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Network inference with confidence from multivariate time series
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Networks—collections of interacting elements or nodes—abound in the natural and manmade worlds. For
many networks, complex spatiotemporal dynamics stem from patterns of physical interactions unknown to us.
To infer these interactions, it is common to include edges between those nodes whose time series exhibit
sufficient functional connectivity, typically defined as a measure of coupling exceeding a predetermined thresh-
old. However, when uncertainty exists in the original network measurements, uncertainty in the inferred
network is likely, and hence a statistical propagation of error is needed. In this manuscript, we describe a
principled and systematic procedure for the inference of functional connectivity networks from multivariate
time series data. Our procedure yields as output both the inferred network and a quantification of uncertainty
of the most fundamental interest: uncertainty in the number of edges. To illustrate this approach, we apply a
measure of linear coupling to simulated data and electrocorticogram data recorded from a human subject
during an epileptic seizure. We demonstrate that the procedure is accurate and robust in both the determination
of edges and the reporting of uncertainty associated with that determination.
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I. INTRODUCTION

Many examples of natural and fabricated networks exist
in the world, including airline networks, computer networks,
and neural networks. To define a network is, in principle,
straightforward: we simply identify a collection of nodes and
edges [1-3]. A node (or vertex) represents a participant or
actor in a network, while an edge represents a link or asso-
ciation between two nodes (Fig. 1). For example, in an air-
line network, individual airports constitute nodes and direct
connections between airports identify edges. In a neural net-
work, individual neurons and the physical connections be-
tween neurons determine the nodes and edges of the net-
work,  respectively.  Having  established  network
representations of these complex systems, we may then ad-
dress pertinent issues, such as the worldwide spread of infec-
tious disease through the airline network [4] or the effect of
cortical lesions on brain dynamics [5].

The decision to link two nodes with an edge varies in
difficulty [6]. In some cases, a known physical connection
exists between two nodes, and the choice to include an edge
is then obvious. Does an airline connect two cities or not [7]?
Do two actors collaborate on a film or not [8,9]? Does a
physical connection exist between two brain regions or not
[10,11]? In these cases, the decision to include a link be-
tween nodes is simple and based on the known association or
physical connection between two nodes.

In other cases, the interactions between nodes are obscure.
For example, we may only observe the dynamic activity at
individual nodes and have no access to the physical connec-
tions between nodes. In these cases, we may apply coupling
measures to multivariate time series data associated with the
node dynamics and attempt to infer their associations, with-
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out explicit knowledge of their structural connections
[12-14]. This approach has proven useful in, for example,
climate studies [15,16] and also human brain studies, in
which the structural connections between brain regions re-
main difficult to classify (although perhaps not for long
[17]).

Viewed from a statistical perspective, two key challenges
are inherent in this task of network inference: (i) appropriate
interpretation of the coupling results in declaring network
edges and (ii) accurate quantification of the uncertainty as-
sociated with the resulting network. The simplest—and, in-
deed, most common—method to interpret the coupling re-
sults and declare network edges involves comparison of the
coupling strength to a threshold value [16,18-24]. If the cou-
pling strength between two nodes exceeds this threshold,
then we connect these nodes with an edge; otherwise, we
leave the nodes unconnected. The number of edges in the
resulting network depends critically on the choice of cou-
pling threshold (as we illustrate schematically in Fig. 1). Fur-
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FIG. 1. The number of edges in this four-node network depends
upon our choice of coupling threshold. Each node (gray circle)
represents a spatial location from which we record time series data.
Applying a coupling measure to the dynamic activity recorded at
node pairs, we obtain the normalized (between O and 1) coupling
values shown in (a). If we choose the coupling threshold too low
(0.05) we include edges between all nodes as in (b). If we choose
the coupling threshold too high (0.95) we obtain no edges in the
network as in (d). An intermediate choice of coupling threshold
[0.65 in (c)] yields a different network.
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thermore, for a given choice of threshold, we expect a certain
rate of error in (mis)declaring the connectivity status be-
tween pairs of nodes. This network uncertainty—intimately
tied to choice of threshold—is often overlooked.

How do we choose such a threshold? One strategy is to
apply a variety of different thresholds and examine the re-
sulting collection of networks for robustness as a function of
threshold [19,22,24]. This procedure of redundant analysis—
which some of these authors recently employed [23]—is
both time consuming and unsatisfying. Instead, a threshold
should be chosen in a principled way, for example, one that
links the choice of threshold with the achievement of a pre-
specified level of network uncertainty. Such is the goal of
this paper. In referring to “network uncertainty” many as-
pects of the network structure might be of interest (e.g., con-
nectivity, degree distribution, or clustering). Here we will
focus on the most basic aspect of network confidence: the
presence or absence of network edges. Our particular goal is
to equip the process of threshold-based inference of a net-
work with a number quantifying the expected rate of falsely
declared network edges. This number serves as a natural
measure of network confidence.

In what follows, we adopt a statistical hypothesis testing
paradigm to analyze multivariate time series data and create
network representations of functional connectivity. The gen-
eral paradigm involves three steps: (1) calculate the strength
of coupling between time series data recorded at node pairs,
(2) threshold each coupling measure through the use of a
formal statistical hypothesis test, and (3) control the rate of
falsely declared edges through the use of statistical multiple
testing procedures. In Sec. II, we present a high-level outline
of this general protocol, while in Sec. III we develop the
procedure in detail, making specific choices of methodology
for each step. We apply the protocol to three data sets in Sec.
IV and show, in particular, that appropriate handling of the
significance tests is vital. Fundamentally, the proposed pro-
tocol is a way of constructing functional networks that,
rather than emerging as the result of some arbitrarily chosen
coupling threshold, are composed of edges selected to
achieve a guaranteed level of overall network accuracy. That
is, it is a way of constructing networks with confidence.

II. GENERAL PARADIGM

In this paper we are interested in the inference of net-
works (or, more precisely, graphs) G=(V,E) in which edges
{i,j} € E indicate a coupling (perhaps at nonzero lag) be-
tween time series x[¢] and x[r] observed at N nodes i,;j
e V. Our primary motivation is the desire to infer networks
reflecting the functional (as opposed to structural) topology
of neural systems [25]. This goal is reflected in our terminol-
ogy, as well as in the numerical illustrations we present in
Sec. IV, and prohibits our use of standard Gaussian graphical
model techniques which assume independent measurements
in time. However, the methods we propose—and the under-
lying principles upon which we base the methods—have
quite general applicability.

We implement a procedure to create functional topologies
from multivariate time series data that involves three general
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steps. First, a coupling measure is specified and applied to
the data, yielding a noisy indication of the functional con-
nectivity between all nodes pairs. In the neurological data
described below, this measure captures the extent of interac-
tions between activities recorded simultaneously at separate
spatial locations of the brain. Second, we develop signifi-
cance tests appropriate for our choice of coupling measure,
and associate a statistical p-value with each coupling result.
Third, we analyze the resulting p-values using principles of
statistical multiple testing to construct a network representa-
tion of the functional connectivity. In the course of this last
step, we determine a number controlling the proportion of
falsely inferred edges. We present this number as a basic and
natural measure of network uncertainty.

Of course, the first step above implements a version of the
standard approach to constructing such functional networks.
In neuroscience, for example, investigators (including some
of these authors) typically specify a measure of coupling and
then assign edges between node pairs whose coupling is
judged to be sufficiently strong. However, determination of
just how strong is strong enough is invariably ad hoc or, at
best, driven by “expert judgment.” As a result, there is no
way to annotate the resulting networks with any indication of
their inherent (in)accuracy. The subsequent steps in the pro-
posed approach, therefore, are critically important to produce
networks accompanied by accurate characterizations of their
uncertainty. Put another way, we are interested here in the
propagation of uncertainty in network inference, from the
original time series data x,[7] to a final assessment of network
uncertainty. Our statistical hypothesis testing procedure, de-
scribed above in three steps, achieves this goal. Furthermore,
our numerical results indicate that it in fact does so in a
robust fashion.

We achieve our goal primarily through careful attention to
the interdependency among each of the three steps. In so
doing, we also demonstrate how lack of such attention can
lead to nonsensical network uncertainty statements. For ex-
ample, the choice of coupling measure in the first step affects
the hypotheses tested in the second step (i.e., the null hypoth-
esis H: No Coupling, versus H,: Coupling). The declaration
of either edge or nonedge for each pair of nodes i,jeV
corresponds to either rejection of the null hypothesis or a
failure to do so, respectively. If rejection is determined by
comparison of the observed coupling values to a threshold,
clearly the choice of threshold will affect the network results.
But if we also wish to propagate uncertainty—from the origi-
nal time series data, through the testing procedure, to the
final network inferred—it is necessary to construct accurate
probabilistic statements appropriate for the particular cou-
pling measure we choose.

In constructing functional networks, we must consider the
collection of individual hypothesis tests as a whole and the
so-called “multiple testing problem” in statistics. To maintain
the statistical power with which we can detect edges, we
focus upon controlling the rate of falsely declared edges.
Conditional on at least one edge being declared, the expected
proportion of falsely declared edges here is equivalent to
what is called the false discovery rate (FDR) in the statistical
literature. The control of FDR in multiple testing situations,
ranging from signal and image processing to genome-wide
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association testing, has become a de facto standard technique
for addressing the multiple testing problems (see [26], for
example). In fact, the use of FDR control occurs with in-
creasing frequency in the network literature as well (e.g.,
[27,28]). However, there is little evidence in this literature
that the rates quoted are necessarily being achieved. We
show later that it is quite easy, using a seemingly reasonable
significance test, to end up with rates that are completely
unrepresentative.

III. IMPLEMENTATION OF THE GENERAL PARADIGM

We described in the previous section three general steps to
create a functional topology from multivariate time series
data. In this section, we (1) define our coupling measure, the
cross correlation, (2) develop appropriate significance tests
for this measure, and (3) integrate these with a technique to
account for multiple significance tests. In Sec. IV we apply
these specific protocols to simulated and observed data, and
show that the choice of the significance test is critical.

A. Step 1: Choice of coupling measure

The choice of coupling measure between pairs of time
series permits many alternatives [29]. We may select a
simple measure of linear coupling (e.g., the cross correlation
[15,16,23,30,31] or the coherence [32-34]) or more sophis-
ticated coupling measures (e.g., synchronization likelihood
[20], wavelet coherence [35], Granger causality, and the re-
lated directed transfer function [36]). In this manuscript, we
choose to focus on a simple measure of coupling based on
the cross correlation; we discuss the application of nonlinear
association measures to human voltage data in Sec. IV E. We
also note that the general statistical hypothesis testing para-
digm we adopt here can in principle be applied to any choice
of coupling measure.

For a pair of time series x;[7] and x/[¢] of lengths n, the
sample cross correlation at lag 7 is defined as

n—7

= ————3 =B+ 1 -5). (1)

O'io'j(” -27)

where X; and X; are the averages and &; and §; are the stan-
dard deviations of x[7] and xjr], respectively, estimated
from the data. This quantity can be computed efficiently over
a range of lags using Fourier transform methods for convo-
lutions. In our applications, we first transform the time series
at each network node to have zero mean and unit variance,
after which we compute the Fourier transforms X[w] and
%[w], multiply the first by the complex conjugate of the
second, and take the inverse Fourier transform of the result-
ing product. For all of the data considered below, we com-
pute the cross correlation for 7 ranging over indices between
—100 and 100 (the range of 7 in milliseconds depends on the
sampling rate of the data, as we describe below).

Our formal measure of coupling will be the maximal cross
correlation, i.e., sijzmax7| C;[7]|, the maximum of the abso-
lute value of C;[7] over 7. This measure will serve as our
statistic for testing whether or not to assign an edge between
nodes i and j, for each such pair of nodes.
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B. Step 2: Significance test

Having chosen the test statistic s;;, the maximal cross cor-
relation between x[t] and x[t], do we include a network
edge between nodes i and j? To answer this, we will use s;;
to test the null hypothesis that x;[¢] and x[7] are uncorrelated
against the alternative that they are correlated. Rather than
focusing on testing at a preassigned significance level, we
will instead concentrate first on computing an appropriate
p-value for each edge. Accurate evaluation of the p-values is
critical to successful use of the false discovery rate principles
we employ for the network inference problem here, as we
discuss in Sec. III C. We compute the p-value in two differ-
ent ways that make different assumptions about the coupling
results. The first method is an analytic measure and specifi-
cally designed for our choice of coupling measure. The sec-
ond is more general but computationally expensive. We de-
fine the measures below and, in the next section, apply each
to simulated and observed time series data.

1. Analytic method

In this section we propose an analytic method. Frequently
such methods involve comparison of a test statistic to a nor-
mal distribution. Following this approach, we would scale s;;
by an estimated variance, and then compare this scaled quan-
tity to the standard normal distribution (i.e., with mean 0 and
variance 1) to calculate a p-value. Here, however, this would
be naive.

More specifically, under the stated null hypothesis of no
coupling the statistic s;; should have mean zero. A reasonable
estimate of the variance of C;[/] under the null, motivated by
a result of Bartlett [37,38], is given by

Vﬁl\f(l) = L 2 Cii[T]ij[T]’ (2)

n-— l7=—n

where the Cy[ 7] are the autocorrelations of time series k at
lag 7. This estimate takes a nontrivial form because the cross
correlation will depend on the statistical properties of the
underlying time series, and in particular on the autocovari-
ance structure. Spurious cross correlations between the two
times series are expected even if they are uncoupled [39],
and this variance formula accounts for that.

Intuitively we might think to use Eq. (2) to define z;
=5,/ Vz?r(iij), where Zij is the lag corresponding to s;; (i.e.,
the lag at which the maximum of the absolute value of the
cross correlation occurs) and test the significance of the
value z;; by comparing it to the standard normal distribution.
Unfortunately, although standardizing C;[1] by the estimated
variance in Eq. (2) is sensible for any fixed I, use of the
standard normal distribution with z;; is not appropriate here,
as we explain and illustrate below.

Two potential problems exist in using this naive method
to determine the significance of s;;. First, the distribution of
the cross correlation C[7]—strictly speaking—is normal
only in the asymptotic case of large sample size n. In finite
samples this approximation can be poor, particularly since
the cross correlations are bounded between —1 and 1, while
the normal distribution varies over an unbounded range. Sec-
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ond, we choose s;; as an extremum of the cross correlation;
therefore, we must account for this choice when testing the
significance of this statistic. That is, even in cases where the
distributions of the cross correlations C;j[ 7] are well approxi-
mated by the normal distribution, their extrema will not be
normally distributed, and so p-values calculated using this
distribution will be inaccurate.

To address both of these issues, we propose a more ap-
propriate analytic method: the extremum method. We start by
applying the well-known Fisher transformation [40] to each
C;l 7], yielding

1 1+CGlr
cliA =t m Gl (3)

J 2 1- Cl][ 'T]
which should more closely follow a normal distribution than
the original C; J[T] Since this transformation is monotone and

symmetric about zero, the lag l maximizing |CU[7']| will
also maximize [C{[ 7]|. Let s, be the Fisher transformation of
which we propose to use mstead of s;;

Next, we use results from extreme value theory to ap-
proximate the distribution of our new test statistic. We scale
the values C'[7] over 7 by their empirical standard devia-
tions (Va\r(CiJj)”2 so that the resulting scaled values should
approximately follow a standard normal distribution. If there
were no dependency within the time series x;[7], and instead
we observed independent and identically distributed se-
quences at each node i, then the appropriate standard devia-
tion is known to be (n—3)""?[40]. But given the dependency
in our time series data, we expect that the true standard de-
viations may differ from this value, and so we choose to
estimate them empirically.

The scaled value z; A—sF / (var(CF )2 can be expected to
behave like the max1mum of the absolute values of a se-
quence of standard normal random variables. Using estab-
lished results for statistics of this form, we obtain therefore
that

lj’

P[Z] =~ exp{_ 2 CXp[— an(z - bn)]}’ (4)

where  P[z]= Pr{z =z}, a,=\2Inn, and b,=a,
—(2a,)"'(In In n+In 477) A derivation of Eq. (4), which
holds in the asymptotic sense of large n, is provided in Ap-
pendix A. For the case of n=201, as in all of our numerical
results below, a,=3.2568 and b,=2.6121. Using the approxi-
mation above, it is straightforward to calculate p-values for
the rescaled test statistics z i

Intuitively, the extremum method accounts for our choice
of a maximum cross correlation. By virtue of the Fisher
transformation, the values C; [T] will be approximately nor-
mally distributed. But because we have chosen si as the
maximum of the absolute value of the transformed correla-
tions, we expect its value to be skewed toward the tail of the
normal distribution. If we had chosen instead any other lag
than that maximizing the cross correlation, then the corre-
sponding value C;; (and hence C ) would be smaller. There-
fore, our deﬁmtlon of 5T i produces p-values that, if computed
from the normal distribution, are biased in the sense of being
inappropriately small. From the perspective of our network
inference task, this means that—for any given choice of
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threshold—we will be more liberal in our assignment of
edges than we should be. The distribution in Eq. (4) essen-
tially corrects for this bias, by explicitly accounting for our
use of the maximum.

2. Frequency domain bootstrap method

The previous method provides an analytic formula for
testing the significance of s;;. In utilizing this formula, we
make specific asymptotic distributional assumptions about
the test statistic—the maximal cross correlation. These as-
sumptions are likely to be only approximate idealizations of
the correlation results emerging from, for example, a com-
plicated physical system like the human brain. A method to
test the significance of s;; that requires fewer assumptions is
desirable. The second method we introduce—the frequency
domain bootstrap—satisfies this desire, but is computation-
ally expensive. We note that more sophisticated surrogate
procedures exist, for example to preserve nonlinear proper-
ties of the original time series [41]. Determining the most
appropriate surrogate procedure for a particular coupling
measure (e.g., the cross correlation or the nonlinear correla-
tion coefficient discussed below) is beyond the scope of this
work.

As the name indicates, the method consists of applying
the bootstrap principle (e.g., [42]), but in the spectral do-
main; methods of this sort were first proposed in [43]. We
calculate our frequency domain bootstrap through the fol-
lowing steps. First, we compute the power spectrum (Han-
ning tapered) of each time series in the network. We then
average these power spectra from all time series, and smooth
the resulting average spectrum. We use this spectrum esti-
mate (P{w]) to compute the standardized and whitened re-
siduals for each time series x;[],

elf]= F' & o]\ Plw)). 5)

Here X[ w]=F(x[r]) is the Fourier transform of the original
time series x,[¢] and F~!(x) is the inverse Fourier transform
of x. Finally, for each bootstrap replicate, we resample the
values ¢[f] with replacement and compute the surrogate
data,

£[1]= F @] - VPLw]), (6)

where €[ w] is the Fourier transform of the residuals e[7]
resampled with replacement. This last step ensures that the
spectral characteristics of the original data are preserved in
the surrogate data.

We compute N, instances of these surrogate data, and for
each instance we calculate the test statistic §;; for each pair of
nodes i and j, (i.e., we calculate the maxrmum of the abso-
lute value of the cross correlation between the surrogate data
%[t] and x[t]). The N; instances of §;; form a bootstrap dis-
tribution of maximum cross correlatron values to which we
compare s;; observed in the original data and assign a
p-value.

Constructing the bootstrap distribution of §;; values for all
node pairs is computationally expensive. If our network con-
tains 100 nodes, then we would like to compute a bootstrap
distribution (and test the significance) of each of the 100

ij
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X 99/2=4950 values s;;. If each bootstrap distribution re-
quires N;=10 000 surrogates, a standard choice in the litera-
ture, then we construct surrogate data and compute the cross
correlation over 107 times. We reduce this expensive opera-
tion in the following way: instead of computing bootstrap
distributions for all electrode pairs, we compute the bootstrap
distribution (with N, surrogates) for only a subset of node
pairs. We then define the merged distribution as the com-
bined distribution for the entire subset of node pairs. We use
the merged distribution to test the significance of s;; for all
node pairs (even pairs not used in calculating the merged
distribution). Note, however, that in doing so we assume that
the null distribution of s;; is the same for all node pairs.

C. Step 3: Control of the false detection rate

To test the statistical significance of the values s;;, we may
apply either of the two methods described above (or even,
practically speaking, the naive method as well). Networks of,
say, 100 nodes will consist of 100X99/2=4950 s;; values,
each with an associated p-value. Clearly, multiple testing is
an important concern. If we simply choose a standard
p-value cutoff for assessing significance (such as p<0.05),
then we expect the number of network edges incorrectly de-
clared present to scale proportionally (i.e., roughly 250 such
edges, for an 0.05 cutoff). To control for this abundance of
false positives, we could define a stricter cutoff; for example,
we could use the Bonferroni correction and divide the
p-value threshold by the number of node pairs (i.e., p
<0.05/4950=1073). This conservative control of the family-
wise error rate (the probability of making one or more false
discoveries) is likely too strict for data in which we expect
relatively few significant edges a priori, i.e., for sparse net-
works.

Instead, we employ the less conservative FDR to control
for multiple testing. The FDR is defined as the expected
proportion of erroneously rejected null hypotheses among
the rejected ones [44,45], and various procedures exist for
controlling the FDR in practice [26]. Generally speaking, the
notion of FDR control guarantees that the expected propor-
tion of falsely declared edges in our inferred networks is no
more than a prespecified fraction ¢ € (0,1). However, in or-
der for this guarantee to hold, two assumptions must be true,
namely, that (i) statistical p-values associated with each test
are computed accurately and (ii) tests are independent. Of
these assumptions, the first is critical, while the second is
less so. Dependency among tests is often relatively benign
and, when it is not, can be dealt with using adjusted FDR
procedures (e.g., [45]). However, inaccurate calculation of
p-values is known to be disastrous to FDR procedures. Our
analyses presented below confirm this in the context of our
network inference problem, and the majority of our efforts
focus around this point, as we described in Sec. III B.

Here we implement the linear step-up FDR controlling
procedure of Benjamini and Hochberg [44], which is com-
puted as follows. First, order the m=N(N—-1)/2 p-values
P1=p>=...=p,,. Then, choose a desired FDR level ¢. Fi-
nally, compare each p; to the critical value ¢g-i/m and find
the maximum i (call it k) such that p;=<¢-k/m [and therefore
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DPir1 > q- (k+1)/m]. We reject the null hypothesis that time
series x[] and x,[¢] are uncoupled for p;=... =p;.

The choice of ¢ determines a threshold p-value, for which
we declare all features significant up through that threshold
[46]. The value g represents an upper bound on the expected
proportion of false positives among all declared edges in our
inferred network (i.e., among all node pairs for which s;; was
declared to be significant). For example, if we fix ¢=0.05
and find 100 significant values of s;;, then we expect
0.05-100=5 false positives (i.e., five false edges in the 100
edge network).

IV. RESULTS

We analyze three data sets using the procedure defined in
Sec. III. Two data sets we create with specific (known) struc-
tural topologies, to which we compare the functional topolo-
gies extracted through analysis of the dynamic data. The
third we observe from a human epileptic subject undergoing
invasive electrical monitoring of the cortex.

A. Pink noise data

Many time series data produced by natural systems pos-
sesses a 1/f* power spectrum [47-49]. To mimic this behav-
ior, we create a nine-node network, first by generating 500
ms (sampling interval 1 ms) of independent colored noise
(a=0.33) data w/[1] at each node i. We then connect node i to
Jj by adding pointwise to w[¢] the data wr] scaled by a
factor of 0.4. For example, we connect node No. 1 to No. 2
by adding to w,[7] the time series 0.4-w[7] for each time
point ¢ to create x,[t]=w,[t]+0.4-w[1], the time series asso-
ciated with node No. 2. In Fig. 2(a) we illustrate the topology
of the constructed network (a total of nine directed connec-
tions exist) and the power spectrum averaged over the data
from all of the nodes.

Having established the network topology, we now attempt
to recover it directly from the time series data. To do so, we
apply our coupling measure (s;;, the maximum of the abso-
lute value of the cross correlation) pairwise to all m
=9.8/2=36 electrode pairs in the network. We then test the
significance of each s;; and compute a p-value using the
analytic and computational procedures defined above. We
begin with the naive method, whose p-values we plot as
asterisks in the lower portion of Fig. 2(b). Plotted in increas-
ing order, these p-values range from ~107> to 0.3. We fix
¢=0.10 and also plot in the lower portion of Fig. 2(b) the
line of slope ¢/m=0.10/36=0.0028 and zero intercept. Fol-
lowing the linear step-up FDR procedure, we reject the null
hypothesis of no coupling for those (nine) electrode pairs
with p-values below this line. We plot in the upper portion of
Fig. 2(b) the (nine) “significant edges” corresponding to the
significant p-values. Our confidence in this nine-node
network—derived from the time series data—is high; from
the FDR procedure we expect 0.10-9 ~ 1 false positive edge
(i.e., one spurious edge between uncoupled nodes). In this
case, we find exact agreement between the known network
topology [Fig. 2(a)] and the derived topology. We note that,
for sake of clarity, we chose a simple coupling measure that
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FIG. 2. (Color online) For the colored noise network all three
measures perform equally well and detect the underlying structural
topology. In the upper row, each circle indicates a node. [(a), upper]
The true connectivity of the network. With colored (or shaded) lines
we indicate directed connections between nodes; connections ini-
tiate from the red (dark) line end and terminate at the yellow (light)
line end. [(a), lower] The power spectrum averaged over the data
from all nine nodes follows an approximate 1/f® behavior. [(b)—(d)]
The p-values (lower) and corresponding functional network topolo-
gies (upper) derived from (b) the naive method, (c) extremum
method, and (d) bootstrap method. The dark gray line in the lower
figures indicates the threshold for the linear step-up FDR procedure;
we consider p-values below this line—in the unshaded region—
significant. All three significance tests capture the functional topol-
ogy equally well.

does not determine edge direction. More sophisticated cou-
pling measures that indicate edge direction may be employed
following the general paradigm outlined above, as we dis-
cuss in Sec. V.

In Figs. 2(c) and 2(d), we show the topology derived us-
ing the extremum and bootstrap methods, respectively. In
both cases, we follow the linear step-up FDR procedure with
q=0.10 to identify significant edges. For the extremum
method [Fig. 2(c)] we identify eight significant edges, one
less than expected and anticipate 0.10-8~1 false positive
edge.

To compute the frequency domain bootstrap, we first cal-
culate the average power spectrum of all (nine) nodes. We
then create a merged distribution using a subset of ten elec-
trode pairs (of the possible 36) and N,=10 000 for each sur-
rogate distribution. The resulting merged distribution con-
tains 10-N,=10> points; therefore, the smallest p-value we
can compute through this method is 107>. We find, in this
case, six p-values at this detection limit. Using the bootstrap
method [Fig. 2(d)], we identify ten network edges, one more
than expected. We do expect 0.10-10=1 false positive edge
in the network although given only the time series data we
could not identify which of the ten edges is spurious.

These simulation results suggest that all three measures of
edge significance perform equally well. This is surprising,
especially for the naive method in which we neither Fisher
transform the maximal correlation values (to induce normal-
ity), nor account for our choice of an extremum (the maxi-
mum of the absolute value of the cross correlation). The
naive method succeeds, in this case, because the two omis-
sions appear to balance. Omitting the Fisher transformation
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FIG. 3. (Color online) For the simulated neural data the choice
of statistical test is vital to construct an appropriate network. [(a),
upper] The data consist of twenty cell groups (gray circles) and 22
connections between cell groups. Directed connections proceed
from the red (dark) to yellow (light) end of each line. [(a), lower]
The average power spectrum of the 22 nodes exhibits a prominent
peak near 5 Hz. [(b)—(d)] The functional networks deduced. The
naive method (b) identifies no significant p-values; with ¢=0.10 in
the linear step-up FDR procedure, none of the p-values lie below
the (dark gray) line (¢/m)-i. The extremum method (c) identifies 17
significant edges (of which we expect two are false positives); 14
match the structural network in (a). The bootstrap method (d) de-
tects 18 edges, of which we expect two false positives. This proce-
dure detects 15 (of the 22) true edges.

increases the p-values we observe, while utilizing the
normal distribution with zero mean—not the extremum
distribution—decreases the p-values. One omission compen-
sates the other so that, in this case, the resulting p-values are
approximately correct. Unfortunately, we cannot rely on this
delicate balance to always succeed as we illustrate in the next
example.

B. Simulated neural data

In the previous model, we simulated colored noise activ-
ity possessing a 1/f“ falloff of the power spectrum. We now
consider a more realistic model of interacting neural popula-
tions. We provide a brief description of the model here; more
details may be found in Appendix B. The model consists of
1000 neurons divided into twenty groups of 50 cells. Within
each group we include strong connections (excitatory syn-
apses) between randomly chosen neurons; activity initiated
by a few neurons in a group quickly spreads to the other
neurons of the same group. Between cell groups, we estab-
lish only weak (excitatory synaptic) connections joining in-
dividual neurons of specific cell groups. We illustrate the
topology of these weak connections between cell groups in
Fig. 3(a). In this figure, each gray circle represents a cell
group (of 50 strongly connected neurons) and lines represent
connections between cell groups. With this connectivity in
place, we simulate the neural dynamics and compute the av-
erage population activity of each group. The local popula-
tions tend to oscillate at 5 Hz; in Fig. 3(a) we plot the power
spectrum averaged over all groups. We then employ the gen-
eral paradigm described above to the resulting neural activi-
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ties and compare the measured functional connectivity (i.e.,
the pattern of connectivity inferred from the simulated neural
dynamics) to the known structural connectivity between
nodes shown in Fig. 3(a). The results, as we show below,
depend upon the significance test we employ.

We apply the coupling measure pairwise to all m
=20-19/2=190 possible group pairs in the network and test
the significance of each result by computing a p-value using
one of the three procedures defined above. We begin with the
naive method, whose p-values we plot as asterisks in the
lower portion of Fig. 3(b). With ¢=0.10 in the linear step-up
FDR procedure, we find no significant values of maximal
cross correlation; none of the p-values lie below the line
(g/m)-i. The resulting (trivial) network—shown in the upper
portion of Fig. 3(b)—contains no edges. The other two sig-
nificance tests produce nontrivial networks. Using the extre-
mum method and linear step-up FDR procedure (with ¢
=0.10) we identify 17 significant edges. The resulting net-
work, shown in Fig. 3(c), correctly identifies 14 edges and
possesses three erroneous edges (i.e., edges we identify in
the functional network that do not exist in the structural net-
work). We expect from the FDR procedure g-17~2 false
positives, in approximate agreement with the three erroneous
edges observed. Finally, we show in Fig. 3(d) the p-values
and network determined using the bootstrap method. In this
case, we detect 18 edges (and expect two false positives).
This procedure detects 15 (of the 22) true structural edges
and produces three erroneous edges, again in approximate
agreement with the number of false positives expected.

In all three cases, the functional topology derived from
the mean dynamics fails to capture exactly the true structural
topology of the network. The naive method detects no sig-
nificant edges and performs most poorly. This is not surpris-
ing; we expect that the un-normalized p-values and incorrect
distribution of maximal correlation values will compromise
the naive method. The extremum and bootstrap methods pro-
duce similar functional networks that approximate the true
structural network. Although both measures make mistakes,
the FDR procedure provides an estimate for the number of
erroneous edges to expect. We conclude that for these simu-
lated data, the extremum and bootstrap methods outperform
the naive method and qualitatively reproduce many (but not
all) of the network edges.

C. Human ECoG data

In the previous two examples, we applied the coupling
analysis to networks with known structural topology. This
allowed us to compare the derived functional topology with
the true structural topology and determine each method’s
performance. As a last illustration of the methods, we con-
sider voltage activity recorded directly from the cortical sur-
face (electrocorticogram or ECoG data) of an epileptic hu-
man subject for clinical purposes (Appendix C). We focus on
a short interval (1 s) of data recorded from 97 electrodes
while the subject experienced a seizure. The data within the
1 s interval are approximately weakly stationary (as a rough
indication we find that the mean, standard deviation, and
power spectra [Fig. 4(a)] are not significantly different in the
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FIG. 4. Functional networks constructed from 1 s of ECoG data
recorded at 97 electrodes during a seizure depend upon the statisti-
cal test we perform. [(a), upper] A simple threshold network with
edges (black lines) drawn between nodes pairs exhibiting sufficient
functional coupling, s;;>0.75. [(a), lower] The power spectrum av-
eraged over all 97 electrodes exhibits a broad peak from 5-10 Hz
and an approximate 1/f* falloff from 10-50 Hz. [(b)—(d), lower]
The 4656 p-values calculated from (b) the naive method, (c) extre-
mum method, and (d) bootstrap method. For each method, we fix
¢=0.01 in the FDR procedure. [(b)—(d), upper]| The corresponding
functional networks. The naive method (b) detects only one signifi-
cant edge and the corresponding network is nearly trivial. The net-
work created from the extremum method (c) contains 238 edges,
and from the bootstrap method (d) 279 edges.

first and second halves of the interval). We apply all three
methods to the data and compare the resulting (functional)
networks. In this case, the structural connectivity is un-
known. We find that, as before, the extremum and bootstrap
methods produce networks consistent with one another.

We show the deduced functional networks in Figs.
4(b)-4(d). In each case, we test the significance of m
=97.96/2=4656 maximal cross correlation values, and use a
linear step-up FDR procedure with g=0.01 to define signifi-
cant p-values. For the naive method [Fig. 4(b)] we find one
significant p-value and the corresponding (nearly trivial) net-
work contains only one edge. We note that the node locations
in Fig. 4 do not correspond to their physical locations on the
human cortex. Instead, we simply arrange the nodes in a
circle.

From the extremum and bootstrap methods we create
similar networks. For the former, we identify 238 significant
edges (of which we expect three false positives) as drawn in
Fig. 4(c). For the latter, we select 500 electrode pairs (of the
possible 4656 pairs) to compute surrogate distributions, each
distribution containing N,=5000 realizations. The smallest
p-value detectable in the resulting merged distribution is 4
X 1077, Using this method we find the 279 significant edges
drawn in Fig. 4(d), of which we expect three false positives.

Comparing the functional networks deduced from the ex-
tremum and bootstrap methods, we find that the two are
similar. Moreover, we show in Fig. 4(a) a fourth functional
network constructed using a simple threshold procedure; we
include edges only between those node pairs with s;;>0.75.
Remarkably, all three networks are qualitatively similar (no-
tice the concentration of edges near the left and upper nodes)
although we use different techniques to construct each net-
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FIG. 5. By shuffling the ECoG data, we reduce coupling be-
tween the time series and detect no (or few) edges. [(a), upper] A
simple threshold network with edges drawn between node pairs
with sufficient functional coupling (s;;>0.75). [(a), lower] The
power spectrum average over all electrodes. [(b)—(c)] The p-values
(lower) and corresponding networks (upper) derived from the (b)
naive, (c) extremum, and (d) bootstrap methods. Only the latter two
methods detect edges, five and 14 respectively, of we expect one
false positive.

work. Of course the simple threshold network does not indi-
cate our confidence in the network: how many edges in Fig.
4(a) are false positives? In addition, we note that the boot-
strap method is computationally expensive; constructing the
surrogate distribution requires approximately 90 min on a 2
GHz Core Duo processor and therefore at least 45 h to con-
struct the networks for 30 s of seizure activity. The extre-
mum method, designed for our particular choice of coupling
measure, identifies a network similar to the bootstrap method
in a computationally efficient way.

D. Human ECoG data: Shuffled

For the human ECoG data, we do not know the structural
network (i.e., we do not know the topology of chemical and
electrical connections between neurons in these cortical re-
gions). Therefore, we cannot validate the functional net-
works shown in Fig. 4 by comparison with anatomical con-
nections. However, we can manipulate the ECoG data to
disrupt functional connections and verify that our signifi-
cance tests detect no coupling. To do so, we create a new
data set: we assign to each electrode 1 s of data chosen at
random from a 120 s interval that includes 60 s of preseizure
and 60 s of seizure activity. For example, electrode No. 1
may contain ECoG data from 7=[8.2,9.2], electrode No. 2
data from ¢=[97.0,98.0], electrode No. 3 from ¢
=[110.4,111.4], and so on. With the data chosen in this way,
we expect only weak associations between electrode pairs.

We follow the procedure described above to analyze these
“shuffled” data. We compute the maximal cross correlation
for each electrode pair, and show the corresponding p-values
and functional networks in Figs. 5(b) and 5(c). With ¢
=0.01, we find no significant coupling using the naive
method. We do detect five significant edges with the extre-
mum method and 14 with the bootstrap method (and expect
one false positive in each case). Some of these significant
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edges match those determined using a simple threshold pro-
cedure (s;>0.75) whose network we show in Fig. 5(a). We
conclude that the three significance tests behave as expected
for the shuffled data; if we disrupt the coupling in the data,
we expect nearly trivial functional networks.

E. Human ECoG data: Nonlinear correlation

In this work we described a general statistical paradigm
for establishing confident network topologies. We chose to
use a simple linear measures of association (the cross corre-
lation) and found in the simulated data that this measure
captures much of the association structure within the net-
works. For some types of data, further coupling structure
could be discovered with more sophisticated higher-order as-
sociation measures. The general paradigm we propose ap-
plies to any choice of coupling measure, including measures
that detect nonlinear interactions.

The observational data of interest here—the ECoG re-
corded during a seizure—arise from a complicated dynami-
cal system of nonlinear elements (i.e., populations of coupled
neurons). Therefore, we might expect nonlinear measures of
coupling to be more appropriate for the analysis of these
data. Yet, linear and nonlinear measures of coupling appear
to perform equally well when applied to simulated and
ECoG data [50-55]. One reason for this may be that, al-
though both linear and nonlinear couplings occur between
ECoG data, the linear effects dominate. To explore the ap-
propriateness of nonlinear methods here, we plot in Fig. 6
two association matrices generated for the 1 s of ECoG data
analyzed in Sec. IV C. In Fig. 6(a) we plot s;—the linear
correlation measure—and in Fig. 6(b) we compute the non-
linear correlation coefficient (hizj) to construct the association
matrix [56,57]. Briefly, we compute h,zj for each electrode
pair over delays of =200 ms and select the maximum of hlz]
to plot in Fig. 6(b). Visual inspection suggests that both mea-
sures produce qualitatively similar association matrices. To
quantify this, we compute the two-dimensional correlation
between the association matrices in Figs. 6(a) and 6(b) and
find a value of 0.83. Repeating this calculation for sixty
separate 1 s intervals extracted from the ECoG data, we find
correlation values of 0.78 = 0.07 between the association ma-
trices.

To construct a confident network from the association ma-
trix in Fig. 6(b), we must test the significance of each non-
linear correlation coefficient hlzj We do not possess an ana-
lytic expression for the significance of hizj, but can utilize the
same frequency domain bootstrap paradigm described in
Sec. III. Briefly, we first make the association matrix sym-
metric by defining h?j:hjz-iE max(hizj,hfi) so that the resulting
network is undirected. Then we compare each /7 to a boot-
strap distribution of 10° surrogates calculated following the
procedure in Sec. III. We fix g=0.01 and plot the 231 edges
identified as significant in Fig. 6(d). For comparison, we plot
in Fig. 6(c) the network constructed from the cross correla-
tion using the bootstrap procedure. The resulting networks
are qualitatively similar. In agreement with earlier reports, it
is evident that the linear and nonlinear coupling measures
produce similar association matrices and networks [52].
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FIG. 6. For the ECoG data, linear and nonlinear association
measures produce similar association matrices and networks. In (a)
we plot s;; for each electrode pair, while in (b) we plot the maxi-
mum of the nonlinear correlation coefficient for each electrode pair.
Both measures range between 0 (weak coupling in white) and 1
(strong coupling in black). Visual inspection suggests the two mea-
sures produce comparable association matrices. [(c)—(d)] The net-
works constructed from the (c) linear and (d) nonlinear association
matrices. We employ the bootstrap method and fix ¢=0.01 in the
FDR procedure. The resulting networks are quite similar. We note
that (c) is identical to the network in Fig. 4(d).

The general paradigm we describe in Sec. II applies for
any choice of coupling measure, linear or nonlinear. In this
work, we chose the cross correlation—a linear association
measure—to construct the functional networks. There are
also two important practical reasons to employ this simple
measure. First, computing the cross correlation requires only
one user-specified parameter, the lag 7. Nonlinear measures
require, for example, the choice of frequency band for phase
synchronization or the choice of embedding dimension and
delay time for generalized synchronization. Second, for the
cross correlation measure we can derive analytic expressions
for the significance test, making this technique computation-
ally efficient compared to surrogate procedures. This is par-
ticularly important for studying dynamically evolving net-
works in which we construct many networks each with
associated levels of confidence. Although a linear association
measure suffices here, subtle changes in coupling of ECoG
data (perhaps resulting from behavioral changes less dra-
matic than seizure) may require more sophisticated nonlinear
measures.

V. DISCUSSION

Our increased ability to collect multivariate spatiotempo-
ral data (e.g., from high-density electrode arrays) necessitates
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the construction and analysis of complex functional net-
works. In this manuscript, we adopted a statistical hypothesis
testing paradigm for constructing such functional networks.
This paradigm involved three steps: (1) choice of an associa-
tion measure, (2) definition of a significance test, and (3)
accounting for multiple significance tests. Although the para-
digm itself is quite general, the details accompanying each
step are problem specific.

Here we developed this general paradigm for multivariate
time series data. For the association measure we chose the
maximum of the absolute value of the cross correlation. We
defined two approaches to significance testing (one analytic
and the other computational), and employed a linear step-up
FDR procedure to account for multiple tests. Applying these
techniques to three data sets, we showed that the choice of
significance test was critical. Without accurate p-values for
each network edge, we lack confidence in the resulting net-
work.

The general paradigm outlined in Sec. II applies to any
choice of association measure. In this work we focused on a
simple cross correlation measure for four reasons. First, the
measure is computationally efficient. Second, the cross cor-
relation requires only one user-specified parameter (the lag
7). Third, analytic expressions exist (or can be derived) to
test the significance of each cross correlation result. Fourth,
linear coupling measures appear to perform just as well as
nonlinear coupling measures applied to macroscopic voltage
data [50-55]. More appropriate coupling measures exist [29]
that may perhaps improve the network results we present
here. In particular, we do not distinguish between direct and
indirect interactions with the cross correlation measure (e.g.,
if region A drives regions B and C, then we will detect cor-
relations between B and C, although these two regions may
possess no direct interactions). Measures that distinguish di-
rect from indirect interactions and incorporate the flow of
information [58,59] would be of use. However, choosing a
more sophisticated association measure does not guarantee
more accurate functional networks. The coupling measure
must also include an accurate significance test; without pre-
cise p-values for each network edge, we weaken our mea-
sures of network confidence.

Researchers in various other contexts have followed a
similar strategy of associating p-values with each network
edge and accounting for multiple significance tests (e.g.,
[60—62]). Our numerical results illustrate how the choice of
an appropriate significance test associated with a specific
coupling measure is critical. That a measure possesses a sig-
nificance test does not guarantee accurate p-values; typically
significance tests make specific assumptions about the data.
For example, we found that the naive method—although per-
haps intuitively appealing—was inappropriate because we
did not account for taking the maximum of the absolute value
of the cross correlation, and thus produced inaccurate
p-values and inaccurate networks. Therefore, we utilized two
additional complimentary measures. By testing the paradigm
on simulated data with known physical connectivity we de-
duced appropriate significance tests for the association mea-
sure implemented here.

We note that trivial networks (e.g., networks without
edges as in Fig. 5) rarely appear in practice. Upon finding a
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trivial (or nearly trivial) network, a common response is to
adjust the network threshold to include more edges, perhaps
until the network becomes strongly connected. To follow a
similar strategy here we increase the value of ¢ in the linear
step-up FDR procedure. If, for example, we set g=0.5 (in-
stead of ¢=0.01) we may detect new significant network
edges. But by increasing ¢ we decrease our confidence in the
network; with ¢g=0.5, we expect half of the network edges
declared significant are false positives. Thus, through our
choice of g, we balance the number of edges detected with
our confidence in the network.

The typical approach to construct functional networks
from multivariate time series data involves thresholding an
association measure. For example, we may define edges be-
tween nodes whose maximal cross correlation exceeds 0.75,
as in [23]. This procedure for constructing a network suffers
from numerous inadequacies. First, we lack a measure of
confidence in the resulting network. With this choice of 0.75
as threshold how many spurious edges do we expect, and
does this number change as we vary the threshold? Second,
we expect the choice of threshold may depend on the par-
ticular instance of data observed. For example, in construct-
ing functional networks of ECoG data recorded during a sei-
zure, the threshold may vary from patient to patient,
depending on mechanisms intrinsic to each individual. Fi-
nally, a more robust approach to constructing functional net-
works must propagate error in the association measure to
uncertainty in network measures (e.g., to uncertainty in mea-
sures of degree or betweenness).

We propose that choosing a threshold value of ¢, rather
than a threshold value of an association measure, constitutes
a more rigorous procedure for establishing functional net-
works. By choosing the threshold through the use of formal
statistical hypothesis tests, we create functional networks
with specified levels of network uncertainty that may be cali-
brated across a population of multivariate data. In the future,
we will use this approach to study how uncertainty in the
association measure affects uncertainty in network character-
istics, how to adopt these procedures for weighted (rather
than binary) networks, and how networks derived from non-
stationary ECoG data evolve in time. Combined with bio-
physical models, robust techniques to create functional net-
works will perhaps illuminate the mechanisms that produce
the observed activity and, when necessary, suggest how to
alter this activity.
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APPENDIX A: DERIVATION OF EQ. (4)

Suppose that Z,,...,Z, are independent and identically
distributed normal random variables, with mean O and vari-
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ance 1. Define M,=max;(Z;) and m,=min;(Z;). Then

Pr(max|Z| =z)=Pr(M, =z, m,=-2)

~Pr(M, = 2)Pr(m, = -z2)
=[Pr(M, = ).

The approximate equality in the second line follows by
asymptotic independence of the max and min (e.g., Theorem
1.8.2 of [63]), while the equality in the last line follows by
symmetry of the normal distribution. Now by, for example,
Theorem 1.5.3 of [63] we have

Pr(an(Mn - bn) = Z) = exp(_ e_z)’ (Al)

with equality holding asymptotically in n. As a result, we
obtain the expression in Eq. (4) in the ideal case that the
standardized statistic zf; derives from cross correlations
C;[ 7] that are independent. Although these cross correlations
will clearly be dependent, approximation (4) nevertheless
can be expected to hold fairly generally, as the basic limiting
extreme value distribution used here is quite robust for se-
quences of normal random variables under a range of depen-
dency conditions, for both stationary and even nonstationary
cases. See, for example, chapters 4 and 6 of [63].

APPENDIX B: NEURAL MODEL

We model the dynamics of each neuron with two ordinary
differential equations, one to represent the membrane volt-
age, and the other a membrane recovery variable [64]. We
choose the model parameters so that each neuron generates
regular spiking activity (i.e., a=0.02, b=0.2, ¢=-65.0, and
d=8.0 in [64]). We then connect the neurons with excitatory
synaptic connections to establish two connectivity patterns:
strong-local connectivity and weak-distant connectivity. In
both cases, we divide the neurons into groups of 50 cells
numbered sequentially (i.e., group 1 contains cells {1-50},
group 2 cells {51-100}, group 3 cells {101-150}, and so on.)
Within each local group of cells, we create 1200 directed
excitatory synapses (of the possible 50X 49=2450 directed
pairs with no self synapses). Each synapse is assigned a uni-
form random conduction delay between 0 and 10 ms and
synaptic strength chosen uniformly between 0 and 15. These
synapses establish the strong-local connectivity within a cell
group and define the twenty cell groups in the network; see
Fig. 7.

We also create weaker synaptic connections between the
local cell populations. To do so, we select two groups (e.g., 1
and 8) and create 550 excitatory synapses from neurons in
one group (e.g., 1) to neurons in another (e.g., 8). These
“distant” synapses are weaker than the local connections; we
assign the synaptic strengths smaller random values (chosen
uniformly between 0 and 5) and uniform random conduction
delay between 0 and 10 ms. We illustrate the 22 distant con-
nections between the twenty cell groups in Fig. 3(a). Each
gray circle represents a local cell group (i.e., a subset of 50
neurons). The colored (shaded) lines represent the distant
synaptic connections between groups. In addition to the local
and distant synaptic inputs, we also include strong synaptic
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FIG. 7. (Color online) A cartoon representation of the network
used to simulate the neural data. Each group of neurons contains 50
cells, represented as filled triangles. Within a group, we include
many strong synaptic connections (terminating at large circles, or-
ange). Between groups, we include few weak synaptic connections
(terminating at small circles, blue). We show examples of the aver-
age activity of each group (from which we construct the functional
networks) in the lower portion of the figure.

input (from the thalamus, say) to one randomly chosen neu-
ron each millisecond, causing this neuron to generate an ac-
tion potential. We follow the algorithm in [64] to simulate
the neural population for 5000 steps (or 5 s) with a sampling
interval of 1 ms. The model is similar to recent simulations
[65,66], except that we introduce here connectivity with a
particular structural topology.

In the human ECoG recordings described in Sec. IV C,
we observe the dynamics of postsynaptic potentials produced
by large neural populations, not the spiking activity of indi-
vidual neurons [67,68]. To mimic these population dynamics,
we construct the mean activity of the local neural groups in
the following way. First, we define /[#] as the total current
input to each neuron at time 7. In the model equations we
simulate here, these current inputs change instantaneously
[64]. In reality, current inputs follow the opening and closing
of channels and evolve more slowly [69]. To approximate
these slow dynamics at postsynaptic neuron j, we use the
following equation:

§;=1t](1-s)) - s;20, (B1)

where s; represents the state of the synapse at neuron j, and
I[t] represents the total excitatory input current to the neuron
J at time ¢. We note that, for simplicity, we approximate the
total synaptic input to neuron j as a single synapse with
dynamics driven by / j[t], the activity of all neurons presyn-
aptic to j. When [;[¢] is large, excitatory current enters neu-
ron j and s;— 1. When [[¢] is small, s;— 0 with a decay time
constant of 20 ms, and neuron j approaches its resting po-
tential. We define the mean activity of a neural group as the
average of s; over the local (50) cell population. For ex-
ample, we compute the mean activity of population 1 as the
average value of s; for neurons j={1,2,...,50}. We only use
s; to define the mean population activity; these synaptic dy-
namics do not impact the voltage dynamics of the model
neurons.

With the population activity defined in this way (i.e., as
the mean synaptic dynamics within a neural group), we
simulate 5 s of neural dynamics and record the average ac-
tivity of each group. We then scale the group activity to have
zero mean and unit variance and add Gaussian noise (zero
mean and 0.55 variance) to each sample of each time series.
Finally, we downsample the group traces by a factor of five,
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FIG. 8. (Color online) Examples of the ECoG data recorded
from the human subject during seizure. In the upper trace we show
160 s of data recorded from a single electrode; the seizure begins at
the transition from low amplitude to high-amplitude fluctuations
denoted by the arrow. We indicate the one second interval analyzed
with the vertical red line. The lower ten traces illustrate the voltage
activity recorded from ten (of the 97) electrodes during this one
second interval; we apply the coupling measure to all pairs of these
data.

reducing the sampling rate (from 1000 to 200 Hz) to de-
crease subsequent computational time; we show examples of
the resulting time series data in Fig. 7.

APPENDIX C: HUMAN SUBJECT DATA

The ECoG data were recorded from a 37 year old male
patient with medically refractory epilepsy whose seizures be-
gan at age 3. Following the failure of seven antiseizure medi-
cations and a vagal nerve stimulator, and upon recommenda-
tion of his clinical team consisting of epileptologists and
neurosurgeons, the decision was made to pursue resection of
the tissue from which the seizures arose. To this end, subdu-
ral grids of electrodes were implanted. The goal of this pro-
cedure was to identify the epileptogenic zone—the region of
the brain producing recurrent seizures—and surgically re-
move it [70].

The ECoG recordings consisted of 100 electrodes placed
directly on the cortical surface (92 electrodes over the left
frontal and temporal lobes) and within deep brain regions
(eight electrodes within the temporal lobe). Following elec-
trode implantation, the subject was admitted to a specialized
monitoring unit and data recorded continuously at 500 Hz for
ten days. During this time, four seizures were observed; to
illustrate the measures, we analyze only the second seizure
here. Analysis of the collected data was approved through
the Partners Health Care Human Research Committee and
the Charles River Campus Institutional Review Board.

We apply our coupling analysis to simultaneous record-
ings from 97 electrodes; three electrodes—suffering from ex-
treme artifacts—were discarded. Before beginning the cou-
pling analysis, we process the ECoG data in the following
way. First, we low-pass filter the data (two-way least-squares
finite impulse response filter) below 55 Hz to isolate the
low-frequency components. We therefore ignore higher-

061916-11



KRAMER et al.

frequency activity that may delineate seizure onset [71,72]
and instead focus on the high-amplitude low-frequency os-
cillations that characterize unequivocal clinical seizures [73].
We then choose a 1 s interval of the ECoG data during the
seizure. We chose this short interval to balance two compet-
ing needs: stationarity and sufficient data. For the former, we
must choose an interval in which the voltage dynamics at
each electrode remain approximately consistent (i.e., exhibit

PHYSICAL REVIEW E 79, 061916 (2009)

oscillations of the same approximate character). For the lat-
ter, we must choose an interval that contains enough data to
calculate the coupling measure (e.g., a 50 ms interval would
fail to capture some slow oscillations characteristic of a sei-
zure). Finally, we normalize the data from each electrode
within the 1 s interval to have zero mean and unit variance.
We show examples of the ECoG data employed in the analy-
sis in Fig. 8.
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