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Abstract
Many experiments in neuroscience have compared the strength of association between neural spike
trains and rhythms present in local field potential (LFP) recordings. The measure employed in these
comparisons, “spike-field coherence”, is a frequency dependent measure of linear association, and
is shown to depend on overall neural activity (Lepage et al., 2011). Dependence upon overall neural
activity, that is, dependence upon the total number of spikes, renders comparison of spike-field
coherence across experimental context difficult. In this paper, an inferential procedure based upon
a generalized linear model is shown to be capable of separating the effects of overall neural activity
from spike train-LFP oscillatory coupling. This separation provides a means to compare the strength
of oscillatory association between spike train-LFP pairs independent of differences in spike counts.

Following a review of the generalized linear modelling framework of point process neural activity
a specific class of generalized linear models are introduced. This model class, using either a piece-
wise constant link function, or an exponential function to relate an LFP rhythm to neural response,
is used to develop hypothesis tests capable of detecting changes in spike train-LFP oscillatory
coupling. The performance of these tests is validated, both in simulation and on real data. The
proposed method of inference provides a principled statistical procedure by which across-context
change in spike train-LFP rhythmic association can be directly inferred that explicitly handles
between-condition differences in total spike count.
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1. Introduction
Many experiments in neuroscience (Fries et al., 2001, 2008; Womelsdorf et al., 2006; Witham
et al., 2007; Pesaran et al., 2008; Gregoriou et al., 2009; Jutras et al., 2009; Chalk et al.,
2010) have compared the strength of association between the times at which neurons fire and
rhythms present in local field potential (LFP) recordings. A measure of association employed
in these studies is the “spike-field coherence”, a frequency dependent measure of linear
association between a point process and a continuous valued LFP signal. Spike-field coherence
is shown to respond to overall neural spiking activity (Lepage et al., 2011), making comparison
between two pairs of spike-field time series difficult when the average spike-rate differs in the
two spike-field pairs.

Existing approaches to dealing with this confound include the employment of neural rate-free
measures of association and transformation based techniques, such as neural spike thinning
(Mitchell et al., 2009; Gregoriou et al., 2009), a procedure where the overall neural rates are
made equal by randomly removing spikes. In this paper, an across-condition test is introduced
based upon parametric modelling of the effect of the association of rhythms in field-type time
series upon the intensity of the spiking process. By explicitly modelling the dependence of
neural spiking activity upon both random, “background”, influence and upon field-type
rhythmic influence, the relative separation of these effects is made possible.

After a discussion of relevant background in Section 2, an hypothesis test directly comparing
the nature of the association between pairs of neural spike times and LFP rhythms is introduced
in Section 3. This test, based upon the generalized linear statistical neural modeling framework
presented in Truccolo et al. (2005), uses all available data and accounts for differences in firing
rate within the maximum likelihood statistical framework. The test provides a statistically
principled approach to inferring differences in association across spike-LFP time-series pairs
with different spiking rates. In Section 4, the test is demonstrated in simulation and in Section
5, the test is performed on real data. The paper ends with a discussion in Section 6.

2. Background
Coherence, analogous to cross-correlation in the time domain, is a theoretical quantity linking
two time series in the frequency domain. Non-parametric coherence estimators are common
and have been successfully employed in diverse sciences. In neuroscience, background
material on field-field coherence (coherence between two field-type time-series) and spike-
field coherence includes: Brillinger (1975), Brillinger (2001), Rosenberg et al. (1998), Halliday
et al. (1995), Amjad et al. (1997), Jarvis and Mitra (2001), Mitra and Bokil (2008), and Lepage
et al. (2011). Coherence in the neuroscience setting has been used to characterize neural
population activity (Bullock et al., 1995; Towle et al., 1999; Zaveri et al., 1999; Bruns and
Eckhorn, 2004; Kristeva et al., 2007; DeCoteau et al., 2007a,b; Montgomery and Buzsáki,
2007; Sirota et al., 2008; Bollimunta et al., 2008), and the relationship between neuron spiking
and field potentials (spike-field coherence) (Fries et al., 2001, 2008; Womelsdorf et al.,
2006; Witham et al., 2007; Pesaran et al., 2008; Gregoriou et al., 2009; Jutras et al., 2009;
Chalk et al., 2010). The spike-field coherence, Cny(f), can be defined in a fashion analogous
to the definition of the “field–field”, or more standard coherence between random processes
modelling field-type recordings. This definition, discussed in more detail in Lepage et al.
(2011), is summarized in the following. Let dnt be the number of spiking events that occur in
the time interval, [(t – 1)Δ, tΔ). Here Δ is the time between field measurements, and t is the
time-index associated with the tth bin. The collection of these counts is a time-series and can
be usefully modelled as a truncated realization1 of a discrete-time point process, dn. Here,
dnt, is the tth element of dn, and is a random variable whose realization is the number of spiking
events that occur in the interval [(t – 1)Δ, tΔ). To avoid multiple events in an observation
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interval, Δ is chosen sufficiently small such that the probability of multiple spiking events in
any one observation interval is negligibly small. Note that this is possible for single neuron
recordings due to the refractory period immediately following a neuron spiking event. During
this refractory period, subsequent neuron spiking is greatly suppressed (Koch, 1999). A point
process is completely characterized by its conditional intensity, Λt,

(1)

where Ht is the spike history process (Daley and Vere-Jones, 2003). Intuitively, the probability
of an event at time t equals Δ · Δt, up to negligible corrections due to the small non-zero
probability of multiple events in any one increment (Daley and Vere-Jones, 2003). When the
increments, dnt, do not depend on either past or future increments, the point process is called
Poisson, and the conditional intensity, Λt, is equal to the rate of occurrence of spiking events.
While sometimes convenient, this model is physiologically inaccurate due to dependence on
past spiking. As described in Lepage et al. (2011), a spike-field coherence consistent with the
more standard field–field coherence is defined in terms of weak-sense stationary random
processes. Thus, the first two moments of dnt must be independent of absolute time. Time-
dependent firing activity, while maintaining stationary first and second moments can be
attained by generalizing the discrete-time point-process to a doubly-stochastic discrete-time
point process. That is, let the conditional intensity, t, be itself a weak-sense stationary random
process such that Λt ≥ 0. With this stipulation, both the point process modeling the spikes and
the intensity, which determines the probability of a spike in each time-step, are both random
processes. Let the centered increments of the discrete-time point process, dnt be dñt such that,

(2)

where E denotes the expectation operator. This ensures that E{dñt} = 0. In analogy with the
standard discrete-time Fourier transform, define the discrete-time Fourier transform of the
centered increments, dñt, evaluated at frequency f, as,

(3)

Here T is the duration of the time-series and Δ is the duration between samples. Let the local-
field potential recording be represented by the weak-sense stationary random process yt, with
an associated discrete-time Fourier transform, YT(f),

(4)

The spike-field coherence between the spiking and the local-field potential, Cñy(f), is

(5)

If the relevant spectra exist, Eq. (5) can be re-written,

1Random processes which begin and end are not weak-sense stationary. That is, the dependence changes at the beginning and end of the
random process and hence there is dependence on absolute time. Actual recordings begin and end, and are typically handled by realizing
an infinite time-series and then truncating this realization to the recording duration.
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(6)

where Sñy(f) is the cross-spectrum between dñt and yt, Sññ(f) is the spectrum of dñt and Syy(f)
is the spectrum of yt. Through the Cauchy–Schwartz inequality, 0 ≤ |Cñy(f)| ≤ 1 and Cñy(f)| =
1 when there is a relation between NT(f) and YT(f).

Given the spike-field coherence defined in Eq. (6), the following relation between the spike-
field coherence, Cny(f) and the intensity-field coherence CΛy(f) exists,2

(7)

where μΛ = E{dnt} is the expected conditional intensity or rate of the spike process, CΛy(f) is
the coherence between the conditional intensity and the field potential, SΛΛ(f) is the spectrum
of the rate Λt, and H(f) is a parameter influenced by history dependent spiking (such as a
refractory period or periods of bursting). The behavior of this parameter is discussed in Section
5.4 of Lepage et al. (2011) for different types of neural activity, and is shown to be zero for
spiking activity without history dependence. Thus, the spike-field coherence, Cny(f), depends
on the two mean-square continuous processes Λt and yt, and the mean rate of neural firing
μΛ.

The dependence of the spike-field coherence Cny(f), on the expected number of spikes per bin,
μΛ, renders the spike-field coherence responsive not only to the degree of association between
the field rhythm and the spike times; but, also to the overall neuron activity. When attempting
to compare the degree of associativity between two pairs of spike trains and local field potential
rhythms, this confound, present when the total number of spikes differs between the pairs, has
been dealt with in the literature by, for example, randomly thinning the spike times of the more
active neuron until the neurons possess the same number of spikes in both pairs (Mitchell et
al., 2009). While not the focus of this paper, the procedure is included in the simulation study
presented in Section 4 for comparison with the proposed techniques. In Section 3 a method of
comparing spike-field coherence across spike-time local-field potential pairs is introduced.
This method, capable of disambiguating changes in spiking rate from changes in spike-field
association, is demonstrated in simulation in Section 4 and on real data in Section 5.

2.1. Rhythmic spike-field parametric modelling
In this paper, the confound confusing LFP-rhythm-spike-time-associativity with overall
neuron activity is addressed with the aid of a test between parameters in a class of parametric
models. This procedure is described in Section 3. In the class of generalized linear models,
nonlinear link functions relate linear combinations of covariates to a neuron’s expected
intensity or rate (Truccolo et al., 2005). In this work, along with the log-link function employed
in Truccolo et al. (2005) to relate covariates to spiking activity, a piece-wise linear link function
is also used. These two link functions, both necessarily nonlinear due to the non-negativity of
neural spiking rates, mix LFP rhythms at frequencies other than the frequency of interest with
the frequency of interest in different ways. The piece-wise linear link function is chosen such
that the theoretical advantages of the Fourier basis can be exploited in the current context. In

2The auto-covariance sequences and the cross-covariance sequences are identical when computed with either the centered increments,
dñt, or the non-centered increments, dnt. The centering occurs in the definition of these sequences. Under standard conditions, the auto-
spectra and cross-spectrum are discrete-Fourier transforms of these sequences. Then Cñy(f ) is equal to Cny(f).
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particular, as shown in Appendix C, model mis-specification due to unmodelled sinusoids with
different frequencies has limited effect when firing rates are sufficiently high and a sufficiently
narrow bandwidth is chosen when estimating LFP phase. The log-link function, while more
susceptible to effects due to unmodeled sinusoids, is capable of describing broad-band firing
phenomenon such as greater preferred-phase spike time tuning and is essentially a von-Mises
distribution on the LFP phase associated with the time of a neural spike.

The proposed test, described in Section 3, is based upon the standard LFP cosine-tuning
parametric model of neural spiking, used for example in studies of the motor cortex (Sanger,
1994). This cosine-tuning model relates a single sinusoid plus background rate to the expected
stochastic conditional intensity. As before, let the stochastic conditional intensity at time-index
t be Λt. Model the stochastic conditional intensity of the doubly-stochastic discrete time point
process as,

(8)

where

and

(9)

Here ϕt is the instantaneous phase of LFP rhythm for a frequency of choice, α is the theoretical
background, and the effect upon the instantaneous stochastic conditional intensity due to past

spiking is incorporated in the linear combination of past spiking intervals: .3 In
this paper, background rate and the theoretical background are synonymous; while average
rate refers to an estimate of the theoretical background rate computed as the sum of spiking
events divided by the observed duration. When all of the γk variables are zero, the stochastic
conditional intensity has a degenerate probability distribution such that Λt is deterministic, and
further, because there is no dependence on past (or future) spiking activity, the point process
becomes Poisson in the sense that the increments, dnt, are independent of each other. The
modulation, ρ, of the stochastic conditional intensity due to the LFP rhythm is given by,

(10)

The preferred phase of LFP rhythm, ϕp, at which neuron spikes occur is,

(11)

3A doubly-stochastic point process is one where the intensity, and the times at which spiking events occur are both random processes,
while discrete-time refers to the duration over which events are counted and a single value reported representing the sum of spiking events
that occurred during the bin interval. A realization of such a point process proceeds bin-wise from early times to late times. First the
intensity is realized, after which spike times are determined according to a Poisson probability mass function with a rate equal to the
realized intensity. Any history effects due to spikes in the first bin affect the realized intensity at the second bin and the process continues
until spike counts for all bins are determined.
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As in Truccolo et al. (2005), estimation is performed by maximizing the likelihood. When g

( ) in Eq. (8) is the log link, then the log link is canonical, and more standard GLM model

fitting routines can be applied. When g( ) is piecewise linear, however, a modified Newton–
Raphson algorithm is used to maximize the likelihood. A description of the Newton–Raphson
procedure for the model described by Eqs. (8) and (9) is given in Appendix A. Subsequent
inference can be conducted on the parameter estimates themselves by employing the

asymptotic distribution of the parameter estimators,  (Truccolo et al., 2005), or through model
comparison with information measures such as the Akaike information criterion (Akaike,
1974), or by comparing models via the asymptotic distribution of the likelihood ratio statistic
computed between nested models (Casella and Berger, 2001). For a recent application of these
latter two techniques see MacDonald et al. (2011).

It is important to note that Eqs. (8) and (9), when using the piece-wise linear link function,
completely captures, under assumptions defined in Appendix C, the different ways that a
narrow-band LFP rhythm can influence spiking activity. That is, under a change in condition,
either the modulation, ρ, can change, and/or the preferred phase of spiking, ϕp, can change.
However, the degree to which neural spiking activity is locked to a specific phase of LFP
rhythm is not a narrow-band phenomenon. This neural behaviour, when firing is “tuned” to a
specific phase of LFP rhythm is addressed by using the log link function. In this latter case,
information across frequency harmonics is combined to assess the extent to which neural firing
activity occurs in a temporally “punctate” fashion, periodically, at a specific phase of LFP
rhythm. This phenomenon is further discussed in Section 3.1.

With the model specified by Eqs. (8) and (9), an analogous measure similar to spike field
coherence is available by estimating the βc and βs parameters; large values of ρ indicate a strong
relationship between LFP rhythm and neural spike times. To determine the significance of this
modulation, the βs and βc parameters can be tested for significance by using the asymptotic

result that the associated parameter estimators,  and  are normally distributed and possess

a link-dependent covariance matrix, , asymptotically equal to the negative of the inverse

of the observed Fisher information, ,

(12)

(13)

Here H is a model matrix, with a kth row equal to, , and

(14)

is a diagonal matrix. Here, the kth element of n is equal to nk the number of observed counts
within bin k. The maximum likelihood estimator of the stochastic conditional intensity, Λ, is

, and  is the maximum likelihood estimate; equal to a realization of the random maximum

likelihood estimator, . The division within the diag() operator is element-by-element division.
While the asymptotic convergence to the normal distribution is established when the link
function is twice differentiable (McCullagh and Nelder, 1999), the piecewise linear link is not
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differentiable at the origin. In Appendix B, it is established that the asymptotic approximation
is acceptable for standard sized neuroscience data sets with the non-differentiable piecewise
linear link specified in Eq. (9).

In this estimation scheme, the instantaneous phase of the LFP rhythm for some frequency of
interest, f0, is considered known. In fact, the instantaneous phase of the LFP rhythm is not
known and must be estimated from the local field potential time-series. In this paper, this
estimate is computed using the analytic signal of the bandpass filtered local field potential in
a procedure often called the “Hilbert transform” phase estimate (Bruns, 2004). Maximum
likelihood estimation assuming knowledge of the LFP instantaneous phase is maximum
conditional likelihood estimation, where the extremization is of the likelihood conditioned on
the instantaneous LFP phase equalling the estimated instantaneous phase; rather than an
extremization of the full likelihood. Thus, the bias and variance properties of the conditional
maximum likelihood estimators may differ from those of the maximum likelihood estimator.
While a concern, with a sufficient number of trials and with an appropriately chosen bandpass
filter when estimating the instantaneous field phase4 one expects the maximum conditional
likelihood estimator to be similar to the maximum likelihood estimator. In the large data limit,
successful inference can be conducted with the phase estimate conditioned likelihood.

2.2. Model mis-specification
A common issue regarding parametric modelling is the problem of model selection. While
model selection techniques are discussed in Truccolo et al. (2005) and careful analysis includes
their use; it is worth noting that model mis-specification is common (Box and Draper, 1987),
and that inference with mis-specified models is often useful. When the data model, expressed
by Eqs. (8) and (9), explains all features of the data there is no model mis-specification, and

the resulting conditional maximum likelihood estimator, , discussed in Section 2.1, is
approximately unbiased for a data size typical of neuroscience experiments. In this situation,

 is unbiased. Further  and  are consistent; as they equal their respective theoretical
quantities in the large data limit. When the data model fails to capture data features, model
mis-specification occurs and may bias parameter estimators. Five potential sources of bias are
(1) unmodelled history dependent neural spiking activity, (2) unmodelled neural spiking
activity related to covariates such as experimental condition, (3) bias due to a mis-specified
relationship between the covariates and the conditional intensity, (4) the effect of unmodelled
sinusoids oscillating with frequencies different than the modelled frequency interval and (5)
the effect of unspecified self-sinusoidal terms present in the conditional intensity. Reduction
of the first form of bias, unmodelled effects of previous neural activity, can be accomplished
by incorporating covariates representing past neural activity, as described in Eq. (9). Similarly,
reduction of the second form of bias, effects due to unmodelled experimental covariates, can
be accomplished by explicitly incorporating these covariates into Eq. (9). The third form of
bias is more complicated and depends on the bandwidth used to estimate the instantaneous
phase of the field-type time series, on the overall rate of spiking, and the functional form of
the nonlinearity relating covariates to the conditional intensity. A detailed theoretical account
of these latter effects is beyond the scope of this work. The fourth form of mis-specification is
addressed in Appendix C for the situation where the link function is accurately specified to be
the piecewise linear link function. It is shown that there is no bias incurred due to unmodelled
sinusoids when the actual rate is always greater than zero when the LFP rhythm is sinusoidal.
When neural firing rates are low, the nonlinear link can couple frequency components and
introduce bias.5 Low here means that oscillatory activity dips sufficiently below zero such that

4That is, a band-pass filter with a passband specified to be the interval of frequencies required to describe the field rhythm. This
specification is required to avoid phase estimator bias. Note that bias results from model mis-specification.
5Both link functions are nonlinear; and further, any link function that insures that the intensity is non-negative is nonlinear.
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the background plus this oscillatory activity would be less than zero if not for the “capping”
effect of the piecewise nonlinearity. Thus, for sparse neural activity, prominent spectral peaks
should be explicitly incorporated into Eq. (9) as further sinusoid terms to account for their
influence. When using the log link to relate the stochastic conditional intensity to neural activity
this source of bias may exist for any rate of neural spiking. In this paper, discussion is restricted
to the case where spiking rates are sufficiently high such that the nonlinear portion of the
piecewise linear link function is not a concern. While important, discussion of lower spiking
rate regimes is left for future work. The final form of mis-specification is separable from the
influence of the LFP rhythmic covariate in the situation where multiple trials are recorded. In
this situation, the influence of oscillatory components in the conditional intensity occur at a
phase random relative to the LFP phase, and are not expected to bias the mis-specified model,
Eqs. (8) and (9). While one does not expect bias, note that the relative effect of LFP rhythmic
influence to self-oscillation on spiking activity can be quantified with a correctly specified
model formed by adding oscillatory terms to Eqs. (8) and (9) that are not linked to the phase
of the LFP rhythm, and possess a trial dependent phase offset. This model allows, for example,
the per-frequency study of the importance of LFP influence on spiking activity relative to the
influence of self oscillation on spiking activity.

One notes that inference with the model specified by Eqs. (8) and (9) typically involves the
covariance matrix estimate specified in Eq. (13). In Eq. (13), the diagonal matrix, D, involves
the unknown, theoretical conditional intensity, λ, along the diagonal. In practice, an estimate

of  is computed using the estimated conditional intensity or rate. Due to the dependence

of the covariance matrix estimator,  upon the rate estimator, , the covariance matrix
estimator can also be biased. While this possibility exists, in Appendix C it is shown when
employing the piecewise linear link that the estimate of the covariance matrix employed in this
work is not affected by unmodelled sinusoids influencing neural activity for neural firing rates
that are strictly greater than zero.

2.3. Frequency interval specification
Prior to performing the test presented in Section 3, it is necessary to specify the frequency
interval at which to test for changes in coupling between spike times and LFP rhythm. This
interval is specified either through a priori information or through a preliminary analysis
designed to find frequency intervals of interest. Subject to computational resources and desired
statistical power, one notes that the test for condition preferential spike-time LFP rhythmic
coupling can be applied sequentially to frequency intervals spanning zero frequency to Nyquist
frequency. An example of this procedure will be described later in Section 5 and Fig. 9. In this
latter scenario it is advisable to employ appropriate multiple hypothesis testing techniques.

3. Test for equality of spike-field association
To test for a difference in spike-field association between two pairs of LFP rhythm/neural spike
times, the model specified by Eqs. (8) and (9) is fit to each of the neural spike time/LFP rhythm
pairs. The resulting parameter estimators,

(15)

are the amplitude of the cosine of the instantaneous LFP phase, and the amplitude of the sine
of the instantaneous LFP phase. The integer, k, specifies which of the two sets of pairs to
associate with the estimators. The distribution of these estimators asymptotically converges to
a normal distribution with a mean equal to the theoretical mean, and a variance given by the
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covariance matrix estimator, . This asymptotic convergence is further discussed in
Appendix B. Associated with these estimators are estimators for the modulation.

(16)

Under the null hypothesis that the modulation, ρ, of the spiking activity with the LFP rhythm
is the same between k = 1 and k = 2, the difference of the theoretical modulations is zero,

(17)

with an associated estimator, ,

(18)

For the kth condition,  has an asymptotic Rice, probability density function, (x) (Rice,
1945),

(19)

Here I0 is the zeroth order modified Bessel function of the first kind,  is the variance of

 and of  and equals the appropriate diagonal element of the observed parameter

covariance matrix, . Here the ̌  symbol denotes the observed quantity computed from data.
Note that with the piecewise linear link function, in the narrowband, sufficiently high rate

regime discussed in Section 3.1, the variance of  and the variance of  are identical. In

practice,  is taken to be the average of the appropriate diagonal elements of . When using
the log link, these variances are found empirically to be similar, and the same average is
employed.

Under the null hypothesis of no change in modulation, the modulation difference, dρ, is zero,

(20)

and the difference estimator, , is a random variable equal to the sum of a Rice distributed

random variable with mean, , and variance  with a second independent random
variable. This second random variable is the negative of a Rice distributed random variable

with mean equal to  and variance . This resulting distribution under the null
hypothesis is computed numerically by convolving the relevant distributions and the reported
two-sided test p-value, pvalue, is,6

(21)

6The sum of two independent random variables is a third random variable with a probability density function (when it exists) equal to
the convolution of the probability density functions of the summed random variables (Casella and Berger, 2001).
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where  is the observed modulation and is a realization of the estimator, , for k = 1, 2.

When pvalue is very small, numerical issues can arise due to the necessity of accurately

quantizing a large range of possible values of . To avoid excess computational burden,
numerical difficulties are detected by checking the Riemann approximation to the integral of

the probability density function for  under the null hypothesis of no across-condition change.
When this integral deviates substantially from 1, to accurately represent the probability density
functions numerically, a fine grid of points spanning a large interval is required. Thus, the
occurrence of numerical difficulty is restricted to the case where pvalue ⪡0.01, and a more
conservative and computationally efficient procedure is used. In essence, this latter testing
procedure is a principled way of assigning a conservative yet small p-value for strong detections
that would otherwise require a prohibitively expensive computation. This second test, based
upon an inequality due to Cantelli (Feller, 1966), computes the pvalue as follows,

(22)

where the upper bound, UB1, on the probability of exceeding a modulation difference of ,
given a modulation standard deviation equal to σ1, is,

(23)

and the upper bound, UB2, on the probability of exceeding a modulation difference of , given
a modulation standard deviation equal to σ2, is,

(24)

This testing procedure, involving these two tests employed adaptively depending on the data,
is applied to synthetic data in Section 4 and to real data in Section 5, and breaks the associativity-
spiking-rate ambiguity present in spike-field coherence. See Fig. 1 for a schematic description
of the steps required to implement the proposed testing procedure.

In some cases it may be desirable to test for differences in the parameter α. As in Eq. (15), the
model is fit to the data in both conditions, and the α estimators are indexed by the condition
number, k,

(25)

Each of these quantities is normally distributed with a variance given by the first diagonal

element of . Let this variance be . Under the null hypothesis that there is no change in

the background spiking across condition, the difference, , is normally distributed with a mean

of zero and a variance,  equal to the sum of the variances of ,

(26)

For a specific observed difference, , equal to the difference, – , the two-sided test p-
value, pvalue, is,
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(27)

3.1. Piecewise linear and log link functions: testing differences
The behaviour of the test computed using the log-link is determined by the effect of a change
in modulation when using the log-link. To illustrate this fact, Eq. (8) can be re-written, ignoring
history effects, to be proportional to a von-Mises (Mardia and Jupp, 2000) probability
density7

(28)

where c = eα and ρ and ϕp are defined in Eqs. (10) and (11), respectively. Thus, when ρ in Eq.
(28) is large, the rate, Λt is sharply attenuated as ϕt deviates from ϕp, and similarly, when ρ
equals zero, LFP rhythm phase has no effect on spiking probability, and the phase distribution
is uniform. Here, if the background, α is large, then c is large, and the spiking rate increases
but the shape of the LFP phases at spike times remains un-altered. This situation is in stark
contrast to the rate obtained with the piecewise linear model. For α > ρ, the piecewise linear
link is in a linear regime, and the LFP phase at spike times is sinusoidally distributed about the
period with a peak at ϕp. As α increases the LFP rhythm phases at the time of spiking tend to
occur randomly during the LFP rhythm period and the phase density tends to a uniform
probability density. These differences are exemplified by the results of the simulation depicted
in Fig. 4 in Section 4. The testing procedure, and the differing interpretations associated with
the piecewise-linear (PL) and log link functions, are shown in a flow chart presented in Fig. 1.
There are two tests and four possible outcomes. Table 1 provides qualtitative interpretation for
these four outcomes.

3.2. Relation to spike-field coherence
The proposed test computed with the piecewise linear (PL) link function is similar to an across-
condition comparison of rhythmic spike-field association based upon spike-field coherence,
Eq. (6). This similarity arises because, on a per frequency interval basis, for high rates, both
of these tests will respond to the strength of coupling between the LFP rhythm and the
conditional intensity or rate. This is not the situation with the log link function, which responds
to the strength of spike activity tuning to a preferred LFP rhythm phase. One notes however,
that if the data are generated according to the PL model, changes in the ratio of α to ρ will
affect spike tuning to the preferred phase; though tight tuning to a specific phase is not possible.
If the data are generated with the log link, changes in the α parameter will affect the inferred
modulation, ρ, if inference is performed with the piecewise linear link. Both spiking models
are capable of generating data that is uncoupled from the LFP rhythm and has no preferred
LFP rhythm phase of spiking. For sufficiently high rates, only the model using the log link can
tightly tune spike times to a specific LFP rhythm phase (this is a broadband phenomenon8),
and only the piecewise linear link effectively decouples LFP rhythmic coupling to the rate from
background activity, since with the log link α controls the number of spikes drawn from the
specified von-Mises type distribution and does not allow for a non-rhythmic rate offset. Note
that this does not mean that inference regarding the modulation of spiking activity by LFP
rhythm using the log link function will be sensitive to changes in the average spiking rate.

7This is a unimodal function of ϕt centered upon the preferred phase, ϕp, with a width specified by ρ.
8Here broadband means specifically the involvement of harmonics of the frequency located at the center of the narrowband frequency
interval under consideration. These harmonics are required to produce a periodic rate that is not sinusoidal.
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These changes are still accommodated by the α parameter. However, in general, these changes
are made by scaling an oscillatory rate rather than by shifting one.

Unlike spike-field coherence, the proposed tests separate, with different link-function
dependent interpretations, the parameters linking LFP rhythm to spiking rate from the average
rate of spiking.

4. Simulation
To illustrate the efficacy of the proposed tests two simulations are performed. In the first
simulation, synthetic data for eight pairs of neuron spike times and LFP time-series are
generated. The first four of these pairs link the neural spiking rate to an LFP via a constant
scalar multiple, β, plus an LFP-independent background rate, αk, that increases with spike train-
LFP pair index, k. This index, k, indexes into the the set of four spike-train/LFP pairs, depicted

in the left-hand-sides of Fig. 2. The spiking rate for the kth spike-train LFP pair, , is specified
as

(29)

Here yt is the LFP and is taken to be a realization of an ARMA (5,2) process with spectrum

depicted in Fig. 2, normalized such that . For the purposes of simulation, yt is

considered unitless. The coupling between the LFP and the rate, , is facilitated through the
β parameter, which is equal to 80 Hz. The background rate, αk, takes on the values: {60 Hz,
100 Hz, 140 Hz, 240 Hz}, depending on which simulation is performed (these rates map to the
different quadrants on the left hand side of Fig. 3). An example of the rate computed using Eq.
(29) is shown on the bottom left-hand side of Fig. 2. For each value of k, twenty trials each of

one second duration are computed, each with  specified by Eq. (29). From this synthetic
data, the squared-magnitude of the spike-field coherence, Eq. (6), is computed. The result is
plotted in the left panels of Fig. 3. As expected, the squared-magnitude of the spike-field
coherence decreases with increasing αk. In the four plots on the right-hand-side of Fig. 3, the
background rate, α, is held constant while the link between the LFP rhythm and the probability
of spiking is varied. That is, instead of Eq. (29), the rate is specified as,

(30)

where α = 60 Hz and βk is equal to {80 Hz, 60 Hz, 40 Hz, 20 Hz} for k = 1, 2, 3, 4, when yt is

scaled such that . In both cases the squared-magnitude of the spike-field coherence
decreases, demonstrating the confound between overall neural activity and the degree of
association between LFP rhythm and spiking activity. On the right-hand side of six of the eight
plots in Fig. 3, a bar indicating the p-values for the test introduced in Section 3 is presented.
This test of the difference between LFP rhythm/spiking activity association, is applied pairwise
between the k = 1 case and each of the cases indexed by k = 2, 3, and 4. The test correctly
identifies changes in LFP rhythm modulated neural spiking probability; a feature that cannot
be identified from either the spike-field coherence computed from the unthinned neural spiking
events, or from the thinned neural spiking events (also plotted in Fig. 2).

In the second simulation, the difference between the piecewise linear link function and the log
link function is highlighted. In this simulation, data are generated using the piecewise linear
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link function (left-hand side of Fig. 4), and using the log link function (right-hand side of Fig.
4). Here the LFP is as in the first simulation and the modulation, ρ, for the data generated by
the PL link, is changed across conditions while the background α is held constant. Specifically,
α = 40 Hz, and the modulation varies from 0 Hz to 40 Hz. Note that the apparent modulation
of 20 Hz in Fig. 4(A) is due to the variability of the autoregressive LFP. When the data are
generated using the piecewise linear link the probability densities of the LFP phase at spiking
times differ between conditions, Fig. 4(B), and the tests associated with each of the two models
show significant differences between the two conditions, Fig. 4(D). For the data generated
using the log link, the modulation, ρ, is held constant while the background, α, is changed.
Specifically, ρ is set to 1.3 and alpha varies from 3.0 for condition 1 to 4.4 for condition 2. In
this case, the probability of the phase at which spikes occur has a constant tuning width (Fig.
4(F)), but the rate is modulated in the PL sense more strongly by the LFP rhythm. Compare
with Fig. 4(E). Only the test computed using the piecewise linear link function show significant
differences between the two conditions, Fig. 4(F). The test computed using the log-link is
designed not to respond to changes in coupling that do not affect the distribution of the phase
at which spikes occur. In particular, the relationship of the LFP rhythm with the spiking rate
is not linear and involves sinusoids at frequencies outside of the putative LFP rhythm in the
process of spike train generation. This nonlinearity allows for a “tuning” of spike times to a
specific phase of the LFP. More specifically, the modulation in the log-link model controls the
width of the spike-time LFP phase density about the preferred phase of spiking. Because of
this, the test procedure using the log link model allows for comparisons in the width of phase
tuning. Note that standard procedures involving spike-field coherence are not sensitive to phase
tuning changes.9

In Fig. 5, the modulation, rho, estimated from the data depicted in Fig. 4 is shown. The
modulation is consistent with the results of the proposed hypothesis test plotted in Fig. 4(D)
and in Fig. 4(H). Associated with Figs. 4 and 5 are plots of magnitude-squared spike-field
coherence. These are presented in Fig. 6. In these two cases (left and right halves of Fig. 4),
spike-field coherence responds to the across-condition changes in a fashion similar to the
across-condition changes detected by the proposed test associated with the PL link function,
but does not respond in a fashion similar to the response of the proposed test associated with
the log link function. This similarity to the behaviour of the test associated with the PL link
function is superficial, in that spike-field coherence and the proposed test respond differently
in the first simulation, see Fig. 3.

5. Data
The across-condition test for associativity between LFP rhythm and neural spike train is applied
to signals recorded from one Macaca mulatta monkey trained in a covert attention task as
previously described in Gregoriou et al. (2009). Briefly, the monkeys task was to detect a color
change of a target stimulus presented among distracters. The targets location was randomized
in different trials so that attention could be directed inside (“attend-in”) or outside (“attend-
out”) the receptive-field (RF) of the recorded neurons. Spike trains corresponding to multi-unit
activity as well as LFPs were recorded simultaneously from the frontal eye fields (FEF) and
visual area V4. Spike trains were obtained after filtering the recorded signal between 250 Hz
and 8 kHz, and amplifying and digitizing the signal at 40 kHz. The LFP signals were obtained
after filtering between 0.7 Hz and 170 Hz, and amplifying and digitizing at 1 kHz. LFP data
were post-processed to correct for the known phase shifts as previously described in Gregoriou
et al. (2009). Fig. 7 shows an example LFP time series and associated spike train raster for the
attend-in and attend-out experimental conditions. Data from 3 sessions including 12 spike

9That is, the width of the phase distribution can change without altering the spike-field coherence.
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signals and 11 LFP signals were used in this study. The resulting 38 spike-LFP pairs recorded
on different electrodes were submitted to the test for spike-LFP coupling. In a first, low
frequency analysis, the test is applied from 2 Hz to 8 Hz with a bandwidth of 2 Hz, and reveals
significantly different associativity at a frequency of 4 Hz, as shown in Fig. 8, top. This change
in associativity results in reduced LFP-neural modulation when attending (Fig. 8, bottom), and
is accompanied by a reduced locking of the 4 Hz LFP phase to a preferred phase of spiking.
This former inference is made by examining the test results and associated modulation change
when using the PL link, and the latter inference is made using the log link.

The test is applied from 5 Hz to Nyquist frequency – 5 Hz with a bandwidth of 10 Hz, and
reveals patterns of significantly different associativity between different LFPs and spike trains
at many frequencies, as shown in Fig. 9. In particular, one sees that the tests associated with
either link function are significant for many spike-train/LFP pairs at 50 Hz, with some highly
significant across-condition changes in spike-train/LFP rhythm coupling occurring at
frequencies below 50 Hz. In the remainder of this work a frequency of 50 Hz is focused upon
due to the large number of significant tests at this frequency. This choice is consistent with the
frequency interval where significant differences in coherence were found with attention in
Gregoriou et al. (2009). The per-frequency modulation associated with the PL link model and
the log link model is plotted in Fig. 10 alongside magnitude-squared coherence. Modulation
is larger in the attend-in condition and at frequencies below 60 Hz. It increases monotonically
with frequency from 0 Hz to 50 Hz. These changes in modulation occur whether using the PL
link or the log link. This indicates, while the monkey attends, an increased spiking at
frequencies less than or equal to 50 Hz, accompanied by an increase in the degree of phase
locking to a specific preferred-LFP-phase of firing. Referring to the discussions in Sections
2.1 and 3, and to the simulation examples in Section 4, increased 50 Hz firing is consistent
with the interpretation of modulation associated with the PL link while tighter phase locking
is consistent with the interpretation of modulation associated with the log link. Measures of
uncertainty associated with the modulation are also plotted in Fig. 10. On this scale, the
uncertainty is independent of frequency. Its computation is provided in Appendix D. In Fig.
11, the estimated α parameters for the data are plotted in terms of rate modulation. When using
the PL link the estimated background rate is α and when using the log link the estimated
background rate is eα. Both of these quantities are multiplied by Δ−1 to convert from spikes
per bin to spikes per second (i.e. Hz). The background rates estimated using the different link
functions are identical on the scale plotted in Fig. 11.

In Fig. 12, the across-condition average spiking rate difference is plotted against the average
across condition spiking rate. The average rates are large and the average rate difference across
conditions is typically an order of magnitude smaller, see Fig. 12. Because of this thinning
procedures are expected to have a modest effect upon magnitude-squared coherence.

In Fig. 13, the proposed tests are seen to be strongly correlated. The test associated with the
piecewise-linear link function is strongly correlated with the magnitude-square coherence
difference; with a different offset associated with differing across-condition average rate
differences demonstrating the response of magnitude square coherence difference to average
rate difference. The strong linear relation between the magnitude-square coherence and the
significance of the proposed test employing the piecewise-linear link function demonstrates
the similarity between these two measures: both tests are responding to across-condition
changes (other than changes in the average rate) in a similar way. The – log 10(p – values)
associated with the test using the log link and the piecewise-linear link are correlated with
smaller p-values tending to be associated with the PL link function (Fig. 13, right); but with
both tests reporting detections and misses absent from the other. That is, for most spike train/
LFP pairs, the test results suggest that changes in attention are associated with both a change
in the spike train/LFP coupling strength at 50 Hz, but also with a change in the distribution of
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the LFP phase at the time of spiking. Caution is required in this interpretation because, as
previously mentioned in Section 3, the model using the log link function is potentially biased
by activity at frequencies adjacent to 50 Hz. The behaviour of the tests is further illustrated in
Fig. 14, where a raster of significant detections of across-condition change is depicted. In this
raster, each dot corresponds to a significant test. Significant detections occur much more
frequently with the proposed testing procedures than with a test based upon the bootstrap
confidence intervals of magnitude squared coherence. While there is much overlap between
the two different types of tests, some detections present using the test computed with the
piecewise linear link function are not present when computing the test using the log link
function.

The proposed tests detect all of the across-condition changes detected by the magnitude-
squared coherence test as well as many that are not detected by the magnitude-squared
coherence test. One expects that the proposed tests based upon parametric modelling will
possess greater statistical power than the test based upon the magnitude-squared coherence
bootstrap confidence intervals. There are two reasons for this. First, the proposed tests are
comparing to a p-value (prior to corrections for multiple comparisons) of 0.05 under exact
asymptotic distributions whereas the test based upon the magnitude-squared coherence
bootstrap confidence intervals is significant when the confidence intervals do not overlap.

Second, the estimators  and  are attaining, asymptotically, the Cramér-Rao lower bound
on estimator variance (see Fig. 15 in Appendix B, Scharf (1991, p. 221) and Hogg et al.
(2005, p. 325)), while the bootstrap confidence intervals do not satisfy such an optimality
property. A more thorough study of testing performance is left for future work.

6. Discussion
A testing procedure capable of disambiguating the effect of frequency dependent association
from the effect of changes of average neural spiking rate on a commonly employed measure
of spike field coherence is presented. This method, described in Section 3, exploits a
generalized linear model of neural spiking activity to arrive at a statistical hypothesis test
independent of the effect of background rate. The method, employing differing link functions
is demonstrated on synthetic data in Section 4. The proposed testing procedure is shown to
respond to different features of the data depending on the link function employed both in
simulation and on real data; allowing for the investigation of both a per-frequency change in
spike-train/LFP association and the effect of average spiking rate upon spike-triggered phase
distributions. Table 2 provides a summary of the performance of the three tests for a specific
type of across-condition change.

Due to the parametric nature of the proposed methodology, the testing procedure allows for
the inclusion of any covariates of interest, and the full statistical machinery associated with the
point process generalized linear spike-train modeling framework is available (Truccolo et al.,
2005). While the generalized linear model employing the piecewise linear function of the
covariates of interest is resilient to unmodelled sinusoids when average spiking rates are
sufficiently large relative to the size of the modulation, ρ, when average spiking rates are lower
or when the log link function is employed, these unmodelled sinusoids may be important. In
this situation, available model selection procedures will be important.

In the proposed methodology history dependence is explicitly modelled. One notes that if the
form of the history dependence is oscillatory, identifiability problems may arise. Because the
conditional log-likelihood is convex for all parameter choices, this non-identifiability will
manifest in a flat likelihood and parameter estimates will be associated with large variances.
Thus, the procedure is robust to non-identifiability in the sense that this problem will be
transparent to the analyst.
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The procedures detailed in this paper require the estimation of the instantaneous phase of the
local field potential for relatively small frequency intervals. In this estimation, care must be
taken to ensure that the phase estimated for any given interval of frequencies is not due to large
signal in an adjacent frequency interval that is “leaking” into the interval for which phase is
being estimated. Further, care must be taken to appropriately discard data where bandpass
filtering has introduced an edge-effect. This edge-effect will depend both upon the type and
order of the filter employed.

In Vinck et al. (2010, 2011) the pairwise phase consistency (PPC) approach to studying spike-
field association is introduced. These estimators, introduced to remove amplitude dependence
and reduce bias, provide an interesting alternative to the proposed procedure. In the current
work a testing procedure based on asymptotic distributions of relevant estimators is used to
provide tests for across-condition change in spike-field association, while equivalent tests
involving PPC have not yet been documented. A complete comparison of the two statistical
procedures is left for future study.

6.1. Rate-free spike-field coherence estimation
In Eq. (7), it is seen that the spike-field coherence, Cny(f), is related to the intensity-field
coherence, CΛy(f). This latter quantity directly relates the probability of spiking to the local
field potential rhythm, independent of the average neural rate. That is, the theoretical quantity
to be estimated, in this case the intensity-field coherence, CΛy, does not depend on the average
neural rate. Critically this differs from having an estimate of the intensity-field coherence with
an accuracy that does not depend on average neural rate. In particular, if the majority of spikes
are random and not due to LFP rhythm influence, one expects the ability to determine the
intensity-field coherence to deteriorate. In effect, the signal to noise ratio is reduced. The
estimated intensity-field coherence, calculated from observed data, will have an accuracy
dependent upon the degree to which a rhythm in the local field potential affects the spike times
relative to the effect upon spike times by contributions unassociated with the local field
potential rhythm. These contributions include, for example, contributions to the spiking
probability from the influence of past spiking activity, contributions from the influence of
uninteresting covariates, or an elevated probability of spiking due to an elevated background
firing rate. In essence, the larger the rate for a given level of association, the greater the “noise”
obscuring the association. Thus, while “rate-free” quantities like the intensity-field coherence,
CΛy(f), exist, the variability (and hence the typical accuracy) of such estimators necessarily
depends upon overall neural activity. While a fact of life, this does not mean that quantities
such as the intensity-field coherence are useless; but, rather, that a principled statistical
procedure involving the intensity-field coherence will account for sampling properties that will
detail rate-dependent accuracy. In this paper, by employing the existing point process
methodology introduced in Truccolo et al. (2005), a statistically principled parametric
modelling approach is taken to perform between-condition comparison of spike-train LFP
coupling. This procedure explicitly accounts for changes in firing rate across-condition and
separates effects of these changes from changes in the modulation of spiking activity associated
with local field potential rhythm. Unlike current procedures associated with spike-field
coherence, the method accurately and explicitly assesses the uncertainty of relevant parameter
estimates and appropriately deals with changes in signal-to-noise ratio.
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Appendix A: Maximum likelihood estimate
Let dnj be the jth increment of a discrete-time point-process modeling neuron spiking behavior,
and define the associated stochastic conditional intensity, Λj, as described in Section 2,
according to Eqs. (8) and (9). Further, model the field-type time series as a truncated realization
of the random process, yj, at time-index j. For convenience, define the vectors, β = [β0βcβs]

T,
and dn = [dn1dn2…dnn]T, and y = [y1y2…yn]T, where T denotes matrix transposition. The full
likelihood is

(31)

(32)

(33)

Thus, the full likelihood for both the LFP to conditional intensity coupling parameters, β, and
the instantaneous phase of the local field potential, ϕ, factors into the product of two terms.
The first term is the likelihood in the GLM cosine-tuning model (when considering ϕ to be
known), and the second term is the contribution to the full likelihood due to the probability of
the observed local field potential given knowledge of the instantaneous phase of the local field
potential. The log-likelihood, l(β, ϕ) is,

(34)

where, on the right-hand-side of Eq. (34), the explicit dependence of the conditional intensity,
λj at time-index j, on the vector of parameters, β, is suppressed. The first two terms in Eq. (34)
are obtained from f(dn|β, ϕ) by conditioning and then marginalizing out the stochastic
conditional intensity within a recursive operation. In the following the notation, dnt, is reserved
for the random quantity who’s realizations are used to model the observed counts nt at time
index t. This more explicit notation, in contrast to that used in Eq. (33), is adopted for clarity.
That is,

(35)

where HN is the collection of random variables representing spike counts occurring prior to
time index N, i.e. HN = {dnN–1, dnN–2,…dn1}. Associated with these random variables are their
realizations, hN, the collection of counts occurring prior to time-index N. Continuing, consider
the joint density of the stochastic conditional intensity with the process history, HN,

(36)

where δ is the Dirac delta function, and λN is specified according to Eqs. (8) and (9). In
particular,

(37)

and
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(38)

Combining Eq. (38), Eq. (36) and Eq. (35), one obtains the recursive relation for the joint
density of all of the spike counts in terms of a term given by the likelihood multiplied by the
joint probability mass function of all of the spike counts less the count for the last bin:

(39)

Here the likelihood of the spike counts conditioned on the LFP instantaneous phase estimates
is written in Eq. (39) by completing the recursion. Reverting back to our previous notation,
Eq. (39) becomes,

(40)

where the spike count at time index k, referred to as dnk in Eq. (34), and nk in Eq. (39) is once
again referred to as dnk. This latter notation is used throughout the following.

Due to monotonicity, the location of the maximum of the likelihood and of the log-likelihood
are identical. Computing first derivatives one obtains the score equations (Casella and Berger,
2001),

(41)

since the second and fourth terms are independent of β. Similarly,

(42)

The derivative with respect to the conditional intensity, λt, is

(43)

and, when ,

(44)
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where the indices, j = {0, c, s}, are used, consistent with the indices employed in Section 2.

One notes that there will be instances when  such that ∂λt/∂βj will be defined. An example
is when βj = βs and ϕt = 0. These isolated instances are the exception rather than the rule and
are ignored in Eq. (43) and in the following. The negative of the Hessian, or second derivative
with respect to the parameters, is equal to the observed Fisher information matrix, Iβ, discussed
in Section 2. As in Eq. (43), the second partial derivative of the log-likelihood with respect to

βk is non-trivial and defined when . Then,

(45)

since  for all of the indices, t, j, and k. More succinctly, Eq. (45), can be written

(46)

where, as defined in Section 2, H = [1 c s]. Here 1 is an n-element column vector of ones and
the tth element of the column vectors c and s is, respectively, cos(ϕt) and sin(ϕt). The diagonal
matrix, D, is defined as,

(47)

Note that HTH is approximately diagonal due to the orthogonality of sinusoids at different

frequencies.10 Then  is proportional to, and of the same sign as, the eigenvalues of
HTDH. Hence the Hessian is negative definite and the log-likelihood is convex in the unknown
parameters β; implying a unique maximum for the likelihood as a function of β.

The β and ϕ which root Eq. (41) are the maximum-likelihood estimators, yielding the
background rate, α, the strength of coupling, ρ, and the preferred phase of coupling, ϕp, between
the LFP rhythm and the spike times, as well as the instantaneous phase, ϕ, of the LFP at the
frequency of interest, f0. As described in Section 2, in this work, the maximum-likelihood

estimator of ϕ is approximated by the Hilbert transform type estimator, . This affects both
the maximum likelihood estimator of β through the dependence of ρ(β, ϕ) on the LFP rhythm
instantaneous phase, ϕ, as well as the curvature of the log-likelihood evaluated at the maximum
likelihood estimates. Hence both the estimates of the coupling and the estimates of the coupling
variance are affected. While affected, one notes that when the Hilbert transform instantaneous
phase estimator is consistent and when model mis-specification is sufficiently small, the Hilbert
transform instantaneous phase estimator approaches the maximum likelihood instantaneous
phase estimator for typically sized neuroscience data. In this situation, substitution of the
Hilbert-type instantaneous phase estimator for the maximum likelihood instantaneous phase
estimator in the score equations, Eq. (41), yields, upon extremization, the maximum likelihood
estimate of β to acceptable accuracy.

Numerical computation of the maximum likelihood estimate of β is accomplished with a
modified Newton–Raphson algorithm. Let the mth element of the error vector ei, on the ith
iteration be,

10HTH is diagonal when the instantaneous LFP phase is ϕt = 2πf0tΔ, where the frequency, f0 is specified to be an integer multiple of
the Rayleigh resolution; i.e. f0 = j/(NΔ), for j integer.
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(48)

Here,  is the Hilbert-type instantaneous phase estimator, Let the maximum likelihood estimate

of β equal . Then,  approximates the zero vector, 0, for any iteration i. Note that the
log-likelihood, Eq. (34), is undefined for λt equal to zero. Start the Newton–Raphson iterations

with an initial guess of , set to

(49)

where N(f) is the discrete Fourier transform of dnt evaluated at the frequency of interest, f0.
The operators, Re{ }, Im{ } denote, respectively, taking the real and imaginary components.

The constant, ε is small and positive. By initializing  according to Eq. (49), the log-likelihood
and its derivatives are defined for all time-indices, t, on the first iteration. During the Newton–
Raphson iterative procedure described below, λt may approach zero for some time-indices t.
As previously mentioned, when this occurs the log-likelihood, Eq. (34), is undefined. The
following strategy is employed. Only those time-indices where λt is greater than the small
positive constant ε are retained in the Newton–Raphson procedure for any given iteration, i.
Thus, with this restriction, the log-likelihood and its first two derivatives are well behaved. To
obtain δβ(i), the change in β(i), from one iteration to the next solve the following equation:

(50)

(51)

Here J(i) is the Hessian matrix, at iteration i, specified by Eq. (45), and evaluated at

. Thus,

(52)

and

(53)

Iterations are continued until the elements of e(i) are sufficiently close to zero. One notes that
the effect of restricting this algorithm to work only with those time indices where λt is greater
than ε is equivalent to discarding data. Thus, there is a potential for information loss, which is
accompanied by the possibility of identifying an improved estimator. In practice, the above
algorithm works well.

Appendix B: Asymptotic convergence
As mentioned in Section 2.1, standard theorems regarding the asymptotic convergence of the
distribution of parameter estimators to the Gaussian distribution require the link, at the very
least, to be everywhere differentiable (McCullagh and Nelder, 1999; Hogg et al., 2005;
Pawitan, 2001). While the piece-wise linear link function used to specify Eq. (8) is not
differentiable at the origin, due to the Weierstrass approximation theorem (Rudin, 1976), it can
be uniformly approximated, on an interval [a, b] containing rates of practical interest, as closely
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as desired by a polynomial function. Since polynomial functions are differentiable to arbitrarily
high orders the regularity conditions required to ensure asymptotic normality of parameter
maximum likelihood estimators holds for functions that are arbitrarily close to the piece-wise
linear link function employed in this work.

A simulation is performed to study the convergence of the distributions of the maximum
likelihood estimators to the normal distribution. A set of synthetic experiments is created; each
consisting of a single trial. The results are presented in Fig. 15. For each trial, one second of
measurements is synthesized. For both simulations, the coupling constant, β, linking the LFP
to the rate is 100 Hz, and the LFP is drawn from the same autoregressive (AR) process used
to specify the LFP in Section 4. The background rate of the neuron is increased from 0 Hz, to
300 Hz from the first row to the fourth row in both figures. For each trial and background rate
configuration, 150 realizations of the experimental data are computed and for each realization
maximum likelihood estimates of the parameters, β0, βc and βs. These 150 estimates are then
used to compute estimates of the probability density functions for the associated estimators,

,  and . The red curves are Gaussian probability density functions specified to have a
mean equal to the sample mean of the fifty estimates, and a variance specified by the observed
Fisher information computed using Eq. (46). Fig. 15 indicates that the Gaussian approximation
is good for all rates and is excellent for rates greater than or equal to 50 Hz. Since the non-
linear link function is in a linear regime when the background rate exceeds 100 Hz, one expects
in this regime estimator variance to increase with background rate; consistent with the Poisson
distribution. This can be seen by inspecting the width of the probability density functions in
the last two rows of Fig. 15. When the background rate is 0 Hz, the rate is a rectified cosine,
and though bias is evident; the estimates are sufficiently accurate to usefully perform inference.

Appendix C: Effect of unmodelled sinusoids
In general, one expects neural activity to be influenced simultaneously by multiple sinusoids
of varying frequencies. In this situation the model specified by Eqs. (8) and (9) is incorrect.
This mis-specification can manifest in biased parameter estimates as well as biased estimates
of parameter variance and covariance. The following two lemmas address this concern.

Lemma 1. Unbiased estimator for oscillatory model with strictly positive rate.

Let c(f) and s(f) be two column vectors with their jth elements equal to cos(2πfΔj) and sin
(2πfΔj), respectively. Here Δ is the bin size employed in Section 2. Let the jth Fourier frequency,
fj, equal j/T where T is the observation duration. Define the complete model matrix, Hf, as,

Given the element-by-element restriction,

(54)

there exists a spectral representation Priestly (1981) of a finite, discrete-time random process
such that the stochastic intensity for the full model incorporating all sinusoids can be
represented as the piece-wise linear function of a linear combination of random parameters,
βf:
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(55)

Eq. (55), when considered along with the restriction, Eq. (54), describes neural activity
influenced by up to the maximal number of sinusoids permitted by Fourier theory when the
background rate is sufficiently large. Then the expected intensity for all considered time-
indices, E{λ}, is,

(56)

Let the three-column restricted model matrix, Hr equal to , where
fi is the Fourier frequency of interest. Let the triplet, βa, of elements of βf, consist of the pair
of random parameters associated with the frequency of interest, fi, and the random parameter
associated with the first column of the model matrix, representing the constant, or zero
frequency component. Further restrict every element of the product, Hrβr, to be positive:

(57)

Then, the maximum-likelihood estimator, , computed with the restricted model matrix, Hr,
is unbiased.

Proof. The maximum-likelihood estimator, , zeros the score equation:

(58)

Taking the expectation of both sides of Eq. (58) yields,

(59)

Due to orthogonality, Eq. (59) can be written:

(60)

Because the null space of Hr contains the zero element only, Eq. (60) implies βa equals  in
expectation.

Lemma 1 states that the parameter estimators associated with the full and reduced models are
identical when the model matrix is oscillatory and the rate is sufficiently high. When the rate
is sufficiently high nonlinear action of the piece-wise linear link function is not in effect. One
notes that the oscillatory model matrix is approximately attained when the instantaneous phase
of the LFP is low dimensional. That is, when the product of the observation duration of the
LFP multiplied by the width of the frequency interval of the band-pass filter used in the Hilbert
transform based LFP phase estimator is small Slepian (1976). This result is intuitive, as in this
situation the maximum likelihood estimate in the proposed model is directly related to the
discrete Fourier transform of the counts dn, evaluated at the frequency of interest. For the
testing methodology proposed in this work, the Fisher information associated with the full
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model restricted to the parameters of interest and the Fisher information associated with the
reduced model should be equal to avoid biased scaling effects in the proposed hypothesis test.

Lemma 2. Invariance of the Fisher Information to non-interesting sinusoids.

With the definitions and restrictions specified in Lemma 1, the Fisher information, Iβa
associated with the fully specified model and the Fisher information for the reduced model,
Iβr, are equal.

Proof. The Fisher information associated with the reduced model estimator, , Iβr is, by
definition Scharf (1991) and Kay (1993),

(61)

where the score equation, s(βr, dn), is

(62)

Then,

(63)

Equality between Iβr and Iβa is established when the matrices , j = 1, 2, 3, 4 associated

with the reduced model are shown to be equivalent to those matrices,  associated with
the Fisher information of the full model restricted to the parameters of interest. Consider,

(64)

Where orthonormality is used to proceed from line 4 to line 5. Similar arguments hold for j =
2, 3, 4 and the equality of the Fisher information matrices is established.

Hence, there is no model mis-specification due to unmodelled sinusoids when the rate is
sufficiently high such that the nonlinear function relating the linear combination of covariates
to the conditional intensity is always in the linear regime. At lower rates one expects an effect
due to unmodelled sinusoids. The form of this effect is best explored through standard,
statistical model selection procedures.

Appendix D: Approximate modulation confidence interval
By Taylor expansion (Casella and Berger, 2001, p. 242), the variance, var{ } of the modulation

estimator,  can be approximated as,
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(65)

Here, var denotes variance, and^over a symbol denotes an estimator of the theoretical quantity.
In this work, confidence intervals are constructed from Eq. (65) assuming normality. Relevant

estimates replace the estimators in Eq. (65) to obtain an estimate of the variance of . This
estimate is used to compute confidence intervals. One notes that if one does not mind being
conservative, greater accuracy can be attained by employing the Chebyshev inequality to obtain
the confidence interval. In this case, an assumption of normality is not required.
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HIGHLIGHTS

▶ A statistical methodology is introduced capable of studying changes in the coupling
between rhythmic local field potential (LFP) and neural spiking times.

▶ The methodology successfully deals with a problematic confounding factor present
in more standard analyses based upon spike-field coherence.

▶ The method is capable of studying both per-frequency modulatory effects as well as
the tendency of spiking to occur at a specific phase of a sinusoidal (LFP) rhythm.

▶ The method is effective both in simulation and when analyzing real data.
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Fig. 1.
Testing procedure and associated inference. The flow chart describes the key steps necessary
to perform the proposed change-in-modulation testing procedure for a single frequency
interval.
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Fig. 2.
Description of synthetic data used in Fig. (3). Upper left half: Example spike trains and LFP
timeseries associated with the left hand side of Fig. (3). The link between the LFP and the
spiking rate is constant, while the background rate, αk, increases from left to right and from
top to bottom. Rates are prevented from falling below zero by employing the piecewise linear
link function. The preferred phase of spiking in all plots, ϕp, is zero. The dark thick lines indicate
the spike times, and increase in occurrence frequency with increasing background rate. Note
that the fraction of spike times that occur at the LFP peak decreases with increasing background
rate. For k > 1, that is for all but the upper left plot, the thick non-positive gray line indicates
the occurrence of spikes that have not been removed in the thinning procedure employed in
Mitchell et al. (2009) and Gregoriou et al. (2009). Here spike trains are thinned pairwise
between the spike trains corresponding to k = 2, 3, 4, and to the spike trains associated with
k = 1. As expected, the times at which spikes occur at LFP peaks is greatly reduced in the
thinned spike train depicted in the lower right hand plot for the k = 4 case. Upper right half:
Example spike trains and LFP timeseries associated with the right hand side of Fig. (3). The
link between the LFP and spiking rate decreases from left to right and top to bottom, while the
background rate remains constant. Bottom left: One of twenty realizations of the spiking rate
associated with the upper left plot in Fig. (2). Bottom right: The theoretical LFP spectrum
associated with the synthetic rate plotted on left. The LFP is oscillatory with a spectral peak
near 50 Hz. Realizations of this random process are used to generate all of the synthetic LFPs
used in simulation.
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Fig. 3.
Proposed test breaks average rate/association confound. The squared magnitude of the spike
field coherence computed between spike trains and LFP time series for synthetic data generated
using the model specified by Eq. (29) and illustrated by Fig. 2. When the spike probability
modulation due to the LFP is held constant the squared magnitude of the spike field coherence
decreases with increasing background rate (left four plots). When the background rate, αk is
held constant while the modulation, in this case equal to βk, decreases, the squared magnitude
of the spike field coherence decreases. Increasing background rate and decreasing association
between neural spike times and LFP rhythm are indistinguishable in spike-field coherence. Bar
plots: Negative of the base 10 logarithm of the p-values of the proposed test using the piecewise-
linear link (PL), see Section 3, for differences in LFP rhythm/spike train association. The test
is computed between the data used to compute the upper left plot and the data used to create
the other three plots for each of the two cases (constant background rate (left half) and non-
constant background rate (right half)). The test disambiguates changes in background rate from
changes in the association between LFP rhythm and neural spike times. Ninety-nine percent
confidence intervals are depicted in red. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)
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Fig. 4.
Impact of PL and log link functions on tests of association. Both simulations: The LFP is as
used in the first simulation and is depicted in Fig. 2. Left-half (A–D): The modulation, ρ, is
changed across conditions while the background α is held constant. The spike-train data are
generated using the piecewise linear link (PL), example in plot C. The modulation changes
across conditions and both tests are significant (D). Right-half (E–H): The spike-train data are
generated using the log link, the preferred phase of spiking changes across conditions, the
spike-triggered LFP phase densities are otherwise equivalent (F), and the modulation is much
stronger as demonstrated by the response of the rate as a function of LFP phase (E). Only the
test computed using the piecewise linear link function is significant (H). This behaviour is
consistent with the description in Section 3.1 of the difference between the test computed using
the piecewise linear link function and the log link function. The ninety-five percent phase
density confidence intervals are computed by boostrapping the trials. They have not been
corrected for multiple comparisons. The black horizontal line is the uniform probability density
function over phase.
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Fig. 5.
Modulation, ρ, estimated from the data depicted in Fig. 4. All plots: LFP as described in Fig.
2. Left-half (A,B): Per-frequency rate modulation, ρ, as well as background rate, α, estimated
from the spiking data depicted in Fig. 4, plot C. This spiking data is generated with use of the
PL link function and is used to produce the plots, (A–D) of Fig. 4. Right-half (C,D): Per-
frequency rate modulation, ρ, as well as background rate, α, estimated from the spiking data
depicted in Fig. 4, plot G. This spiking data is generated with use of the log link function and
is used to produce the plots, (E–H) of Fig. 4. Note that the interpretation of the ρ and α
parameters depends upon the type of link function used. When the log link is employed, the
modulation is multiplicative; eρ, multiplies a background rate of Δ−1eα Hz to yield the
modulation due to LFP rhythm in units of Hz. The data generated with the log link is
significantly modulated at a number of frequencies about 50 Hz (C and D) for both conditions,
but only modulation ρ associated with the PL statistical model relating LFP rhythm to spiking
is significantly different across conditions. The confidence intervals are approximate, 95
percent confidence intervals computed with the delta method (see Appendix D). These intervals
are Bonferroni corrected for multiple comparisons. The results are consistent with the results
of the proposed hypothesis test plotted in Fig. 4.
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Fig. 6.
Spike field coherence computed from the data generated in making (Fig. 4). A: Spike field
coherence computed from the non-thinned spike-trains associated with the left-half of Fig. 4.
B: Spike field coherence computed from the thinned spike-trains associated with the left-half
of Fig. 4. C: Spike field coherence computed from the non-thinned spike-trains associated with
the right-half of Fig. 4. D: Spike field coherence computed from the thinned spike-trains
associated with the right-half of Fig. 4. The thinning procedure slightly reduces spike
magnitude-squared coherence between the spikes and the LFP. Magnitude-squared coherence
is more affected by the thinning procedure for the data generated with the log link function
(C,D). This is due to the larger across-condition difference in the total number of spikes leading
to larger probabilities of spike removal in the spike thinning procedure. The frequency
resolution of these estimates, equal to twice the time-bandwidth parameter (NW = 1) divided
by the observation duration of 200 ms, is 10 Hz.

Lepage et al. Page 33

J Neurosci Methods. Author manuscript; available in PMC 2014 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Example local field potential (black curves) recorded from Macaque visual cortex during the
attend-in (left) and attend-out (right) experimental conditions. Black vertical bars indicate the
times at which spikes occur in multi-cell recordings from the FEF. The across-condition test
for associativity between LFP rhythm and neural spike train is applied to time-series such as
these.
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Fig. 8.
Application of the proposed test (low-frequency) to real data. Top: The proposed test for spike-
field coupling change applied, as a function of frequency, to LFP rhythm and neural spike
trains recorded from one Macaca mulatta monkey trained in a covert attention task; as
described in Gregoriou et al. (2009). Each frequency has 76 tests, two for each spike-train/LFP
pair. Each test was computed using both the PL link function (blue) and the log link function
(red). Each test is sensitive to a change across attentional condition but in different ways. The
tests have been Bonferroni corrected for multiple comparisons. Bottom: Difference in the
modulation, ρ, across attention conditions. At 4 Hz, spike coupling to LFP rhythm is reduced
during attention and is accompanied by a spike-phase distribution that is less tuned to a
preferred phase of spiking. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of the article.)
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Fig. 9.
Application of the proposed test (high frequency) to real data. Top: The proposed test for spike-
field coupling change applied, as a function of frequency, to LFP rhythm and neural spike
trains recorded from one Macaca mulatta monkey trained in a covert attention task; as
described in Gregoriou et al. (2009). Each frequency has 76 tests, two for each spike-train/LFP
pair. Each test was computed using both the PL link function (blue) and the log link function
(red). Each test is sensitive to a change across attentional condition but in different ways. The
tests have been Bonferroni corrected for multiple comparisons. Bottom: Number of pairs with
significant differences across conditions vs. frequency. Most changes in association occur for
a frequency interval centered upon 50 Hz. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)
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Fig. 10.
Modulation vs. experimental context for the Macaca monkey data as a function of frequency.
The modulation is computed using the PL model (left, top), and using the log link model (left-
bottom). Associated modulation uncertainty is plotted below, center. Magnitude-squared
coherence (MSC) (right-top) and MSC computed from thinned spike-trains (right-bottom),
behave in a similar fashion to modulation. In all cases, modulation (PL link or log link) and
MSC behave similarly; during the attend-in condition it is larger than during the attend-out
condition, and this is true for almost all frequencies. In addition, there is a linearly increasing
trend from 0 Hz to 50 Hz followed by a sharp decrease. In all plots, each bar, for a given
condition, represents the modulation, MSC, or modulation uncertainty for a single LFP/
electrode pair for a specific experimental condition. The ordering of the bars is consistent from
one condition to the other so that direct comparisons across condition can be made visually.
Due to the large, spiking rates, and the small difference in spiking rates across condition, the
MSC computed from the thinned and the non-thinned spike trains is nearly indistinguishable.

Lepage et al. Page 37

J Neurosci Methods. Author manuscript; available in PMC 2014 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 11.
Background rates (α): The height of each bar of the same color indicates the estimated
background rate for one LFP/spike-train pair. There are 38 such pairs and the color indicates
the experimental condition. The background rate estimates, computed with either the PL link
function or the log link function are, as plotted, indistinguishable. Uncertainty is larger for
larger rates, a property expected of count-type data. Background rates tend to be larger during
the attend-in experimental condition. The uncertainty associated with the log link is eσα ;
specifying the multiplicative-modulation of the background rate resulting from one positive
standard deviation in alpha when using the log link function.
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Fig. 12.
Difference of the across-condition average spiking rates plotted against the average of the
across-condition average spiking rates. The average spiking rates tend to be large while the
across-condition rate changes are approximately an order of magnitude less. The thinning
operation has a no effect due to the typical pair-wise (i.e. across-condition) similarity of the
spiking rates (Fig. 12); as well as the relatively large firing rates.
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Fig. 13.
Test comparisons. Summary: all three tests are correlated. The thinning procedure tends to
reduce MSC difference across-condition. There exist a number of significant tests associated
with the PL link function, that do not have significant counter-parts when using the log link
function. This latter fact indicates that for some LFP/spike-train pairs a distributional change
in the LFP phase of spiking is not accompanying a change in spike-field association. Left: The
difference between the magnitude-squared coherence evaluated at 50 Hz for the attend-in
condition is reduced by the magnitude-squared coherence at 50 Hz for the attend-out condition
and is plotted against the – log 10(p – values) computed using the proposed testing procedure
with the model employing the piecewise linear link function. Circles indicate the use of non-
thinned spike-trains and squares indicate that computations have occurred using spike-trains
thinned to the minimum average firing rate of the two spike-trains. Each shape corresponds to
a single spike-train/LFP pair and the size of each shape is proportional to the difference in the
across-condition average spiking rates. Right: Comparison of p-values computed using the
proposed testing procedure with differing functions linking the expected intensity to the
covariates. A linear trend relating the transformed test p-values exists; with the test computed
using the log link tending to have smaller p-values.
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Fig. 14.
A raster of significant detections. MSC refers to tests performed by comparing 99% magnitude-
squared coherence bootstrap confidence intervals across conditions (a detection corresponds
to non-overlapping confidence intervals), MSCt refers to the same test but computed using
spike-trains randomly thinned to the minimum pairwise average spiking rate; while Log and
Piecewise Linear refer to the proposed test computed using the different link functions. The
MSC and MSCt detections are detected by both of the proposed tests and the proposed tests are
similar with the exception of a few spike-train/LFP pairs. Here a significant p-value is taken
to be 0.01 after Bonferroni correction. There are no tests computed using the log link function
that are significant where the associated test computed using the PL link function is not
significant. Tests computed using the PL link function that are significant where the associated
test computed using the log link function is not significant indicate changes in the modulation
due to LFP at 50 Hz that do not change the width of the distribution of the LFP phase associated
with spikes.
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Fig 15.

Black curve: empirical probability density functions for  (left column),  (middle column)

and  (right column), for background rates increasing from top row to bottom row. Empirical
probability density functions are computed from 150 estimates. Each estimate is computed
from a single trial consisting of a one second recording generated according to Eqs. (8) and
(9), with a background rate specified by the left-hand-side label for each row of the figure, and
with a constant LFP-rate coupling constant equal to 100 Hz. The Gaussian approximation is
good for all rates and is excellent for rates greater than or equal to 50 Hz. The non-linear link
function is in a linear regime for background rates exceeding 100 Hz. As expected, in this
regime estimator variance increases with background rate. When the background rate is 0 Hz,
the rate is a rectified cosine, and though bias is evident; the estimates are sufficiently accurate
to perform inference.
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Table 1

Interpretation of testing results. Let  and  denote, respectively, the across-condition change in
modulation associated with the log link, and the PL link. The four test outcomes are described below for a single
frequency interval

Test results Interpretation

dρ
(PL)

= 0, dρ
(log)

= 0
No evidence for a condition dependent rhythmic
LFP influence.

dρ
(PL)

= 0, dρ
(log)

≠ 0
Evidence for a condition dependent spike-triggered
phase density concentration that does not affect
rhythmic LFP influence for this frequency interval.

dρ
(PL)

≠ 0, dρ
(log)

= 0
Evidence for a condition dependent rhythmic LFP
influence that arises by drawing a condition
dependent number of spikes from the same
spike-triggered phase density.

dρ
(PL)

≠ 0, dρ
(log)

≠ 0
Evidence for a condition dependent rhythmic LFP
influence and a condition dependent
spike-triggered phase density concentration.
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Table 2

Summary of test properties. When considering changes, it is assumed that all parameters besides the changing
parameter are fixed in the data generating model. “Change in PL α” refers to a change in the α parameter when
the data is generated by the model, Eqs. (8) and (9), when using the piecewise linear link function. Similarly,
“Change in LOG ρ” refers to a change in the ρ parameter when the data is generated according to the model using
the log link function

Property PL link Log link Spike-field coherence

Affected by unmodelled sinusoids NOa YES NO

Affected by change in PL α NO YES YES

Affected by change in PL ρ YES YES YES

Affected by change in Log α YES NO YES

Affected by change in Log ρ YES YES YES

a
When the background rate sufficiently large relative to the combined oscillatory activity. See Section 2.2.
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