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Abstract Inference of functional networks—represent-
ing the statistical associations between time series
recorded from multiple sensors—has found impor-
tant applications in neuroscience. However, networks
exhibiting time-locked activity between physically in-
dependent elements can bias functional connectivity
estimates employing passive measurements. Here, a
perturbative and adaptive method of inferring network
connectivity based on measurement and stimulation—
so called “evoked network connectivity” is introduced.
This procedure, employing a recursive Bayesian update
scheme, allows principled network stimulation given
a current network estimate inferred from all previous
stimulations and recordings. The method decouples
stimulus and detector design from network inference
and can be suitably applied to a wide range of clinical
and basic neuroscience related problems. The proposed
method demonstrates improved accuracy compared to
network inference based on passive observation of
node dynamics and an increased rate of convergence
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1 Introduction

A rapidly growing paradigm in neural medicine is the
use of brain stimulation for treatment of neurological
pathology (Kringelbach et al. 2007). The goal is to
directly and non-pharmacologically modulate neuronal
dynamics in a manner that ultimately leads to ther-
apeutic effects (Kringelbach et al. 2010; Schiff et al.
2007; Perlmutter and Mink 2006; Moro and Lang 2006).
Currently, these technologies are used in a principally
open-loop manner, i.e., different stimulation parame-
ters are empirically tested until, eventually, a desired
effect is achieved.

A critical component of this neurophysiology is the
network connectivity and, specifically, how stimula-
tion at one brain site affects the activity in another.
Many inference techniques for neural connectivity are
performed in a passive context, measuring and then
finding the statistical associations between dynamic
activity recorded from separate brain areas. The result
is a functional connectivity network consisting of nodes
(e.g., brain regions or electrodes) and edges typically
representing the strongest statistical associations be-
tween nodes (reviews in Friston 1994 and Sporns 2010).
Such connectivity does not necessarily clarify how stim-
ulation at a network region might affect surrounding
regions. Stimulation provides an opportunity to ac-
tively probe the network and discover these evoked
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connections. How to apply this stimulation in a sta-
tistically principled and efficient way that yields the
maximum information about the underlying network
topology—the “evoked network connectivity”—is the
question addressed in this paper.

In motivating this work, a specific connection is
made to epilepsy, a pathological neurological condi-
tion that affects 50 million people worldwide. Of these
50 million, more than 50 % suffer from localization-
related epilepsy. Unfortunately, 25–35 % of these
patients continue to have seizures despite maximal anti-
convulsant therapy (Keränen et al. 1988, 1989; Zarrelli
et al. 1999; Annegers 2001), and furthermore those
receiving medications may suffer from its considerable
side effects. An alternative for patients suffering phar-
macologically intractable epilepsy is surgical interven-
tion. This intervention, excision of the brain region
generating the seizure (i.e., the seizure focus), relies
upon accurate spatial localization. Both noninvasive
imaging techniques and invasive voltage recordings
made directly from the cortical surface (the electro-
corticogram or ECoG) help localize the seizure focus.
In many cases, regional surgical resection may reduce
or cure seizures but this procedure remains an option
of last resort as it carries significant risk and is only
curative in ≈ 40–70 % of neocortical epilepsy cases
(Engel et al. 2003).

The ECoG data—critical for guiding surgical re-
section and treating epilepsy—also provide a unique
window into brain electrical activity. Typical recordings
include high density electrode configurations on the
cortical surface (e.g., an 8 by 8 electrode grid with 1 cm
spacing between electrodes), as well as measurements
from deep, mesial brain structures (Gibbs et al. 2002;
Schiff et al. 2000, 2005; Alarcon et al. 1995; de Curtis
and Gnatkovsky 2009; Fisher et al. 1992).

Recent research has focused on the characterization
of functional networks during seizure (see Kramer and
Cash 2012, for a review), although the fundamental
network characteristics of the seizure remain an ac-
tive area of research. One difficulty is that the infer-
ence of functional networks typically relies on passive
observation of brain voltage activity. Such observa-
tions cannot distinguish direct causal influences be-
tween anatomically connected regions (i.e., “effective
connections”, Friston et al. 2003) from statistical as-
sociations between anatomically unconnected regions
(Rubinov and Sporns 2010). For example, statistically
inferred associations between the activity recorded at
two electrodes can correspond to both a common
driving source observed at both electrodes or direct
anatomical connections linking the regions observed
by the electrodes. In addition, ongoing oscillations,

(a) (b)

Fig. 1 Schematic of adaptive perturbation scheme for cou-
pled neuronal oscillators. (a) In a typical, passive scenario,
the functional connectivity between three nodes exhibiting
ongoing oscillations is difficult to ascertain. The nodes may be
either connected to each other, producing independent activity,
or connected to a common driver. (b) By using simultaneous
stimulation and detection, the connections between nodes can
be disambiguated by detecting stimulation effects throughout the
network

a common phenomenon in neuronal networks, can
potentially confound the inferred functional networks
(Fig. 1(a)). To obviate these problems, recent work has
involved the use of active stimulation applied to ECoG
electrodes with implications for understanding brain
architecture (Keller et al. 2011), normal brain networks
(Matsumoto et al. 2004, 2007; Conner et al. 2011), and
brain networks in epilepsy (Enatsu et al. 2012; Valentín
et al. 2005a, b). While effective, the stimulus exposes
the brain to potentially harmful electric fields. To date,
the employed stimulation strategy has not been shown
to be optimal.

In this work the inference of brain evoked net-
works is accomplished with a strategy that performs
connectivity estimation as a recursive Bayesian proce-
dure that decouples stimulus/detector design. For each
stimulation, an optimal stimulus is chosen according to
the current knowledge of the network.

That stimulus is then applied, pairwise tests for con-
nectivity are performed, and subsequent results are
used to update network inference for the next stimula-
tion. The strategy, illustrated schematically in Fig. 1(b),
is flexible and provides a basis for real-time, optimal
network discovery and control.

The paper begins with relevant background in stim-
ulated network estimation in Section 2. The adaptive
network inferential procedure is presented in Section 3.
Simulations demonstrating the effectiveness of the pro-
posed network estimator are shown in Section 4. The
paper ends with a discussion in Section 5.

2 Background

To the best of the authors’ knowledge, an adaptive
procedure to infer evoked connectivity from brain volt-
age observations has not been discussed in the litera-
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ture. Previous work on stimulated network estimation
is related to classical system identification, for exam-
ple (Juang 1994). This classical work differs from the
current work in that the focus in the present work is
on inferring connectivity between network nodes as
opposed to inferring a dynamical systems model for
subsequent use in system control.

The proposed method uses a Bayesian recursive esti-
mator of network connectivity that adaptively changes
with time as data and associated stimuli become avail-
able. On a superficial level, this procedure is similar to
inference conducted with the so-called “time-varying
dynamic Bayesian networks” (TV-DBN) (Zhang et al.
2010; Wang et al. 2011).

However, important differences exist. In particular,
TV-DBN provides a network model of a joint prob-
ability distribution between random variables forming
random processes. In this data model, each node is a
realization of a random process and a connection be-
tween nodes describes a dependence between random
processes. The graph describing the network is inferred
from data, along with parameters further specifying
probabilistic relations, and describes conditional inde-
pendence between random variables in the model. In
the current work, described below, the network edges
are the quantities of interest, as opposed to the net-
work nodes, with focus placed upon the edge marginal
probability mass functions irrespective of their proba-
bilistic relation to other edges. By directly modeling the
quantities of interest (that is the edges, or connections,
between nodes), and by further assuming these edges
to be probabilistically independent, simplification is
obtained and the recursive update avoids considerable
computational cost. In particular, a sum over the set
of all possible networks connecting a given number of
nodes is reduced to two times the number of possible
pairwise connections. This is a great reduction in com-
putational burden, from O(2N2

) to O(N2), where N is
the number of nodes. In this work, networks are simu-
lated with 24 nodes, and have 276 possible pairwise con-
nections. The number of different networks connecting
these 24 nodes is around 1083. In Wang et al. (2011), the
number of random processes modeled by a TV-DBN
is much less than 24. Determining the feasibility of
performing the particle filtering, or sequential Monte-
Carlo method of recursive update used in Wang et al.
(2011) to infer a TV-DBN on data measured from this
modest number of nodes (in terms of ECoG studies)
is beyond the scope of the current work. In Zhang et
al. (2010), a linear model for node activity is inferred,
where the time-dependent coupling matrix captures
interactions between nodes. This coupling matrix is
estimated via penalized least-squares; highly-connected

network estimates are penalized while sparsely con-
nected estimates are preferred. This assumption may
not be appropriate for highly-connected networks and
is not made herein.

3 Adaptive network inference by perturbation

Adaptive evoked network inference is conducted by
updating a prior probability density over all possible
networks in a Bayesian inferential framework imme-
diately after the application of a stimulus to a net-
work node. In the current setting, this stimulus is an
electric field applied to the brain in the vicinity of
an electrode. This stimulus manifests in the voltage
waveform and can be subsequently detected in elec-
trode recordings. As demonstrated in simulation in
Section 4, this stimulate-record paradigm allows dis-
ambiguation of evoked connections from connections
inferred amongst, for example, uncoupled synchronous
oscillators.

While desirable, adaptive network discovery is prob-
lematic given the complexity of the involved data. In
a typical paradigm, time-series from n nodes are ob-
served over a recording epoch. Thus, there are Nedge =
(n2 − n)/2 undirected pairwise connections that may
depend on many variables, including time, frequency,
and experimental condition. To model the data gen-
eration process in a classical statistical fashion that
accounts for all manners of connections over the 2Nedge

possible networks is difficult. In this work, the problem
is made tractable by decomposing adaptive network
discovery into three distinct parts, each part indepen-
dent of the others when conditioned upon information
from previous iterations. These three parts consist of
(1) the design and application of the stimulus, (2) the
design and application of the “detector”, that is, the
hypothesis test used to detect the presence of evoked
connectivity, and (3) the statistically principled up-
date of the inferred network to reflect the new infor-
mation acquired during the stimulating and detecting
processes. In the proposed paradigm, these three tasks
can adapt from one stimulus epoch to another. The
following sections detail these three components.

3.1 Stimulus and detector design

In the proposed inferential method, a stimulus at
time index k is applied to a node—in this case, an
electrode—and a detector is applied pairwise and
concurrently to the resulting time-series on all net-
work nodes.
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Define a stimulus, s, as a vector over all Nedge edges,
where

(s)j =
{

1, if the jth edge includes a stimulated node
0, otherwise

Given s, the detector is assumed to operate with some
probability of false alarm, pfa|s and missed detection,
pmd|s. The detector will either detect correspondence
between two nodes or will not. Hence the detector
response is binary.

Note that, in this paradigm, the stimulus vector s
encodes the specific node (electrode) that is stimulated
at a given time. It does not describe the specific local
stimulus design (e.g. electrical waveform). Such design
will be specific to the particular stimulation modal-
ity and is not explicitly considered in the proposed
methodology. Thus, the notion of “adaptive stimulus”
used herein describes where a local stimulus, designed
a priori, should be applied in a broader network.

The detector is assumed to perform identically be-
tween any two nodes, depending only on the stimulus
type (that is (s)j equal to 0 or (s)j equal to 1). The
performance of the proposed functional connectivity
inferential procedure depends on the performance of
the detector. Further, the interpretation of the net-
work depends entirely on what the detector measures.
For instance, detectors that are sensitive to high and
low frequencies may return different functional net-
works. Thus, quite abstract notions of evoked networks
are possible, depending on the definition of node,
stimulus and detector. The general paradigm is de-
picted in Fig. 1.

In this work, as a specific example of the proposed
perturbative network-discovery paradigm, the stimulus
is designed to induce sudden and, hence, broad-band,
deflections to the node output (waveform). Conse-
quently, the detector is specified to be a frequency-
interval energy detector sensitive to unusually large
power at high-frequencies, as further described in
Section 4 and illustrated by Fig. 2. For this example
application of the proposed methodology, a relatively
broad-band stimulating pulse directly influences edges
such that adjacent nodes possess improbably large en-
ergy at high-frequency. Such a situation is distinguish-
able from uncoupled, or naturally driven oscillations at
lower frequencies.

3.2 Adaptive network inference

Define the network, or graph, in terms of two vectors.
The first vector, v, specifies all possible pair-wise con-
nections. The jth element, (v)j, equals, for example, the
pair of integers, (a, b), where a specifies a node (or

Fig. 2 Example of spectral detector. (Top) Waveform output of
eight Wilson–Cowan oscillators displaying intrinsic oscillations of
similar frequency. A single node (thick line) is evoked, causing
a sharp broadband deflection (black arrow). (Bottom) Spectral
detection based on high frequency power can be used to detect
the broadband increase and, hence, identify the evoked node
(thick line). The range 40 Hz–150 Hz, shown by the shaded region,
is used in our simulation

vertex) in the network, and b specifies another node in
the network, potentially connected to node a. Thus, the
jth element of the vector v defines a potential network
connection. The second vector, e, contains elements
that are either a zero or a one and indicates which of
the inter-node connections defined by v are present in
the network. In particular, if (e)j equals 1, then the jth
pair of vertices specified by the pair of integers, (v)j, are
connected. Let d be a vector of length Nedge containing
the result of the connectivity detector described in
Section 3.1, applied pairwise to each of the Nedge pos-
sible network edges, v. The detector output for the jth
edge, (d)j, is zero if an edge is not detected and it is one
if an edge is detected.

Adaptive inference is performed by applying the
Chapman–Kolmogorov equation (Papoulis 1984) to
the problem of updating the posterior probability
distribution of the edges, P(e(k)|d(k), s(k), Hk), at
stimulus-index k, given the set of observations,
Hk = {

d(a) | a < k
}
, observed during past stimulations.

This procedure is similar in spirit to the adaptive
filters derived in Eden et al. (2004) for use in the
context of non-stimulated, adaptive point-process
filtering. Here s(k) is the vector of Nedge elements.
Each element is either a zero or a one, indicating
if an edge has been stimulated at stimulus-index
k, as described in Section 3.1. Note that in the
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envisioned paradigm, a stimulus is applied to a
specific node and any potential connection emanating
from that node is considered stimulated. In Appendix
(Section 5.3), it is shown, via the Chapman–
Kolmogorov equation, that the edge posterior at
stimulus index k can be related to the posterior at
stimulus index k − 1:

P
(
(e(k))j|(d(k))j, (s(k))j, Hk

)

∝P
(
(d(k))j|(e(k))j, (s(k))j

) ×
1∑

cj=0

P
(
(e(k))j|(e(k−1))j = cj

)

× P
(
(e(k−1))j = cj|(d(k−1))j , (s(k−1))j, Hk−1

)
, (1)

for j = 1, . . . , Nedge. In Eq. (1), the posterior at the
previous stimulus index, k − 1, is updated via mul-
tiplication of a user-specified one-step edge update
probability mass function, P

(
(e(k))j|(e(k−1))j

)
, prior to

marginalization and multiplication by the likelihood,
P

(
(d(k))j|(e(k))j, (s(k))j

)
, to yield the posterior probabil-

ity mass function of the edges at the current stimulus
index, k. The one-step edge update probability
mass function, P

(
(e(k))j|(e(k−1))j

)
, specifies a trade-off

between the speed at which the estimates will adapt to
a change in the network, and the temporal smoothness
of the estimates of the edge as a function of stimulus
index. In particular, the one-step edge update is
specified as,

P
(
(e(k))j = a|(e(k−1))j = b

)

=
{

aε + (1 − a)(1 − ε) , b = 0
a(1 − ε) + (1 − a)ε , b = 1

. (2)

Thus, the small, positive, user-specified parameter, ε,
controls the extent to which previous estimates of an
edge are thought to be accurate during the current
stimulus index, k. In this work, emphasis is placed upon
stimulus and detector design and the adaptive capabil-
ity of the proposed edge estimator is not explored. Con-
sistent with this focus upon principled stimulus design,
ε is set to a value near zero indicating confidence that
the network is not rapidly changing.

Completing the description of the posterior edge
probability mass function requires specification
of the likelihood, given edge independence,
Nedge∏
j=1

P
(
(d(k))j|(e(k))j, (s(k))j

)
, and an initial, prior

probability mass function for the edges, P
(
e(0)

)
. This

initial probability mass function, P
(
e(0)

)
, is set to 0.5 for

all edges, implying uncertainty regarding the presence
or absence of edges in the network. The likelihood of
the detector responses conditioned upon knowledge of
the network and stimulus at stimulus index, k, is the

probability of a sequence of independent Bernoulli
trials:

Nedge∏
j=1

P
(
(d(k))j|(e(k))j, (s(k))j

)

=
Nedge∏
j=1

{
P

(
(d(k))j|(e(k))j =1, (s(k))j

)
, (e(k))j =1

P
(
(d(k))j|(e(k))j =0, (s(k))j

)
, (e(k))j =0

. (3)

That is, at stimulus-index k, the detector responses,
d(k), and which edges were stimulated, s(k) are known,
and Eq. (3), is the probability of the observed detector
responses for the kth employed stimulation strategy, as
a function of the unknown edges, e(k). Equation (3) can
be more clearly written in terms of the probability of
missed detection, pmd|s, given stimulus s,

pmd|s = P
(
(d(k))j = 0 | (e(k))j = 1, (s(k))j = s

)
, (4)

and the probability of false alarm, pfa|s, given stimulus s,

pfa|s = P
(
(d(k))j = 1 | (e(k))j = 0, (s(k))j = s

)
, (5)

where pmd|s and pfa|s are assumed to be the same for
all j. Specifically, from Eqs. (4) and (5), the likelihood,
Eq. (3), can be written as,

P
(
(d(k))j = d | (e(k))j, (s(k))j = s

)

=
{

d(1 − pmd|s)+(1−d) pmd|s , (e(k))j =1

dpfa|s+(1−d)(1−pfa|s) , (e(k))j =0
. (6)

Equations (3) and (6) define the likelihood in terms
of the probability of false alarm and the probability
of missed detection, that is, in terms of the metrics
specifying detector performance.

While more complicated policies may be chosen, in
this paper the selection of which node to stimulate is de-
termined by selecting the node that possesses maximal
“node variance”. Node variance is defined as the sum
of the variances associated with each of the connection
probabilities. That is, if the �th edge connecting node i
to the other nodes exists with an estimated probability
of p̂i,�, the node variance, ηi, is computed according to,

ηi =
Nnodes−1∑

�=1

p̂i,�
(
1 − p̂i,�

)
, (7)

where

p̂i,� = P
(
(e(k))j|(d(k))j, (s(k))j, Hk

)
. (8)

where j indexes the connection between node i and
node �. Thus, the node variance summarizes the



308 J Comput Neurosci (2013) 34:303–318

uncertainty of the edges that would be involved in a
stimulation if the stimulation were applied to node i.
The specification of the adaptive policy is completed by
specifying the node to stimulate, i∗,

i∗ = arg max
i

ηi . (9)

3.3 Qualitative performance

The performance of the proposed inferential paradigm
depends on i) the number of nodes, ii) the performance
of the detector, and iii) the structure of the network.
The fraction of edges evoked by stimulating a single
node is inversely proportional to the number of nodes.
If almost all edges are evoked on any one node stimu-
lation, then the choice of node to stimulate is irrelevant
and any advantage of a more intelligent stimulation
strategy will be small. Thus, the proposed technique
will be more important for larger networks. When the
detector performance is very good, on each detection
the presence or absence of an edge will be precisely
inferred. In this situation, the ability of the proposed
stimulation strategy to re-visit nodes with uncertain
connections to other nodes will not be overly helpful.
Finally, as the probability of false alarm for many de-
tectors can be set (traditionally to 0.05), the parameter
that may change is the probability of missed detec-
tion. When the probability of missed detection is high,
the detections resulting in the absence of edges are
uncertain but detections resulting in connecting edges
are less so. Thus, the proposed methodology performs
well relative to inference methods employing a naïve
stimulation strategy when the network is explored with
relatively poor detectors and when the network is large
and highly connected, and further possesses some iso-
lated nodes with few connections. This latter situation
is explored in simulation in Section 4.

4 Simulation

A simulation study is used to demonstrate the perfor-
mance of the adaptive perturbation scheme. In par-
ticular, scheme is used to infer functional networks
in two settings: i) a model network of interconnected
mean-field neuronal oscillators, and ii) a more abstract
probabilistic network model. In both scenarios, adap-
tive stimulation is implemented according to Eq. (9).
The results indicate favorable performance of the pro-
posed scheme as measured by the accuracy of the in-
ferred network as compared with the true connectivity.
Moreover, in the presence of an imperfect detector

the scheme significantly outperforms a naive “round-
robin” type of stimulation approach.

4.1 Cortical network model

A mean-field model network of interacting neuronal
oscillators is used to test the adaptive perturbation
scheme in a neurophysiologic setting. Each node in
the network is a Wilson Cowan neuronal oscillator
that describes the neuronal dynamics within a cortical
macrocolumn (Destexhe and Sejnowski 2009; Wilson
and Cowan 1972). The model takes the form:

˙(x)j = −(x)j + (
ke − re(x)j

)
F

(
c1(x)j − c2(i)j

+ Ce((x)) + Pj(t)
) + be

j (u(t))j + w(t) , (10)

˙(i)j = −(i)j + (
ki − ri(x)j

)
F

(
c3(x)j − c4(i)j

+ Ci((x)) + Qj(t)
) + bi

j(u(t))j , (11)

where ((x)j, (i)j) are, respectively, the activity in excita-
tory and inhibitory cell populations of the jth node. The
physical meaning of the other parameters, along with
typical values, are given in Table 1. The function F(·) is
the sigmoid defined by

F(y) = 1
1 + exp

[−a
(
y − θ

)] − 1
1 + exp (aθ)

. (12)

Table 1 Parameter values for the Wilson–Cowan model

Symbol Description Typical value

c1, c3 Average number of excitatory 16, 15
synapses per cell

c2, c4 Average number of inhibitory 12, 3
synapses per cell

P, Q External input to the excitatory, [0,1.25], 0
inhibitory subpopulation

ke, ki The maximum values of the excita- 1,1
tory, inhibitory response functions

re, ri The absolute refractory period 1,1
of the excitatory, inhibitory
subpopulations

ae, ai The value of the maximum 1.3, 2
slope of the logistic curve
for the excitatory, inhibitory
subpopulation

θe, θi The position of maximum slope 4, 3.7
of the logistic curve for the exci-
tatory, inhibitory subpopulation

The symbols (first column) are described in the second column
and typical values are shown in the third column
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The network inter-connectivity arises through the func-
tions Ce(·) and Ci(·), where

xT = [(x)1 (x)2 ... (x)N]T, (13)

is a vector representing the excitatory activity in each
node. The connections between nodes are only excita-
tory. The specific coupling function considered will be

Cx,i(x) = ks

∑
k∈N

ck · (x)k, (14)

where N denotes the set of all nodes, ks is the coupling
strength and ck = 1 in the presence of a connection.
Such coupling is consistent with synaptic transmission
that is the dominant mode of connectivity between
brain regions (Hasegawa 2005).

The term (u(t))j is the exogenous input, used to
locally stimulate a given node in the network. The
model parameters are chosen so that each unconnected
node displays temporal oscillations. Oscillations in neu-
ronal ensembles are ubiquitous in both normal and
pathological neurophysiological regimes (Dayan and
Abbott 2005).

As discussed above, ongoing oscillations present a
challenge for passive functional connectivity inference
schemes. Indeed, connectivity based on metrics such
as cross-correlation might erroneously return a fully
connected network when each node is, in fact, pro-
ducing independent oscillations of similar frequency
(see Fig. 1(a)). Similarly, erroneous connectivity could
arise from independent nodes influenced by a common
driver. By using adaptive perturbation, these oscilla-
tions can be disrupted and, consequently, connections
between nodes can be detected (see Fig. 1(b)).

4.2 Stimulus and detector design

The local stimulus for a given node is defined by the
pulsatile input

(u(t))j = �, ∀t ∈ [Tstim, Tstim + �). (15)

Here, � is the duration of the pulse and Tstim is the time
of stimulation. Again, in an actual implementation, the
stimulus would be chosen according to the particular
experimental conditions and be sensitive to constraints
such as charge and current balance (Sunderam et al.
2010; Danzl and Moehlis 2008). Note, again, that the
proposed adaptive method determines where in the
network (the node index j) (u(t))j specified in Eq. (15)
will be applied, i.e., the structure of the vector s.

For detection, a spectral discriminator is used.
Specifically, following each stimulus, a node is consid-
ered to be evoked if

f2∫
f1

Sj (x) dx > ϕ, (16)

where Sj(·) is an estimate of the power spectral density
of the jth node, f1, f2 determine the frequency range
examined and ϕ is an empirical threshold. In other
words, a node is considered evoked if an effect is
observed immediately following stimulus application
in a specified frequency band. Figure 2 demonstrates
this detector design. Here, eight nodes are observed
in the presence of ongoing oscillations. A ninth node
(not shown) is stimulated using Eq. (15), causing one
of the eight “target” nodes to be evoked, leading to a
sudden deflection in the output (Fig. 2(a)). This effect is
detected as high frequency power in the power spectral
estimate (Fig. 2(b)). In this case, the spectral estimate
has been computed using a 200 ms window beginning
with the onset of the stimulus. The estimation parame-
ters are chosen as

f1 = 40 Hz, f2 = 150 Hz, ϕ = 1 × 10−5, (17)

and spectral estimation is performed using a standard
Welch’s method. In our simulation, this detector is
robust to the parameters Eq. (17). Again, in general,
the exact detector will be designed according to the ex-
periment and stimulus paradigm under consideration.

4.3 Validation with a biophysical model

Consider a nine node network consisting of Wilson–
Cowan oscillators with the following parameterization
(Wilson and Cowan 1973):

c1 = 16, c2 = 12, c3 = 15, c4 = 3, ae = 1.3, ai = 2

θe = 4, kd = 2, θi = 3.7, re = ri = 1, (18)

ke = ki = 1, be
j = bi

j = 1, Pj(t) = 1.25, Qj(t) = 0

with w(t) a Gaussian random process of variance 0.1.
The connectivity in the network is prespecified at the
outset of each simulation, and edges are bidirectional.

To implement the adaptive scheme, a 200 ms time
interval is chosen between successive stimulations, i.e.,

Tstim = m × 200(ms), (19)

is the time of the mth stimulation. The pulse intensity
is chosen as � = 1. Spectral estimates of the mth set
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Fig. 3 Inferred connectivity map for a nine node network of
neural oscillators. Here, the noise in the model (σ 2

w = 0.1) causes
the detector to exhibit missed detections with probability around
0.2. The four subpanels show the results of the adaptive scheme
after 5, 10, 15 stimulations and the true connectivity. The colored
edges indicate the probability of appearance determined by the
adaptive scheme (colorbar at right). Initially, many edges are
uncertain (green), but the adaptive scheme converges to the
correct connectivity in around 25 stimulations

of observations are obtained from the 200 ms interval
following stimulation using the parameters in Eq. (17).

Figure 3 shows a particular example of the evolution
of the inferred connectivity as a function of the number
of stimulations. For the level of noise, w(t), in our
model network, the detector offers moderate perfor-
mance (missed detections occur at a rate of around
0.2, while false alarms occur at a rate of around 0.05).
As shown, the correct connectivity is inferred within
25 stimulations.

Figure 4 illustrates the performance in a Monte
Carlo simulation for a nine node network with the
same detector performance, where the true network

connectivity is generated randomly at the start of each
trial (each edge is present with equal probability). The
correctness of the inferred networks is measured in
terms of the Jaccard error, defined as

Jaccard Error = 1 − |ETrue ∩ EInferred|
|ETrue ∪ EInferred| , (20)

where ETrue and EInferred are the collection of true and
inferred edges, respectively. The error takes the value
0 when the inferred network matches exactly the true
network. As shown, in the simulation, the inferred
connectivity converges to the correct network within 50
stimulations. This figure also illustrates convergence of
the mean variance taken over all edges, i.e.,

Mean variance = 1
Nedges

Nedges∑
j=1

ηj , (21)

where ηj, the node variance, is defined by Eq. (7).
These results demonstrate the efficacy of the scheme
in a scenario exhibiting many of the characteristics
of observation paradigms such as ECoG or nonin-
vasive scalp electroencephalogram (EEG), with on-
going oscillations and noise contributing to imperfect
detector performance. Using our adaptive network
discovery scheme, correct networks are inferred with
rapid convergence.

4.4 Validation with a probabilistic model

In the biophysical model of the previous section, the ap-
plied stimulus altered the dynamics of node activity, as
revealed by changes in spectral power. In this section, a
detector response, at every stimulus index, is the result
of a Bernoulli draw consistent with the probability of
detection. That is, the connections between Nnode nodes
in a network are specified to be either present or absent
at the beginning of a simulation. At every stimulus

Fig. 4 Monte Carlo
simulation (n = 100) of nine
node network. For each
simulation, the network edges
are generated randomly and
equiprobably. The detector
exhibits probability of missed
detections around 0.2. The
Jaccard distance and mean
network variance converge
in around 50 stimulations
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index, Nnode − 1 Bernoulli draws are made representing
the detector response between a stimulated node and
the Nnode − 1 nodes to which it may be connected. Each
of these draws has a probability of being a 0 or a 1,
specified by the likelihood presented in Eqs. (3) and
(6). In this way, the proposed methodology is tested and
evaluated independently of biophysical effects. These
simulations directly compare the proposed methodol-
ogy with “brute-force” stimulation paradigms.

Simulation 1 involving two parts: For both parts of
this simulation, 30 realizations of 24 node, nearly fully-
connected networks are realized with all but 69 of
the total of 276 possible connections missing. These
69 missing edges are distributed in such a way that,
in each realization, a few nodes of the network are
predominantly isolated from the rest of the nodes in the
network, a network topology that favors the proposed
methodology. For each of these realizations, networks
are estimated with both the proposed methodology and
with a round-robin stimulation strategy employing the
same detector and stimulus, but applying the stimulus
one node at a time in a round-robin fashion.

For the first part of Simulation 1, the detector prob-
ability of missed detection is set to 0.4. In the second

part of Simulation 1 this probability is set to 0.1. For
each of the 30 realizations, and at each of the 200
stimulation indices, network estimates are computed in
two different ways. The first network estimate is com-
puted with the proposed inferential method described
in Section 3. The second network estimate is computed
by comparing the average of the detector responses up
to and including the current stimulation index, on an
edge-by-edge basis to a threshold of 0.5. If this aver-
age, equal to the maximum likelihood estimate of the
probability of an edge (without knowledge of detector
performance), is greater than 0.5, an edge is inferred.
This latter method of edge inference is paired with the
round-robin stimulation strategy and provides a real-
istic inferential procedure with which the performance
of the proposed inferential strategy is compared. The
resulting network estimates are compared against the
actual network using the Jaccard distance (left, Fig. 5)
and by comparing network uncertainty (right, Fig. 5).
Here, a network estimate uncertainty comparison is
conducted by computing the ratio of the average of
the node variance over all nodes for the two proposed
network estimates. In this latter comparison, the effect
of stimulation strategy is isolated from edge proba-
bility estimation by estimating the edge probabilities
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Fig. 5 Accuracy of proposed vs more naïve network inference.
For each of 30 realizations, a 24 node network is simulated
possessing a total of 276 possible edges. Of these possible edges
all are present forming connections between nodes save for 69
which are clustered. Most nodes are fully connected while a few
nodes are mostly isolated. The proposed method achieves an

accuracy in 20 stimulations that the competing method employing
the round-robin stimulation strategy does not attain for another
140 stimulations. Right: Network uncertainty comparison. Net-
work variance, equal to the sum of the node variances, is lower
when using the proposed method. See text for a definition of
node variance



312 J Comput Neurosci (2013) 34:303–318

with the proposed recursive scheme for both network
estimates but employing the two different stimulation
strategies. In the first case (complete, proposed net-
work estimate), the node to stimulate is chosen with
the proposed methodology. In the second case, the
node to stimulate is chosen according to a round-robin
sequential stimulation strategy. Network variance is
computed as the sum of the node variances. In all
figures in this section the red-band indicates the 95 %
confidence interval.

The proposed network estimate does as well or
substantially better than the alternative round-robin
approach when detector probability of missed detec-
tion is 0.4. In particular, the Jaccard error of the net-
work estimate involving the round-robin strategy is
over twice that of the proposed method. Network es-
timates computed with the proposed methodology are
more certain than estimates computed with the more
naïve approach, regardless of the probability of missed
detection (right-half of Fig. 5). As the number of stim-
ulations increases estimate certainty of the proposed
network estimator tends to approximately 70–80 % of
the network variance of the estimates computed with
the more naïve approach. To further investigate the
effect of the stimulation strategies, the node variance

as a function of stimulation index is presented in
Fig. 6.

Simulation 2: The first simulation is repeated but with
a network where only a small number of edges are
randomly distributed amongst the nodes. This situation
is one where the proposed methodology conveys the
least advantage since it is difficult to find nodes that
will preferentially stimulate the problematic parts of
the network, i.e., those parts that are associated with
missing connections. Recall that missing connections
are more difficult to confidently infer due to the prob-
ability of missed detection exceeding the probability
of false alarm. The parameters in this simulation are
identical to the parameters in Simulation 1, except
that the networks possess only 14 edges. Again, this
is a situation where the proposed methodology is least
effective due to the distribution of uncertain connec-
tions across many of the nodes and in large numbers.
In this situation a round-robin stimulation strategy will
tend to stimulate as many of these uncertain edges
as the proposed stimulation strategy. The resulting
performance is shown in Fig. 7 (left) and the asso-
ciated stimulation strategy is shown in Fig. 7 (right).
The proposed methodology out-performs the more
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Fig. 6 Top: Node variance for the proposed methodology and
the alternate approach as a function of stimulation index for the
simulation of the clustered network using a detector with a prob-
ability of missed detection equal to 0.4. See Fig. 5, and the text for
performance and simulation details. In each case, nodes are num-
bered according to the time of their first stimulation. The node
variance is maximal when a node is stimulated for the proposed

method and not always maximal when a node is stimulated in
the alternate methodology. Bottom: Stimulation strategies. A red
pixel indicates the stimulation index when a node is stimulated.
The proposed strategy deviates from the round-robin strategy
(bottom plots) and elicits an often pronounced change in the node
variance (top plots) that is more pronounced with the proposed
method than with the alternate method
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Fig. 7 Left: Accuracy of proposed vs more naïve network infer-
ence. For each of the 30 realizations, a 24 node network is simu-
lated possessing a total of 276 possible edges. Of these possible
connections only 14 exist. Most nodes are missing many con-
nections with other nodes. The proposed method out-performs
the more naïve network estimate by stimulation index 90 when
the detector probability of missed detection is 0.4 (upper row)

and is comparable to the more naïve network estimate when the
detector probability is 0.1 (lower row). See Fig. 5 for a situation
where the proposed method exhibits further advantage over
the more naïve network estimator. Right: Network uncertainty
comparison. Network variance, equal to the sum of the node
variances, is lower when using the proposed method. See text for
the definition of node and network variance

naïve method when the detector is poor (probability of
missed detection = 0.4) and is equivalent after stimula-
tion index 50 when the detector is good (probability of
missed detection = 0.1). Network estimates computed
with the proposed methodology are more certain than
estimates computed with the more naïve approach,
regardless of the probability of missed detection (right-
half of Fig. 7). As the number of stimulations increases,
estimate uncertainty of the proposed network estimator
tends to approximately 70–80 % of the network vari-
ance of the estimates computed with the more naïve
approach. In Fig. 8, the stimulation strategy employed
with the relatively non-clustered network is shown. By
comparing the change in node variance associated with
stimulations of the non-clustered network presented in
Fig. 8, with the change in node variance associated with
stimulations of the more clustered network, Fig. 6, one
sees that the change in node variance, and hence net-
work estimate certainty, is much larger and pronounced
in the situation where the clustered network is being
estimated.

Simulation 3: The proposed methodology requires the
specification of both the edge detector probability of
false alarm and the edge detector probability of missed

detection. While the probability of false alarm is con-
trolled by the analyst, the probability of missed de-
tection is typically unknown. In this final simulation,
consisting of two-parts, the sensitivity of the proposed
method to this assumption is explored by setting the
probability of missed detection assumed by the network
estimator to 0.1 in the first part (left-half Fig. 9) while
the actual probability of missed detection is set to 0.1
and 0.4, respectively. In the second-part of the simu-
lation, the probability of missed detection is set to 0.1
while the actual probability of missed detection is set to
0.1 and 0.4, respectively. In both parts of this simula-
tion the realized networks possess network properties
identical to those used to generate the clustered net-
works used in Simulation 1. The performance advan-
tage, while reduced by the mis-specification, is still
quite prominent when the proposed methodology op-
erates in a scenario for which it is well-suited. As
demonstrated in Fig. 9, performance degradation in
less optimal scenarios is not substantial when due to
mis-specification for the well-performing edge detector
scenario (probability of missed detection equal to
0.1). Network estimates computed with the proposed
methodology are more certain than estimates com-
puted with the more naïve approach, regardless of
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Fig. 8 Top: Node variance for the proposed methodology and
the more naïve approach as a function of stimulation index for
the simulation with the non-clustered network, and a detector
probability of missed detection equal to 0.4. See Fig. 7, and the
text for performance and simulation details. In each case, nodes
are numbered according to the time of their first stimulation.
The node variance is maximal when a node is stimulated for
the proposed method and not always maximal when a node is
stimulated in the alternate methodology. Bottom: Stimulation

strategies. A red pixel indicates the stimulation index when a
node is stimulated. The proposed strategy deviates from the
round-robin strategy (bottom plots) and can elicit a pronounced
change in the node variance (top plots) that is more pronounced
with the proposed method than with the alternate method. Note
that this effect is less in this situation than in the simulation
of a more clustered network containing more edges, compare
with Fig. 6
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Fig. 9 Sensitivity to mis-specification of the edge detector prob-
ability of missed detection. Four plots on the left half : the prob-
ability of missed detection is thought, by the proposed network
estimator, to be 0.4. Four plots on the right half : the probability
of missed detection is thought, by the proposed network estima-
tor, to be 0.1. Results corresponding to mis-specified detectors
are plotted in plots (c), (d), (e), (f). Results corresponding to
correctly specified edge detectors are displayed in plots (a), (b),

(g), (h). These latter plots are included for comparison. Detector
performance mis-specification results in reduced performance
and changes in the estimated network variance. The performance
advantage, while reduced, is still quite significant (compare plot
(a) to plot (e)). These simulations are performed with the net-
work specified in simulation 1. See the text and Fig. 5 for a
description of the highly connected, clustered networks used in
this simulation
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probability of missed detection mis-specification (Parts
(b), (d), (f), (h) of Fig. 9). As the number of stimulations
increases estimate certainty of the proposed network
estimator tends to approximately 70–80 % of the net-
work variance of the estimates computed with the more
naïve approach.

5 Discussion

5.1 Summary and potential applications

A method of inferring functional connectivity in
a stimulate-and-record paradigm is proposed. This
method is temporally-adaptive, disambiguates a source
of non-identifiability when passively inferring func-
tional network connectivity and reduces the number of
required stimulations to achieve a given level of net-
work uncertainty. The method is not specific to any par-
ticular stimulus or detector design. Indeed, while focus
has been placed on potential ECoG implementation,
the proposed paradigm is more general and is expected
to be useful in a number of clinical applications. Exam-
ples of such paradigms include Deep Brain Stimulation
(Perlmutter and Mink 2006; McIntyre and Hahn 2010)
and simultaneous recording of EEG with application of
Transcranial Magnetic Stimulation (Shafi et al. 2012).
In each of these settings, the combination of stimu-
lus, network, and nontrivial dynamics create a prime
vehicle for the effective implementation of adaptive,
stimulated network discovery.

In addition to clinical applications, the adaptive net-
work scheme can be applied in basic experimental
neuroscience. Emergent techniques such as optogenet-
ics (Fenno et al. 2011) provide a means to stimulate
specific populations of neurons and observe the re-
sulting effects in other cells and spatial locations. The
development of multi-electrode arrays for such stimula-
tion and simultaneous measurement (Sparta et al. 2012)
provides a direct platform for implementation of the
proposed methodology to infer networks on a smaller,
neuronal network scale.

5.2 Generalization

While the complete details of the following generaliza-
tions are the subject of future work, some central ideas
are presented in the following.

5.2.1 Secondary activations

In the proposed methodology we have considered
primary activations, i.e., the assumption that any

detections are a function of direct connections ema-
nating from the stimulated node. Any network may
possess secondary activations. For example, consider
stimulation applied to a single node ‘A.’ Node ‘A’ then
affects node ‘B,’ which, in turn, affects node ‘C’. These
activations can lead one to infer a connection between
node ‘A’ and node ‘B’, and a connection between
node ‘A’ and node ‘C’ when node ‘A’ is stimulated,
even though a direct connection between node ‘A’ and
node ‘C’ does not exist. In a sense, this inference is
correct, since activity at node ‘A’ can influence activity
at node ‘C’. However, in terms of representing physical
connections, such secondary activations increase the
number of false positives. In the above example, when
the detector is run not just between the stimulated
node, node ‘A’ and the other nodes, but also pairwise
between all nodes on a given activation, one attains
information about secondary activations. In particu-
lar, detector responses between node ‘B’ and node
‘C’ will be correlated with detector responses between
node ‘A’ and node ‘C’ when node ‘A’ is stimulated.
However, assuming there exists a change in the prob-
ability of missed detection with synaptic separation
from the source of activation, these correlations will
not be perfect. As the detector is applied to tertiary
and quaternary connections, the correlation reduces
as the probability of detection changes, perhaps due
to a change in the strength of signal stimulation and
efficacy of propagation. While not certain, principled
incorporation of this information within the likelihood,
Eq. (3), might lead to inference that is able to partially
distinguish direct and indirect connections.

5.2.2 Multiple and simultaneous stimulation

In some settings, it may be desirable to stimulate mul-
tiple nodes simultaneously. If, after many stimulations,
weakly connected subnetworks are discovered, stimu-
lations can be applied simultaneously to each of the
subnetworks, and these subnetworks inferred simulta-
neously and separately, with commensurate improve-
ments in network inference. For more densely con-
nected subnetworks, principled incorporation of mul-
tiple stimulations in the proposed inference paradigm
is more complicated due to interaction effects, and is a
topic for future research.

5.3 Extensions: network learning & control

This paper has focused on the problem of inferring
connectivity through temporally-adaptive stimulation
and observation. While useful in its own right, the
methodology also provides a platform for exploring
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solutions not only to infer the network, but to then
use that information to guide control. Indeed, the chief
objective of brain stimulation is to modulate or reg-
ulate certain types of aberrant activity. Incorporating
a control objective into the methodology–for instance,
reducing overall activity–may yield stimulation policies
that simultaneously achieve real-time network adapta-
tion and optimal control.
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Appendix: Posterior update equation

P
(
e(k)|d(k), s(k), Hk

)
∝ P
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d(k)|e(k), s(k), Hk

)
P

(
e(k)|s(k), Hk

)
,

= P
(
d(k)|e(k), s(k)

)
P

(
e(k)|s(k), Hk

)
. (22)

The prior probability mass function of the edges,
P

(
e(k)|s(k), Hk

)
can be further decomposed by applying

the Chapman–Kolmogorov equation.

P
(
e(k)|s(k), Hk

)
=

∑
c∈C

P
(
e(k)|e(k−1) = c, s(k), Hk

)

× P
(
e(k−1) = c|d(k−1), s(k−1), Hk−1

)
,

=
∑
c∈C

P
(
e(k)|e(k−1) = c

)

× P
(
e(k−1) = c|d(k−1), s(k−1), Hk−1

)
, (23)

where C is the set of 2Nedge possible networks. Here it
is assumed that e(k) is conditionally independent of s(k)

and Hk given e(k−1). Heuristically, this assumption im-
plies that given knowledge of the network connections
at stimulus index k − 1, knowledge of the stimulus at
the stimulation index k does not provide information
about e(k). This is a reasonable assumption since the
stimulus at index k is determined from the posterior of
e(k−1).

Without a restriction upon C the sum in Eq. (23) is
computationally intractable. As discussed in Section 3,
this restriction is attained by assuming that the edges
are independent of each other. With this assumption

the probability mass functions factor and the prior
probability mass function can be written,

P,
(
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)

=
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)

=
∑
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)

× P
(
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)
,

=
Nedge∏
j=1

1∑
cj=0

P
(
(e(k))j|(e(k−1))j = cj

)

× P
(
(e(k−1))j = cj|(d(k−1))j, (s(k−1))j, Hk−1

)
. (24)

Combine Eq. (24) with Eq. (22), along with the edge
independence assumption to obtain:

Nedge∏
j=1

P
(
(e(k))j|d(k), s(k), Hk

)

∝
Nedge∏
j=1

P
(
(d(k))j|e(k), s(k)

)×
1∑

cj=0

P
(
(e(k))j|(e(k−1))j = cj

)

× P
(
(e(k−1))j = cj|(d(k−1))j, (s(k−1))j, Hk−1

)
. (25)

Thus, recursive update can be computed on an edge by
edge basis,

P
(
(e(k))j|d(k), s(k), Hk

)

∝ P
(
(d(k))j|e(k), s(k)

) ×
1∑

cj=0

P
(
(e(k))j|(e(k−1))j = cj

)

× P
(
(e(k−1))j = cj|(d(k−1))j, (s(k−1))j, Hk−1

)
, (26)

for j = 1 , . . . , Nedge; greatly simplifying computa-
tions. This factoring allows for tractable computational
inference, reducing both memory requirements and
computation time.
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