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Review

Epilepsy, the condition of recurrent unprovoked seizures 
resulting from a wide variety of causes, is the world’s 
most prominent serious brain disorder, affecting some 50 
million people worldwide. For an estimated 30% of these 
patients, seizures remain poorly controlled despite maxi-
mal medical management (Duncan and others 2006). 
Moreover, control of epilepsy through medication and 
surgery often results in significant, sometimes debilitat-
ing, side effects. Advancing the therapeutic management 
of epilepsy requires a detailed understanding of the neu-
rophysiological underpinnings that give rise to seizures 
and how seizures are initiated and subsequently spread 
across interconnected brain regions. The majority of 
work in this field has focused on the molecular, anatomi-
cal, and cellular physiological changes involved in the 
development of epilepsy (epileptogenesis) and in the ini-
tiation of seizures (ictogenesis). Until recently, little 
attention had been paid to interactions between activities 
in different brain regions. This type of analysis—focused 
on functional connectivity and resulting network maps—
has expanded enormously in the last 5 years and has 
offered important new perspectives and insights into the 
nature of epilepsy. Research into the network organiza-
tion of seizures has spanned a variety of different model 
systems and data sources, explored the rhythmic nature of 
epileptic activity, and both used and motivated the devel-
opment of innovative analytic techniques. In this review, 

we briefly discuss some of the relevant background infor-
mation on these different aspects of epilepsy, provide a 
short course on network analysis, and then delve more 
deeply into recent findings and implications of network 
investigations in patients with epilepsy.

Overview of Epilepsy and 
Seizures, Rhythms, and Networks
Different Kinds of Seizures and 
Implications for Spatial Characterization 
of Epilepsy

Seizures and epilepsy have traditionally been divided 
into two different types: primary generalized seizures and 
focal seizures. Primary generalized seizures involve all 
of the brain or large portions of the brain at the outset. A 
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Abstract

The brain is naturally considered as a network of interacting elements which, when functioning properly, produces an 
enormous range of dynamic, adaptable behavior. However, when elements of this network fail, pathological changes 
ensue, including epilepsy, one of the most common brain disorders. This review examines some aspects of cortical 
network organization that distinguish epileptic cortex from normal brain as well as the dynamics of network activity 
before and during seizures, focusing primarily on focal seizures. The review is organized around four phases of the 
seizure: the interictal period, onset, propagation, and termination. For each phase, the authors discuss the most common 
rhythmic characteristics of macroscopic brain voltage activity and outline the observed functional network features. 
Although the characteristics of functional networks that support the epileptic seizure remain an area of active research, 
the prevailing trends point to a complex set of network dynamics between, before, and during seizures.
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substantial body of work has indicated that generalized 
seizures likely involve a perturbation in existing thala-
mocortical network interrelationships (for an excellent 
review, see Chang and Lowenstein 2003). Focal seizures, 
in contrast, originate from a circumscribed region of the 
brain and may or may not spread. As implied by the 
name, the focus of the seizure may determine exactly what 
symptoms occur. In addition, localization of the focus can 
be enormously important in trying to understand the 
cause of the disease, the prognosis, and—especially 
when surgical options are considered—targets for ther-
apy. Although the division between these types of seizures 
or epileptic syndromes seems clear, there is mounting evi-
dence that these phenomena exist on a spectrum with 
overlapping or at least related mechanisms.

Sources of Data
Animal models, both in vitro and in vivo, provide power-
ful techniques to address the biophysical mechanisms 
that support the seizure (McCormick and Contreras 
2001) and have been the mainstay of much of the 
research in epilepsy. However, both methods possess 
important qualifications. First, in vitro preparations nec-
essarily remove a brain section from its surrounding 
network. Second, animal models of epilepsy are just 
that—models. A powerful alternative to animal models of 
epilepsy is to study spontaneously occurring seizures in 
vivo from human patients. Although significant work has 
been done based on electroencephalogram (EEG) record-
ings made from the scalp surface of patients with epi-
lepsy, even more detail has been derived from intracranial 
recordings. In some cases of pharmaco-resistant epilepsy 
(when medications fail to prevent seizures), invasive 
electrocorticogram (ECoG) recordings are performed. 
These recordings of voltage activity—directly from the 
brain’s surface or deep brain regions—provide both high 
temporal and spatial resolution as well as adequate brain 
coverage (Fig. 1).

Neuronal Rhythms of Seizures
Understanding the vast quantities of voltage data recorded 
in the ECoG typically requires analysis beyond visual 
inspection. One technique to characterize these activities 
is the quantitative assessment of neuronal rhythms that 
appear during the seizure. Epilepsy is perhaps best char-
acterized as a disease of brain rhythms—a paroxysmal 
cerebral dysrhythmia (Gibbs and others 2002)—and  
the voltage activity recorded from an ECoG electrode 
often reveals stereotyped dynamics (e.g., spike-wave 
complexes during the “absence seizures” of a primary 
generalized epilepsy). During a typical secondarily gen-
eralized seizure (i.e., a seizure that spreads from a focus 

to include a large portion of the brain network), there is 
often a characteristic sequence of neuronal rhythms 
evolving from low amplitude, fast activity to large ampli-
tude, slow activity. The appearance and characterization 
of these changing neuronal rhythms provide critical 
information about the different stages of the seizure 
(Pinto and others 2005; Schiff and others 2005), as we 
described in detail below.

Characterization of Coupling and 
Networks
Characterizing the synchronization—or coupling—
between brain areas during seizures is critical for devel-
oping a deeper understanding of epilepsy. The 
synchronization between a few electrode pairs is readily 
visualized and interpreted. However, for the high- 
density, multi-electrode recordings of interest here (Fig. 1), 
complex patterns of network connectivity may emerge 
whose quantitative understanding requires graph theory 
and network analysis techniques. In the next section, we 
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Figure 1. Example ECoG recording. (A) An 8 × 8 electrode 
grid (1 cm spacing between electrodes) is placed directly 
on the cortical surface and recordings are made usually for 
several days or even weeks. The voltage data (B) recorded 
continuously for multiple days typically exhibit complicated 
dynamic activity.
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provide a brief introduction to the growing field of net-
works in neuroscience. There already exist many excel-
lent and thorough reviews of this subject (Bullmore and 
Sporns 2009; Sporns 2010; Stam and Reijneveld 2007); 
our purpose in the next section is simply to familiarize 
the reader with some terms from network science that 
will be helpful in understanding the results for seizure 
networks presented below.

Primer on Network Analysis and 
Synthetic Networks
Structural versus Functional Networks

The human brain is naturally conceived as a network 
consisting of two fundamental components: nodes (e.g., 
individual neurons or brain regions) and edges (e.g., 
synaptic connections or white matter tracts) that connect 
node pairs. In neuroscience, “brain networks” (i.e., 
graphs representing the connectivity of brain compo-
nents) are typically divided into two categories: struc-
tural networks and functional networks. In structural 
networks, the edges represent physical connections 
between nodes (Fig. 2). At the microscopic spatial scale, 
these include synaptic or gap junctional connections 
between individual neurons. The only complete brain 
structural network mapped at this scale is for the 302 
neurons of the nematode worm Caenorhabditis elegans 
(White and others 1986). For the human brain, consist-
ing of more than 1010 neurons and 1012 synapses, defin-
ing the complete structural network remains intractable. 
At a coarser spatial scale, noninvasive in vivo neuroim-
aging techniques (e.g., magnetic resonance imaging or 
MRI) can be used to infer the brain’s white matter tracks 
and construct millimeter scale, macroscopic structural 
networks in humans (Gong and others 2009; Hagmann 
and others 2008; Iturria-Medina and others 2007).

In contrast to the anatomically defined structural net-
work, functional networks represent the coupling between 

dynamic activity recorded from separate brain areas (Fig. 
2) (Friston 1994). Different types of multivariate neuro-
imaging data, from single neuron recordings to the func-
tional magnetic resonance imaging (fMRI) blood oxygen 
level dependent (BOLD) signal, are used to construct 
functional networks at different spatial and temporal 
scales (Sporns 2010). Critical to the establishment of a 
functional network is the choice of coupling measure, of 
which there are many options (Pereda and others 2005). 
An open question, and area of active research, is deter-
mining which coupling measures are most appropriate. 
Different measures exist that focus on linear interactions, 
nonlinear interactions, wavelet coherence, causality, and 
many other methods (Pereda and others 2005). Each mea-
sure provides a different view of the coupling and requires 
different processing methods and assumptions (e.g., fil-
tering the data in a specific frequency band to extract 
phase information, or choice of embedding dimension). 
Recent studies suggest that linear and nonlinear coupling 
measures perform equally well when applied to macro-
scopic voltage data, although subtle changes in the physi-
ological state of the brain may require more sophisticated 
approaches (Ansari-Asl and others 2006; Mormann and 
others 2005; Osterhage and others 2007).

After selecting a coupling measure for building a func-
tional network, additional choices must be made. One of 
the most important is determining the level of coupling 
that constitutes an edge. In Figure 2 we connected elec-
trode pairs with edges whose coupling measure exceeded 
a threshold value (e.g., 0.5), and different choices of 
threshold may result in different networks. For example, 
a higher threshold choice (e.g., 0.95) results in fewer 
edges (Fig. 2). No technique yet exists to choose the most 
appropriate coupling threshold. One approach is to exam-
ine the networks produced for a variety of threshold val-
ues and seek consistent results (e.g., Kramer and others 
2008; Ponten and others 2007).

Another approach to defining coupling threshold is 
first to apply a statistical hypothesis test to the coupling 

Structural network Node dynamics Functional networks

Threshold = 0.5 Threshold = 0.95

Choice of coupling measure & threshold

Figure 2. Structural networks (left) represent physical connections between nodes (e.g., axons or white matter tracks). Here 
the nodes represent macroscopic brain regions that generate population voltage activity (middle). From the coupling between 
the node dynamics, functional networks are inferred (right) whose structure depends upon the choice of coupling measure and 
threshold.
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result computed for each electrode pair. Doing so, a P 
value may be assigned to each edge and these P values 
thresholded, rather than the original coupling measure 
value. An advantage of this approach is that multiple 
comparisons (a P value exists for each electrode pair) 
may be addressed using sophisticated statistical tech-
niques and a measure of network uncertainty deduced, 
namely the number of spurious edges in the network 
(Kramer and others 2009). One difficulty of this approach 
is the development of an appropriate method to assess the 
statistical significance of a coupling value. For classical 
linear measures (such as the coherence or cross-correla-
tion), analytic techniques exist to determine the statistical 
significance of the measure, although these typically 
require specific assumptions about the data (e.g., the 
asymptotic case of extremely large sample sizes). For 
modern nonlinear measures, no such analytic methods to 
assess statistical significance exist. Instead, one might 
use a bootstrapping procedure; however, bootstrapping 
techniques are computationally expensive and may not be 
tractable for large networks.

Linking Structural and Functional Brain 
Networks
Brain structural and functional networks are intimately 
related. In general, structural networks constrain func-
tional networks—coupled activity between two areas 
typically requires (direct or indirect) structural connec-
tions. But brain dynamics (used to infer the functional 
networks) modify brain structure, through processes such 
as spike-timing-dependent plasticity (Rubinov and others 
2009). Computational studies have examined the rela-
tionship between brain structural and functional net-
works (Ponten and others 2010; Zhou and others 2006) 
and suggested that the structure–function relationship 
depends on the time scale of activity (Honey and others 
2007). At the slow time scale of fMRI and BOLD obser-
vations (i.e., on the order of seconds), a general relation-
ship exists between brain structural and functional 
connectivity (Hagmann and others 2008). But the voltage 
dynamics of the seizure evolve on a much faster time 
scale, and recent observations suggest that so do the 
functional networks (Kramer and others 2010). How 
functional networks inferred at the faster time scale of 
ECoG voltage recordings relate to structural networks 
remains incompletely understood.

Definition of Network Measures and 
Simple Network Models
Many network models and measures to characterize net-
works exist. We outline below the network models and 
measures used to describe the cortical networks of sei-
zure. In doing so we attempt to provide some intuition for 

these characterizations, and the interested reader is 
referred to the literature for many excellent and thorough 
discussions (e.g., Kolaczyk 2009; Newman 2003; 
Rubinov and Sporns 2010; Stam and Reijneveld 2007).

Network Measures: Density, Path Length, 
Clustering Coefficient
Brain functional networks are typically complicated 
structures that require characterization tools beyond 
visual inspection. Many such tools exist, of which we 
describe three of the most important. Perhaps the most 
fundamental network measure is the density—the actual 
number of edges in the network divided by the number of 
possible edges. A network with density 0 contains no 
edges, whereas a density of 1 indicates that all possible 
edges exist. The path length is the minimum number of 
edges traversed to travel from one node to another in the 
network, and the average path length is calculated as the 
path length between all possible node pairs. Short aver-
age path lengths typically suggest fast communication in 
a network. Finally, the average clustering coefficient 
measures the number of completed triangles in a net-
work. In social networks, clustering is typically high (i.e., 
near 1); for example, the friends (nearest neighbors) of an 
individual (the chosen node) also tend to be friends. 
These three measures of network structure provide sim-
ple numeric summaries to characterize complex net-
works, consisting of many nodes and edges. There are 
many additional possible measures that characterize the 
topology of the network in more detailed and specific 
fashion (Kolaczyk 2009; Rubinov and Sporns 2010).

Network Models: Regular, Random, and 
Small-World
Many different types of model networks exist (Newman 
2003). We focus here on three simple models important 
to understanding the cortical networks in epilepsy (Fig. 
3). In a regular network, each node connects to its k near-
est neighbors. Regular networks have a mesh-like con-
nectivity, resulting in many completed triangles (i.e., 
high average clustering coefficient) and a large average 
path length—traveling between nodes requires proceed-
ing along the circumference of the circle in Figure 3A. In 
a traditional random network, node pairs are connected 
randomly with some probability P. The result is a net-
work with low average clustering coefficient (the proba-
bility that a node’s “friends” are also friends in a random 
network is P) and low average path length (because 
travel is no longer restricted to the circumference in Fig. 
3C). Finally, a small-world network possesses high 
clustering coefficients (like regular networks) and short 
average path lengths (like random networks) (Bassett and 
Bullmore 2006; Watts and Strogatz 1998). To construct a 

 at BOSTON UNIV on June 9, 2015nro.sagepub.comDownloaded from 

http://nro.sagepub.com/


364  The Neuroscientist 18(4)

small-world network, a small number of edges in a regu-
lar network are “rewired.” The modified edges typically 
serve as shortcuts through the network, allowing quick 
traversal from one side of the network to the other. 
Because only a few edges are modified, the clustering 
coefficient remains large (Fig. 3B). We will see that all 
three network models can be used to represent different 
stages of functional network progression during seizures 
and may characterize ictogenic cortex in general.

Networks That Characterize the 
Epileptic Brain between Seizures
Classically seizures are thought to represent a hyper-
synchronous state (Penfield and Jasper 1954) and epi-
lepsy is rudimentarily considered to be a disease of 
hypersynchronization—a problem of regions and neu-
rons connected or communicating too readily. With this 
baseline idea in mind, several groups have sought evi-
dence of pathological network relationships in the resting 
(i.e., not seizing) brain of patients with epilepsy. Even the 
healthy brain at rest is expected to show some synchronized 
activity, typically dominated by low-frequency rhythms. 
The expectation, however, is that in patients with epilepsy 
the degree of connectivity will be higher, particularly but 
not necessarily exclusively in the seizure-onset zone. A 
variety of different studies suggest that this concept has 
some validity. In patients with mesial temporal lobe epi-
lepsy, for example, fMRI (Zhang and others 2009) and 
EEG (Bettus and others 2008; Liao and others 2010) 
studies have indicated that there is increased connectivity 
in the temporal lobes. In these same studies there was 
decreased connectivity in frontal and parietal lobes—
regions outside of the location of seizure initiation. 

Furthermore, abnormal connectivity and network topol-
ogy have also been reported, specifically in the δ and θ 
bands, in patients with focal epilepsy (Horstmann and 
others 2010; Wilke and others 2010). This later study 
also reported a more regular network topology, again in 
the θ band, in patients with epilepsy compared with 
healthy controls as measured with EEG (Horstmann and 
others 2010).

This emerging area of translational neuroscience has 
already begun to deepen our understanding of how epi-
lepsy arises and suggests some new pathways for diagno-
sis and treatment. For example, it may soon be possible to 
take a short segment of non-invasive physiological data 
(EEG or magnetoencephalogram) or imaging data (fMRI 
or even structural MRI) and make direct inferences about 
the underlying disease. For example, the development of 
network analysis techniques may allow researchers to (1) 
predict that a patient with a single seizure will go on to 
develop epilepsy or (2) help localize the area of seizure 
onset in a patient with intractable focal epilepsy.

Recent research points to the feasibility of both 
approaches. For example, if global synchronization dif-
fers between healthy subjects and epilepsy patients in the 
interictal state (the periods between seizures), these dif-
ferences may be present early in the disease and enable an 
early diagnosis. Indeed, EEG-based measures of func-
tional connectivity from children with absence seizures 
(Rosso and others 2009) and mixed types of idiopathic epi-
lepsy (Righi and others 2008) differed from healthy con-
trols, suggesting a diagnostic utility of such measures. 
Similarly, synchronization likelihood analysis of EEG from 
patients with new-onset seizures could predict later develop-
ment of epilepsy, albeit with sensitivity and specificity of 
62% and 76%, respectively (Douw and others 2010).

A B C

Regular network
Average path length ~ 3 
Average clustering coe�cient ~ 0.5 

Small world network
Average path length ~ 2.4 
Average clustering coe�cient ~ 0.4 

Random network
Average path length ~ 2.2 
Average clustering coe�cient  ~ 0.15 

Figure 3. Examples of three networks structures: regular (A), small-world (B), and random (C). In the regular network, a path 
between two nodes (green and yellow) is shown in green. For each network, the approximate average path length and clustering 
coefficient are shown.
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These functional network approaches provide new 
techniques not only for diagnosis but also for localization 
of seizure-onset areas in focal epilepsy. It is reasonable to 
expect that ictogenic regions will show some form of 
increased correlation with other brain areas—a form of 
hypersynchrony (for review, see Lehnertz and others 
2009). Indeed, a variety of different studies using widely 
different measures of synchrony in the interictal EEG 
have shown some ability to delineate epileptogenic cor-
tex (Arnhold and others 1999; Ben-Jacob and others 
2007; Mormann and others 2000; Ortega and others 
2008; Schevon and others 2007; Towle and others 1999). 
Nonetheless, much work is needed to more completely 
understand which measures of connectivity work best to 
delineate ictogenic regions and how to incorporate these 
topological results into clinical determinations.

In summary, a rapidly expanding body of literature has 
identified differences in functional connectivity between 
healthy subjects and patients with epilepsy during seizure 
free intervals. These differences might be seen in patients 
with generalized epilepsy and those with focal forms of 
epilepsy, and the differences may be robust enough to be 
used as a marker of epilepsy and ictal onset areas. This 
growing body of information is also beginning to illumi-
nate why seizures actually arise. What happens in the 
brain during the seizure itself—namely, its initiation, 
spread, and termination—is the focus of the next section 
of this review.

Networks That Characterize the 
Seizure Itself
Synchronization during the Seizure

From a simplistic perspective, focal seizures can be 
understood as local events that begin in a circumscribed 
region. This local activity may then spread, from the 
central focus outward, through the recruitment of other 
brain areas in a cascade of activity that includes both 
pathological and normal brain tissue. Presumably, this 
spread manifests as increased synchronization through-
out the brain network. Mathematical measures now allow 
a formal characterization of this claim, and recent obser-
vations challenge the assertion that seizures are uni-
formly hypersynchronous events (Bartolomei and others 
2004; Netoff and others 2004; Kramer and others 2010; 
Truccolo and others 2011). In the next sections, we 
describe the different seizure stages and how neural 
rhythms and synchronization evolve during the seizure. 
To organize our discussion, we focus on three stages of 
the focal seizure: onset, propagation, and termination. 
Within each stage, we consider three issues: (1) the types 
of rhythmic activity observed, (2) the coupling between 
voltage data recorded from separate spatial locations, and 

(3) the types of network structures observed within each 
stage. As described in detail below, these insights have 
altered the traditional perspective of the seizure as a 
purely hypersynchronous state.

Seizure Onset: HFO, Decoupling, and the  
Axon Plexus

Rhythms. There exist many informal definitions for 
seizure onset. Perhaps the most obvious manifestation of 
seizure onset is the emergence of clinical symptoms (e.g., 
convulsions in tonic–clonic seizures). But more subtle 
changes in brain voltage activity typically precede this 
clinical onset. These include rhythmic phenomena, such 
as the low-amplitude, high-frequency “beta buzz” (near 
20 Hz) (Curtis and Gnatkovsky 2009). These rapid dis-
charges are associated with the epileptogenic zone, and 
optimal resection may target these localized sites of high-
frequency activity (Alarcon and others 1995). Recently, 
even faster rhythms have been associated with seizure 
onset. These include high-frequency oscillations (HFOs) 
with frequency ranges that typically exceed 100 Hz (Bra-
gin and others 1999). Localization of seizure onset, 
through identification of pathological HFO activity, may 
also help target the epileptogenic zone critical for seizure 
resection (Fisher and others 1992; Jirsch and others 
2006).

A proposed biological mechanism supporting HFO, of 
particular relevance to this review, involves a structural 
network between individual neurons: the axon plexus. 
The axon plexus is a collection of pyramidal cells with 
axons connected by gap junctions. To support HFO, rela-
tively infrequent spontaneous action potentials propagate 
across gap junctions between pyramidal cell axons. In 
this network model, the period of the HFO is determined 
by the global topological structure of the axon plexus net-
work (Traub and Whittington 2010). We note that the bio-
logical mechanisms supporting HFO remain under 
investigation; another possible mechanism—inhibitory 
interneuron discharges on pyramidal cells (Penttonen and 
others 1998)—does not depend on the network structure 
of the axon plexus.

Coupling and networks. Analysis of voltage activity 
recorded at seizure onset has typically revealed decreases 
in coupling between brain regions, although not always. 
Decoupling has been observed in the 80- to 200-Hz fre-
quency band among different gyri (although correlated 
activity appears within a gyrus) (Grenier and others 2001) 
and during β frequency discharges from patients with 
mesial temporal lobe epilepsy (Bartolomei and others 
2004). In addition, depth electrode recordings of initial 
fast ictal discharges (60–90 Hz) in patients with  
partial epilepsy exhibit spatial decorrelations, compared 
with intervals immediately preceding and following 
(Wendling and others 2003). Decorrelations also appear 
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immediately at seizure onset in high-frequency bands 
(80–200 Hz) in depth and strip electrode recordings from 
patients with complex-partial and secondarily general-
ized seizures (Schindler and others 2010). However, 
other analyses that focused on lower frequency bands 
have revealed increased correlation at seizure onset. A 
measure of non-linear coupling, the synchronization like-
lihood, increases in the α (8–13 Hz), β (13–30 Hz), and δ 
(1–4 Hz) frequency bands during the rapid discharges 
characteristic of seizure onset. The associated functional 
networks tend to exhibit increased clustering coefficients 
and path lengths during the rapid discharges compared 
with interictal intervals (Ponten and others 2007). In 
addition, cross-correlation analysis of wideband ECoG 
data from surface and depth electrodes suggests increased 
correlation (and therefore increased network density) 
immediately at seizure onset (Kramer and others 2010; 
Schindler, Leung, and others 2007). The different results 
may occur for many reasons, including differences in 
coupling measures, patient populations, recording elec-
trodes, definitions of seizure onset, and selection of 
“nodes” included in the analysis. The observation of 
decorrelation in high-frequency bands at seizure onset 
may be interpreted as an initial functional disconnection 
between distant brain regions, whereas the observation of 
increased correlation in low-frequency bands at onset 
may reflect recruitment of brain regions preceding sei-
zure spread. Thus the properties of brain functional con-
nectivity at seizure onset remain an open area of active 
research.

Propagation: Ictal Chirps and Decoupling
Rhythms. Following a focal onset, the pathological 

seizure activity spreads throughout the cortical network. 
At this point, the macroscopic brain voltage dynamics 
(i.e., as recorded in the ECoG) typically transition from 
low-amplitude, fast rhythmic activity in spatially focal 
regions to large-amplitude, slower rhythmic activity 

across spatially widespread areas. Different types of 
widespread rhythmic patterns appear, including spike-
wave complexes (Gibbs and others 2002) and voltage 
rhythms that decrease in frequency with time—the 
“brain chirp” (Schiff and others 2000)—in generalized 
seizures (Fig. 4).

In generalized seizures, this rhythmic activity is wide-
spread, appearing throughout the brain. The large-amplitude 
oscillations characteristic of seizure are commonly thought 
of as “hypersynchronous” events (Schindler, Leung, and 
others 2007). This may be true at the mesoscopic spatial 
scale in which the summed postsynaptic activity of many 
thousands of synapses generates population voltage activity 
observable in a single EEG electrode (Penfield and Jasper 
1954). However, whether hypersynchrony persists at the 
microscopic scale of individual neurons or larger macro-
scopic spatial scales is questionable. Individual neuronal 
activity during focal seizures in humans seems not to show 
the highly ordered synchrony that would be expected 
(Truccolo and others 2011). Furthermore, recent analysis 
has shown that at the macroscopic spatial scale of ECoG 
recordings, brain activity decouples, as we now describe.

Coupling and networks. At the macroscopic spatial 
scale (e.g., in ECoG recordings) the transition from sei-
zure onset to propagation may result in a period of 
decreased (linear) correlation between brain regions 
(Kramer and others 2010; Schindler and others 2008; 
Schindler, Leung, and others 2007). This decoupling 
appears independent of the anatomical location of seizure 
onset, duration of seizure, and number of recording chan-
nels (Schindler, Leung, and others 2007). However other 
measures of coupling, including phase or amplitude cor-
relations (Schiff and others 2005) and the synchroniza-
tion likelihood (Ponten and others 2007), remain elevated 
during the seizure. The elevated synchronization likeli-
hood has also been observed in different seizure types 
and frequency bands, including the 8- to 12-Hz band 
from patients with nocturnal frontal lobe seizures (Ferri 
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Figure 4. Example of ictal dynamics. (A) Voltage trace from a single ECoG electrode during seizure. Visual inspection begins to 
suggest the different dynamic regimes. (B) A time–frequency spectrum of the voltage signal in (A). Warm (cool) colors indicate 
high (low) amplitude oscillations. As time evolves, the dominant rhythms slow.
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and others 2004) and broadband in neonatal patients 
(Altenburg and others 2003). Again, this apparent incon-
sistency in coupling changes during the middle part of 
seizure may result from many factors, including differ-
ences in the coupling measures (e.g., linear versus nonlin-
ear) and differences in seizure types.

As coupling of voltage activity changes between brain 
regions, so too does the functional network structure. 
Changes in the simplest measure of network structure—
the density—follow patterns consistent with some of the 
coupling results; decreased linear correlation during sei-
zure propagation results in sparser functional networks 
(i.e., network with fewer edges) (Schindler and others 
2008), and the dominant connected components fracture 
into smaller structures (Kramer and others 2010). 
Measures of more subtle network properties include the 
average path length (PL) and clustering coefficient (CC). 
Functional networks (based on correlation measures) 
suggest that the CC and PL increase during the first half 
of the seizure and then gradually decrease (Kramer and 
others 2010; Schindler and others 2008). A nonlinear 
measure of coupling (synchronization likelihood) also 
results in functional networks whose CC and PL increase 
during the seizure (Ponten and others 2007). These results 
all suggest a shift toward a more regular (less random) 
network topology during seizure propagation. In addi-
tion, the PL and CC permit assessment of the small-world 
characteristics of the networks. The small-world property 
has been proposed to become more significant during sei-
zure (Ponten and others 2007; Wu and others 2006) but 
remains controversial (Antiqueira and others 2010; 
Bialonski and others 2010; Gerhard and others 2011).

The network mechanisms that support seizure propa-
gation remain unknown. One proposal, consistent with 
the decrease in coupling during propagation, is that an 
initial interval of extremely intense neuronal firing at sei-
zure onset saturates “hub” neurons—which maintain 
many connections to other neurons. When these hub neu-
rons shut off, the result is a functional disconnection 
between local substructures and decreased coupling 
(Schindler and others 2008). In computational models of 
seizure (Morgan and Soltesz 2008) and in observations of 
human seizures (Kramer and others 2008), hubs serve 
important roles and may perhaps be useful as targets for 
surgical treatment of epilepsy (Wilke and others 2011). In 
addition, simulation studies suggest that the pathological 
organization of seizing activity is supported by small-
world topologies (Netoff and others 2004; Percha and 
others 2005). Although network topology itself influ-
ences the neuronal activity, the interaction of network 
structure and intrinsic neuronal properties is also crucial 
(Bogaard and others 2009; Dyhrfjeld-Johnsen and others 
2007) but remains poorly understood.

Termination: Slow Rhythms and Recoupling
Rhythms. Like the other stages of the seizure, the 

voltage dynamics of seizure termination exhibit charac-
teristic behaviors. The first, as mentioned in the previous 
section, is the slowing of the voltage rhythms (i.e., the 
brain chirp; Schiff and others 2000) in the approach to 
seizure termination. The second is the nearly simultane-
ous cessation of voltage activity across the brain at termi-
nation, as observed in both macroscale ECoG recording 
and the microscale activity of individual neurons (Fig. 5). 
Analyses of functional network topologies in the approach 
to seizure termination are providing additional 
information.

Coupling and networks. One hypothesis is that in the 
approach to seizure termination, the coupling of brain 
activity increases. This has been observed using (linear) 
measures of cross-correlation in the broadband (Kramer 
and others 2010; Schindler and others 2008; Schindler, 
Elger, and others 2007) and high-frequency (80–200 Hz) 
band (Schindler and others 2010), appeared independent 
of anatomical location of seizure-onset zone and duration 
of seizure, and occurred for both partial complex and  
secondarily generalized seizures (Schindler, Leung, and 
others 2007). In addition, the non-linear correlation coef-
ficient, applied to voltage activity recorded at temporal 
lobe and thalamus, increased in the approach to seizure 
termination, and the maximal values of synchrony were 
observed during the last part of the seizure (Guye and 

−0. 5 0 0. 5 1 1.5
0

20

40

60

80

100

120

140

Time (min)

N
eu

ro
n 

ra
nk

in
g

Figure 5. Neuronal spike raster recorded in vivo from a 
human subject during seizure. The neurons (n = 149) are 
arranged according to increasing mean spike rate. The seizure 
begins at t = 0 min (solid red line) and ends near t = 1 min. 
Visual inspection suggests a nearly simultaneous cessation 
of spiking activity for most neurons at seizure termination. 
Adapted from Truccolo and others (2011). 
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others 2006). These results are consistent with animal 
models showing that synchrony progressively increased 
toward the late seizure stage (Topolnik and others 2003).

This coupling increase affects the functional network 
structure by increasing the network density (i.e., the num-
ber of edges) (Kramer and others 2010; Schindler and  
others 2008) and supporting the emergence of a giant  
connected component—the coalescence of the functional 
network (Kramer and others 2010). More specific measures 
of the network structure suggest that in the approach to sei-
zure termination the PL and CC decrease, and therefore the 
networks move in the direction of becoming more random 
(Kramer and others 2010; Schindler and others 2008).

Understanding the mechanisms that end the seizure 
remains an important goal, and these analyses of coupling 
and functional network structure at seizure termination 
are beginning to provide additional clues. An important 
question to address is whether the increase in synchrony 
before termination is an epiphenomenon of another pro-
cess or an active mechanism for seizure termination. One 
proposal for seizure termination is that the self-organiza-
tion of neuronal activity (as reflected by the increased cou-
pling) drives neuronal populations into a hypo-excitable, 
refractory state (Schindler, Elger, and others 2007). The 
biophysical mechanisms that may support this transition 
include the activation of potassium currents across large 
neuronal networks that overcome hyperpolarization- 
activated depolarizing currents (Schindler, Elger, and 
others 2007). The role of deep brain structures, such as 
the thalamus, in seizures remains an area of active 
research with some observations from animal models 
suggesting an important role for the thalamus (Bertram 
and others 2001), and others not (Timofeev and Steriade 
2004). Whether the thalamus, or another deep brain 
region, serves to mediate coordination between cortical 
regions and thereby terminate activity remains unknown 
(Lado and Moshé 2008).

Conclusions and Open Questions
In this review we considered the rhythmic activity and func-
tional networks observed during seizures and in the interic-
tal state. We focused on three stages of seizure—onset, 
propagation, and termination—and summarized the types 
of rhythms and functional networks observed in each 
stage. In general, the rhythmic stages of seizure are fairly 
well characterized, although new recording modalities 
have allowed the observation of new phenomena (e.g., 
high-frequency voltage recordings and HFO). The infer-
ence and characterization of functional networks during 
seizures remain an active area of research; nonetheless, 
we attempted to summarize some of most common 

observations (Fig. 6). These include changes in coupling 
during the seizure and in particular increased coupling at 
seizure termination. In terms of network structure, obser-
vations suggest that networks acquire larger path lengths 
and clustering coefficients near the beginning of the sei-
zure and that networks become more small-world during 
seizure propagation and more random at seizure termina-
tion. For each stage, we also noted contradicting observa-
tions. These discrepancies may exist for many reasons, 
including differences in the types of coupling measures 
used (e.g., linear versus nonlinear) and the types of 
patients analyzed. We hope that future research will help 
reduce these discrepancies and will further understanding 
of the functional networks of seizure.

These observations suggest a refinement of the tradi-
tional idea that seizures are hypersynchronous events. 
Although the current analysis of interictal data points to 
at least some degree of increased coupling between 
brain regions, particularly within the seizure-onset zone 
in patients with focal epilepsy, this hypothesis needs 
substantiation across larger patient groups and situa-
tions and will likely lead to a more nuanced conclusion 
regarding what regions show hypersynchronization at a 
network level. At the microscopic spatial scale of indi-
vidual neurons, some correlated neuronal activity must 
occur to produce the large-amplitude, macroscopic 
fields observable in the ECoG during the seizure 
(although seizure-like activity induced in rat hippocam-
pal slices also shows desynchronization of neuronal fir-
ing; Netoff and Schiff 2002). However, hypersynchrony 
at the microscopic spatial scale does not imply corre-
lated activity between macroscopic brain regions. In 
fact, variability in propagation between brain regions 
may act to decorrelate macroscopic brain activity during 
the seizure (Schindler, Leung, and others 2007). The 
results reviewed here and other investigations are begin-
ning to reveal more details of the entire scope of interic-
tal and ictal activity.

Epilepsy is a disease with many causes and manifesta-
tions and one for which many research questions remain. 
For example, are the network characteristics between and 
during seizures of different causes the same; in other 
words, is there a “final common pathway” linking the dif-
ferent causes at a mechanistic level? Perhaps the most 
important remaining issue, and perhaps the most difficult 
to approach, is how to link these network-level descrip-
tions with the vast but still incomplete understanding of 
seizures and epilepsy at the cellular and subcellular levels. 
Linking these different spatial scales and intellectual 
frameworks would provide a comprehensive description of 
the disease and undoubtedly lead to novel therapeutic 
interventions.
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