
cessfully halts seizure-like oscillations in the model dynam-
ics.

VI. CONTROL OF STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS

We have shown in Secs. III–V how three different con-
trollers can terminate seizure-like oscillations of the model
equations �A1�. We chose this system of ODEs as a simpli-
fication of the complete mathematical model described in
�22�. In this section we include the spatial dependence and
stochastic input of the model and apply the differential con-
troller �described in Sec. IV� to the complete system. Spe-
cifically, we replace �A1� with the system of stochastic par-
tial differential equations �SPDEs�:

�h̃e

�t̃
= 1 − h̃e + �e�he

0 − h̃e�Ĩee + �i�hi
0 − h̃e�Ĩie + b�h̃e�t�

− h̃e�t − ��� �4a�

�h̃i

�t̃
= 1 − h̃i + �e�he

0 − h̃i�Ĩei + �i�hi
0 − h̃i�Ĩii �4b�

�Ĩee

�t̃
= J̃ee �4c�

�J̃ee

�t̃
= − 2TeJ̃ee − Te

2Ĩee + Te
2�Ne

�S̃e�h̃e� + �̃e + Pee + �̃1�

�4d�

�Ĩei

�t̃
= J̃ei �4e�

FIG. 12. �Color online� Response diagrams for the uncontrolled
and filter controlled dynamics with pathological hyper-excitation
�Pee=548.066�. In these plots, we vary �e and determine the stable
fixed points �solid curves� and stable limit cycles �dotted curves� at
each value. The legend indicates the color assigned to each gain c.

FIG. 13. �Color online� The difference between the maximum
and minimum achieved by �the dimensional� he in solutions of the
dimensionless ODEs with applied filter control for parameters Pee

and �e. The difference is plotted in a linear color �gray� scale with
white representing a 0 mV difference and purple �black� represent-
ing a 50 mV difference. Gain c=0.6 for the filter controller. The
dark region corresponds to stable “seizure” oscillations of he and
broadens as Pee is increased. An increase in c to 0.75 eliminates the
seizure region entirely over this range of parameters.
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�J̃ei

�t̃
= − 2TeJ̃ei − Te

2Ĩei + Te
2�Ne
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�Ĩii

�t̃
= J̃ii �4i�

�J̃ii

�t̃
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2�̃e + 	eNe

��S̃e�h̃e�

�t̃
+ 	e

2Ne
�S̃e�h̃e�

�4l�

��̃i

�t̃
= �̃i �4m�

��̃i

�t̃
=

�2�̃i

�x̃2 − 2	i�̃i − 	i
2�̃i + 	iNi

��S̃e�h̃e�

�t̃
+ 	i

2Ni
�S̃e�h̃e� .

�4n�

Here, the �dimensionless� variables and parameters are now
functions of �dimensionless� time t̃ and �dimensionless�
space x̃, where x̃=x / ��v̄� in terms of the dimensional vari-
ables of �21�. The complete system of SPDEs in �4� differs
from the simplified system of ODEs in �A1� in three ways.
First, we include the differential controller �with gain b and
delay time �� as the last term on the right hand side of �4a�.
Second, we introduce the second-order spatial derivatives as
the first terms on the right hand sides of �4l� and �4n�. Third,
we include the dimensionless stochastic input terms:

�̃1 = �ee
�Pee�1�x̃, t̃� �5a�

�̃2 = �ei
�Pei�2�x̃, t̃� �5b�

�̃3 = �ie
�Pie�3�x̃, t̃� �5c�

�̃4 = �ii
�Pii�4�x̃, t̃� , �5d�

in �4d�, �4f�, �4h�, and �4j�. These terms represent the noise
that arises from subcortical inputs to the cortex. Here the �k

are Gaussian distributed white noise sources with zero mean
and �-function correlations. In numerical simulations we ap-
proximate �k as,

�k�x̃, t̃� =
R�m,n�
��x̃�t̃

, �6�

where x̃=m�x̃ and t̃=n�t̃ �m ,n integers� specify space and
time coordinates on a lattice with �dimensionless� grid spac-
ings, �x̃ and �t̃, respectively. We set �ee=�ei=�ie=�ii=� as
in the stochastic simulations of the spatioadiabatic one-
dimensional cortex in �21,22�. In the simulation that follows,
we fix �=0.001.

We now compute a numerical solution to �4�. To do so,
we fix all of the parameters at the typical values except for
�e and Pee. We set �e=0.8�10−3 uniform in space, and Pee
Gaussian in space with a maximum of 548.066 at x
=350 mm, a full width at half maximum of 46 mm, and a
minimum of 11.0. We choose this Gaussian profile for Pee to
construct a region of hyper-excitation localized in space; we
think of this region as the location of seizure manifestation
on the cortex. We set the controller delay time to �=20 ms
and the gain b to be Gaussian in space with a minimum b0 at
x=350 mm, a full width at half minimum of 46 mm, and a
maximum of b=0.0. We vary the minimum of the gain b0 as
follows: b0=−10.0 for 500 ms� t�1000 ms, and b0=0.0
otherwise. We note that the controller is only active for
500 ms� t�1000 ms. We compute numerical solutions to
�4� using the Euler-Maruyama algorithm with fixed steps in
space and time, 14 and 0.1 ms, respectively, and boundary
conditions periodic in space �39�.

We show the results in Fig. 14. Here we plot the �dimen-
sional� value of he in linear gray scale, with white represent-
ing −100 mV and black representing 0.0 mV, as a function
of �dimensional� space and time. For t�500 ms, we find that
waves—represented by the dark ridges—emanate from the
region of hyper-excitation at x=350 mm. These waves travel
outward to less excited �Pee�11.0� spatial regions and there
decay. We showed in �22� that the speed and temporal fre-
quency of these waves agree with observed ECoG data re-
corded from a human subject during seizure. At t=500 ms,
we activate the controller. Almost immediately, the traveling
wave solutions cease and he fluctuates around a stable value
at each point in space. During the time interval of active
control, the mean and standard deviation of he at x
=350 mm are −70 and 2 mV, respectively. We note that at
the typical parameter values ��e=1.42�10−3 and Pee=11.0�
we find in numerical solutions to �4� with b=0.0 a mean and
standard deviation of he of −51.9 and 0.6 mV, respectively.
At t=1000 ms, we deactivate the controller and the traveling
wave solutions reappear.

We conclude that the differential controller can abort sei-
zures in the complete system of SPDEs �4�. Here we only
consider one instance of the dimensionless SPDEs, with Pee
and b both Gaussian in space. We find that the controller
halts the traveling waves in he characteristic of a seizure.
Like the controlled ODEs, the controlled SPDEs exhibit the
seizure-after-release effect. Upon deactivation of the control-
ler at t=1000 ms, the traveling wave solutions develop. To
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avoid this effect, we suggest that a more effective controller
would manipulate an additional model parameter �e.g., in-
crease �e or decrease Pee� before returning to the uncon-
trolled b=0.0 state.

An analysis of the SPDEs model more relevant to obser-
vational data would include a second spatial dimension. We
have found �but do not show here� that for pathological pa-
rameter values of �e and Pee complicated spatial patterns
�e.g., spirals� may form on the two-dimensional cortical
plane. We have not attempted to compare these patterns with
human ECoG data; to do so would require high density spa-
tial sampling, such as optical imaging �40�. We anticipate
that the controller schemes we consider here in one spatial
dimension will succeed in two spatial dimensions as well.

VII. DISCUSSION

In this work, we considered a mathematical model of hu-
man cortical electrical activity. We showed how to make the
model seize, and explored three methods for controlling the
large amplitude, stable “seizure” oscillations in he. In Sec. III
we applied a linear feedback controller to the model. We
showed that with a gain of a=−2.4 the controller prevented
seizures in the hyper-excited cortex �Pee�11.0� and did not
induce seizures in the typical cortex �Pee�11.0.� Unfortu-
nately, the linear controller failed in one important aspect of
practical importance: the linear controller established a large
net voltage across the cortex. To correct for this, we applied

a differential controller to the model in Sec. IV. We showed
that the differential controller can also halt seizures in the
hyper-excited cortex and established only a small net voltage
across the cortex. In Sec. V we applied a filter controller to
the model dynamics. We found that this controller could halt
seizures in the hyper-excited cortex and delivered a maxi-
mum voltage smaller in magnitude than that delivered by the
differential controller. Finally, in Sec. VI we applied the dif-
ferential controller to an example of the SPDEs. We showed
that the controller can abort the traveling waves of excitation
characteristic of seizures in the complete model.

In our discussions of Figs. 4, 8, and 11 we noted that upon
cessation of the linear and differential controllers seizures
soon developed. Therefore, the controller must continually
act on the system to prevent the seizure from occurring. Such
a controller would require a large power source. Moreover
prolonged voltage control, even at low voltages, may dam-
age the cortex �36�. To prevent �not just temporarily halt� a
seizure, the controller must affect another model parameter.
We showed in �22� that seizures occur in the model after a
change in two parameters: Pee and �e. A successful strategy
employing linear feedback control would allow the controller
to also effect Pee. To prevent a seizure, this new controller
would first activate the voltage feedback controller and then
slowly decrease Pee until the dynamics reach a safe range
outside of the subHopf/fold cycle bifurcation. This controller
operating on he and Pee would avoid the seizure-after-release
effect.

These results lead us to propose an implantable seizure
control device acting via two mechanisms. Immediately after
seizure initiation, a voltage controller activates and tempo-
rarily halts the seizure. A chemical controller then activates
and injects a drug either systemically or locally, into the
brain. After the drugs take effect—perhaps a few minutes
later—the voltage controller may be relaxed without induc-
ing a seizure. We suggest that the effect of the voltage con-
troller is an immediate arrest of the seizure, while the effect
of the second, chemical controller is prevention of seizure-
after-release. If the action of the chemical controller is tem-
porary �i.e., it produces a temporary decrease in Pee� then we
expect the seizure to return as the effect of the drugs dimin-
ishes. To prevent the seizure the drugs must create a stable,
semi-permanent change �i.e., a semi-permanent decrease in
Pee� such as the post-ictal cortical state. We will discuss the
relationships between chemical interventions and the model
parameters in a future manuscript �29�.

We have not considered several important practical issues
in developing BES methods. First, to apply responsive corti-
cal BES one must detect a seizure. An optimal seizure detec-
tion algorithm is an important and unresolved research topic
�41,42�. Second, the dimensionless ODEs are not an exact
model of human cortical electrical activity. Finding an ad-
equate controller for the model is, of course, not enough to
justify clinical experiments. By changing the model param-
eters, one may develop a mesoscale model for electrical ac-
tivity in, say, rat cortex where model results may be more
readily tested �43�. Finally, we have not considered whether
the electrical stimulation induced by the three controllers
will damage cortical tissue. To do so approximately, we as-
sume: a uniform cortical conductivity of 0.15 s /m �44�, a

FIG. 14. Numerical solution to the controlled dimensionless SP-
DEs with parameters: �e=0.8�10−3, �=0.001, and Pee and b both
Gaussian functions in space, each with an extremum at x
=350 mm and a full width at half the extremum at 46 mm. The
boundary conditions are in periodic in space. Space �in mm� and
time �in ms� are plotted along the horizontal and vertical axes,
respectively. The value of he is plotted in linear grayscale with he

=−100 mV in white and he=0.0 mV in black. For t�500 ms,
waves in he travel outward from the region of hyper-excitation near
x=350 mm. At t=500 ms �indicated by a horizontal dashed line�
we activate the differential controller—we set the minimum of the
gain b0=−10.0 and �=20 ms. The traveling waves in he cease until
we deactivate the controller at t=1000 ms �indicated by a horizontal
dashed line�.
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cortical thickness of 5 mm, an applied voltage of 100 mV,
and a pulse duration—here, half the oscillation period—of
0.1 s. Using these assumptions, we calculate an estimate of
the charge per phase injected by the controller of 7.5 �C. If
we further assume that area of the stimulation electrode is
1 cm2 �large enough to cover many cortical columns� then
the charge density—defined as the charge per phase divided
by the electrode surface area—is 7.5 �C/cm2. This combi-
nation of charge per phase and charge density satisfies stimu-
lation induced safety limits �see Fig. 9.1 of Ref. �36� and see
�45�.� To confirm this result a more detailed analysis, perhaps
involving multiple stimulation electrodes and a model of the
human brain, is required �46�.

Many exciting prospects exist for future epilepsy treat-
ments. As seizure detection and localization algorithms im-
prove, therapies may become more localized in both space
and time. Similarly, as brain models improve, more effective
and robust therapies may be developed. In time, mathemati-
cal models may aid in developing an implanted microproces-
sor that would detect cortical seizures and deliver electrical
impulses and drug therapies to specific brain regions.

APPENDIX: MODEL EQUATIONS

We state the dimensionless ODEs in �A1a�–�A1n�. The
system consists of fourteen, first order ODEs, one for each of

the variables �h̃e, h̃i, Ĩee, J̃ee, Ĩei, J̃ei, Ĩie, J̃ie, Ĩii, J̃ii, �̃e, �̃e, �̃i,

and �̃i�. We define the 14 variables in Table I and the 20
parameters in Table II in terms of dimensional quantities.
The interested reader may learn more about the model in
�22� and references therein.

�h̃e

�t̃
= 1 − h̃e + �e�he

0 − h̃e�Ĩee + �i�hi
0 − h̃e�Ĩie �A1a�

�h̃i

�t̃
= 1 − h̃i + �e�he

0 − h̃i�Ĩei + �i�hi
0 − h̃i�Ĩii �A1b�

�Ĩee

�t̃
= J̃ee �A1c�

�J̃ee

�t̃
= − 2TeJ̃ee − Te

2Ĩee + Te
2�Ne

�S̃e�h̃e� + �̃e + Pee�

�A1d�

�Ĩei

�t̃
= J̃ei �A1e�
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�t̃
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2�Ne

�S̃e�h̃e� + �̃i + Pei� �A1f�

�Ĩie

�t̃
= J̃ie �A1g�

�J̃ie

�t̃
= − 2TiJ̃ie − Ti
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2�Ni
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�Ĩii

�t̃
= J̃ii �A1i�
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�t̃
= − 2TiJ̃ii − Ti
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= − 2	e�̃e − 	e

2�̃e + 	eNe
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+ 	e

2Ne
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�A1n�

Here S̃e�h̃e� and S̃i�h̃i� are the dimensionless sigmoid transfer
functions:

S̃e�h̃e� =
1

1 + exp�− g̃e�h̃e − 
̃e��
�A2a�

S̃i�h̃i� =
1

1 + exp�− g̃i�h̃i − 
̃i��
. �A2b�
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