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The coherence between neural spike trains and local-field potential
recordings, called spike-field coherence, is of key importance in many
neuroscience studies. In this work, aside from questions of estimator
performance, we demonstrate that theoretical spike-field coherence for
a broad class of spiking models depends on the expected rate of spik-
ing. This rate dependence confounds the phase locking of spike events
to field-potential oscillations with overall neuron activity and is demon-
strated analytically, for a large class of stochastic models, and in simula-
tion. Finally, the relationship between the spike-field coherence and the
intensity field coherence is detailed analytically. This latter quantity is in-
dependent of neuron firing rate and, under commonly found conditions,
is proportional to the probability that a neuron spikes at a specific phase
of field oscillation. Hence, intensity field coherence is a rate-independent
measure and a candidate on which to base the appropriate statistical
inference of spike field synchrony.

1 Introduction

Neural activity coupled between spatially disparate regions is thought to
play a vital role in brain function (Buzsaki & Draguhn, 2004; Singer &
Gray, 1995) and disease (Ben-Ari, 2007). Many measures exist to char-
acterize this coupling: traditional measures of linear association, such as
cross-correlation, measures of nonlinear relationships (Pereda, Quiroga, &
Bhattacharya, 1995), and measures of cross-frequency coupling (Canolty
et al., 2006). A coupling measure commonly estimated when analyzing
neuroscientific data is the coherence—a frequency domain measure used to
assess the phase relationship between two oscillatory signals (Bruns, 2004;
Priestly, 1981). In neuroscience, coherence measures are typically estimated
from field recordings, for example, the estimates of coherence between two
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electroencephalogram (EEG) signals or fields (Bullock et al., 1995; Nunez
etal., 1997), between two electrocorticogram (ECoG) signals (Towle, Carder,
Khorasani, & Lindberg, 1999; Zaveri et al., 1999), or between two local field
potential (LFP) signals (Buzsaki, Horvath, Urioste, Hetke, & Wise, 1992;
Montgomery & Buzsaki, 2007). In these cases, the “field-field” coherence is
independent of the field amplitude; scaling observations of one field by a
constant amount does not affect its coherence with another field.

Coherence may also be estimated to assess the relationship between neu-
ral spike trains and fields (Jarvis & Mitra, 2001). This spike field coherence is
of key importance in many neuroscience studies as a measure of consistent
neural spiking at a specific phase of the field, usually an LFP (Fries, Womels-
dorf, Oostenveld, & Desimone, 2008; Gregoriou, Gotts, Zhou, & Desimone,
2009; Pesaran, Pezaris, Sahani, Mitra, & Andersen, 2002; Pesaran, Nelson,
& Andersen, 2008). In this letter, we show that the spike field coherence
measure reflects features of the mean firing rate, as well as features of the
relationship between spiking activity and the phase of field.! As prelimi-
nary intuition for this result, note that two sources of variability affect neural
spiking: variations in rate and variability due to the randomness of spik-
ing events. That is, even for a constant known rate, randomness remains
in the spiking activity due to the random appearance of the spikes. More
generally, each source of variation, both the random rate and the random
spike times, contributes, and thus the coherence between spikes and fields
is more complicated than that between two fields.

While coherence remains a useful measure of characterizing relation-
ships between neural spiking activity and fields, it is important that re-
searchers remain aware of the effect of neural firing rate on the coherence.
In this work, the statistical performance of spike field coherence estimators
is not investigated. Instead, we demonstrate that theoretical spike field co-
herence for a broad class of spiking models depends on the expected rate of
spiking. Bias is not the concern here; the dependence on rate relates to fun-
damental aspects of the spike field coherence measure. Further, this class of
models, a subset of the class of doubly stochastic discrete-time point pro-
cesses, is shown to exhibit spiking behavior similar to actual spiking data,
hence providing a foundation for inference.

The letter begins with background on coherence in section 2; states the
main result of the letter, the dependence of spike field coherence on rate,
in sections 3, and illustrates this dependence by simulation in section 4. In
section 5, we provide important but secondary results. Section 6 consists of
the mathematical development of the results presented in sections 3 and 5.
The letter concludes with a discussion in section 7.

! Here, for the sake of pedagogy, rate is used colloquially to mean the number of
spikes divided by the duration observed. In section 6, where results are presented with
mathematical accuracy, the conditional intensity replaces this informal notion of rate.
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2 Background

Coherence is a frequency-dependent measure of linear association between
two time series. Nonparametric coherence estimators are common and have
been successfully employed in diverse sciences. Coherence, for example,
plays a role in optics (Mandel & Wolf, 1995; Schmitt, 1999) and in geo-
physics (Foster & Guinzy, 1967; Hinich & Clay, 1968; Munk & Phillips,
1968). In neuroscience, background material on field-field coherence and
spike field coherence includes Amjad, Halliday, Rosenberg, and Conway
(1997), Brillinger (2001), Halliday, Rosenberg, Amjad, Breeze, Conway, and
Farmer (1995), Jarvis and Mitra (2001), Mitra and Bokil (2008), Rosenberg,
Halliday, Breeze, and Conway (1998). Coherence in the neuroscience setting
has been used to characterize neural population activity (Bollimunta, Chen,
Schroeder, & Ding, 2008; Bruns & Eckhorn, 2004; Bullock et al., 1995; De-
Coteau et al., 2007a, 2007b; Kristeva, Patino, & Omlor, 2007; Montgomery &
Buzsaki, 2007; Sirota et al., 2008; Towle et al., 1999; Zaveri etal., 1999), and the
relationship between neural spiking and field potentials (Chalk, Herrero,
Gieselmann, Delicato, Gotthardt, & Thiele, 2010; Fries, Reynolds, Rorie, &
Desimone, 2001; Fries et al., 2008; Gregoriou et al., 2009; Jutras, Fries, & Buf-
falo, 2009; Pesaran et al., 2008; Witham, Wang, & Baker, 2007; Womelsdorf,
Fries, Mitra, & Desimone, 2006). Coherence can be estimated between any
two time series, providing information about phase relationships, group de-
lays, and transfer functions, in addition to the degree of linear interdepen-
dence (Brillinger, 2001; Priestly, 1981). For a multitaper estimator of coher-
ence see Thomson (1982), and for the robust estimation of these quantities
see Chave, Thomson, and Ander, 1987. Multivariate extensions of coherence
(i.e. canonical coherence) are discussed in, for example, Brillinger (2001)
and applied in a neuroscience context in Brillinger, Lindsay, and Rosenberg
(2009). Coherence analysis is a component of the spectral analysis of time
series. Related work on the spectral analysis of point processes includes
Bartlett (1963, 1981), Brillinger et al. (2009), and Jarvis and Mitra (2001).

Any stochastic model describing the relation between two time series
implicitly defines a theoretical coherence between them as well. As is typ-
ical in spectral analysis approaches, in this work neural signals of interest
(LEPs and spike trains) are assumed weak-sense stationary (Priestly, 1981).
This implies that the mean and covariance of these signals do not vary
in time. It is important to note that in many electrophysiological studies,
the recorded signals will not satisfy this assumption. For example, many
experiments involve presenting predetermined, dynamic stimuli that lead
to response properties that vary in time. However, in these cases, it is often
possible to meaningfully proceed with spectral analysis despite the station-
ary restriction. This can be done by either identifying short time intervals
over which neural responses are approximately weak-sense stationary or
by quantifying the performance of spectral estimators when the weak-sense
stationary assumption is inappropriate.
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To define coherence, let x; be a mean-zero, discrete-time, weak-sense sta-
tionary random process modeling one of two time series. Let y; be another
mean-zero, discrete-time, weak-sense stationary random process modeling
the other time series. Further define the discrete Fourier transforms, Xr(f)
and Yr(f), as

AN 4
Xr(f) = T Z xje2mfia (2.1)
=0
and
AN 4
Yr(f) = T Z yteilznfmy (2.2)
=0

where T = NA is the duration of the time series, A is the time between
consecutive measurements, and i? = —1. Here t is the integer valued time
index such that the corresponding measurement time is tA. Note that in
the frequency domain, quantities will be continuous functions of the fre-
quency, f. This is a property of the discrete Fourier transform (Oppenheim
& Schafer, 2009). Then the coherence , Cy( f), between x; and y;, is?

Cuy(f) = lim E [Xr(f)Y;(f)]

Jim , 2.3)
JE[xer] e[l

where E denotes the expectation operator (Percival & Walden, 1993) and is
the average over realizations (i.e., average across trials). Some properties of
this measure include the following. First, by the Cauchy-Schwartz inequal-
ity, 0 < |Cyy(f)| < 1. Second, the magnitude of the coherence, |Cy,(f)| =1
when Xr(f) =k Yr(f) for k € C. This latter relationship arises from the fact
that equality in the Cauchy-Schwartz inequality is achieved when there is
a linear relationship between Xr(f) and Y7 (f). Hence, |Cy,(f)| provides
a per frequency indication of linear association between the time series x;
and y;. Though not focused on in this work, the phase of C,,(f) provides
information regarding the timing of x; with respect to y; at the frequency
f. An estimate of the coherence plays a role in standard nonparametric

2Term coherence is sometimes reserved for the magnitude of the complex quantity
specified in equation 2.3. In Priestly (1981), for instance, Cy,(f) is called “complex co-
herency,” or just “coherency,” and coherence is reserved for }CW( f )|. In this letter, Cyy(f)
will be called the coherence, and when referring to magnitude and magnitude squared
quantities, explicit reference will be made.
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estimates of the transfer function between the time series x; and ;. It
embodies information, at the frequency f, regarding both the amplitude
scaling between the two time series, in addition to the difference in phase
between the time series (Priestly, 1981; Thomson, 1982).

When the cross-covariance and autocovariance sequences between
the pair-wise combinations of x; and ; exist, Wold’s theorem guarantees
the existence of the corresponding integrated spectra (Priestly, 1981). When
the relevant integrated spectra are differentiable, the spectrum of x;, y;, and
their cross-spectrum (Syx(f), Syy(f), and Sy, (f), respectively) exist, and the
coherence, Cy,(f), can be expressed as

Svy(f)

o) (2.4)
Sex(f)Syy(f)

Cw(f) =

For neuroscience data, the existence and differentiability of the integrated
spectra is, for all practical purposes, guaranteed, and equation 2.4 can be
considered valid.

3 Result

The main result of this letter is the dependence of spike field coherence on
the overall rate, or intensity, of spiking. The spike field coherence, C;,(f),
can be defined in a fashion analogous to the definition of the field-field
coherence, Cy,(f), presented in section 2 but with important differences
that account for the binary nature of the spike events. A brief outline of
the results is presented here; readers interested in mathematical details are
directed to section 6, where stochastic models are posited and the results
are developed and discussed with greater precision. In the following, the
term rate is used colloquially to mean the expected number of spikes in a
given duration.

Consider a weak-sense stationary binary time-series model of random
spiking activity with some rate, A;, that evolves in time and has mean p;.
In section 6, the spike field coherence is shown to be related to the rate field
coherence,

m+H<f>)‘% )

Cul) = Cut (14 255

where C;,(f) is the coherence between the rate and the field potential,
S (f) is the spectrum of the rate, A;, and H( f) is a parameter influenced by

3In the Fourier domain, the output of a linear, time invariant system can be represented
as the multiplication of a “transfer function” with the Fourier transform of the input
(Oppenheim & Schafer, 2009).
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history-dependent spiking (such as a refractory period or periods of burst-
ing). The behavior of this parameter is discussed heuristically in section 5.4
and is further discussed in section 6 for different types of neural activity.
In particular, it is shown to be 0 for spiking activity without history depen-
dence. Thus, the spike field coherence, C;;, ( f), depends on the two fields ;
and 1 and the mean rate of neuron firing u;.

To illustrate the dependence of the spike field coherence on the rate,
consider a scaling of the rate A; of a Poisson process by a constant factor s.
Doing so results in a scaled spectrum, S,; (f) multiplied by a factor propor-
tional to s?, accompanied by mean-rate j; scaled by s. Thus, with increasing
scaling, SA“—)/[) tends to 0, and the spike field coherence tends to the rate field
coherence C;,(f). Because the probability of a spike about time index ¢ is
approximately Aj;, the rate field coherence provides a direct measure of
the probability of spiking at a specific phase of an oscillation in the field y
at frequency f. Hence, the rate field coherence is a natural measure of the
association between spiking and field potential oscillations. With scaling
tending to 0, g% — oo and the spike field coherence tends to 0. In words,
as the rate tends to 0, so does the spike field coherence. These results are
demonstrated in simulation in section 4 and derived in detail in section 6.

4 Simulation

Two simulations are performed to illustrate the dependence of the spike
field coherence, C,,( f), on mean rate. In the first, synthetic field potentials
are generated from a stochastic field potential model, and synthetic spike
trains are generated as realizations of two different types of point processes.
For both types of point processes, the dependency between the field poten-
tials and the time-varying spike rates remains constant, and for both types
of point processes, realizations are generated for various mean spike rates.
Thus, by varying the mean rates while maintaining a constant dependency
between spike timing and field potential, the dependence of the coherence
on the mean spike rate is explored.

The spike trains are realizations of one of two different types of point
processes, with various mean spike rates. The first type of point process ex-
hibits no history dependence in the spiking (e.g., no refractory period), but
with spike rate depending on the phase of the field. The field is modeled
simply as a second-order autoregressive random process. The spike rate
depends on the exponentiated field, so that field increases manifest in in-
creased rates. From these synthetic time series, coherences are estimated for
different values of the mean-spiking rates using a standard software pack-
age .* These estimates are plotted for the frequency of maximal coherence

4Chronux Matlab Toolbox, freely available at www.chronux.org.
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Figure 1: Simulated spike and field data illustrate the dependence of the spike
field coherence on the mean spike rate. Multitaper estimates of the spike field
coherence are estimated using the Chronux Matlab toolbox and compared to
the magnitude of the theoretical spike field coherence, |C,,(f)|, for a specific
frequency as a function of the expected intensity or rate. This frequency, fixed
as rate varies, is chosen such that the magnitude of the spike field coherence is
maximal. (Left) Theoretical result from equation 3.1 plotted with the magnitude
of the estimated spike field coherence. Theory lies within the 95% confidence
interval specified by the gray error bars, and the dependence on rate is evident.
(Right) An indication of the effect of history on the rate dependence of the
magnitude of the spike field coherence. The magnitude of the spike field coher-
ence is computed and plotted for three types of point processes. The first type
(solid, light gray) has no history effect as in the left figure, the second contains
a refractory period (solid, black), and the third type has bursting in addition
to a refractory period (dotted). In these examples, the history effect does not
appreciably alter the magnitude of the spike field coherence, and once again,
the dependence on the rate of spiking is pronounced.

in Figure 1. The theoretical value of the magnitude of the spike field coher-
ence, Cy,(f), specified in equation 3.1, in the case of history-independent
spiking, is also plotted in Figure 1 as a function of spike rate. This theoretical
curve is well approximated by the magnitude of the spike field coherence
estimates.

In the second type of point-process model, the spiking activity possesses
two types of history dependence: one that enforces a refractory period (by
decreasing the probability of spiking immediately after a spike) and another
that, in addition to the refractory period, encourages bursting (by increasing
the probability of spiking after the refractory period). Inboth cases, the spike
rate still depends on the phase of the field model (simulated in the same
way as above). For these more complicated situations, the dependence of
the spike field coherence on the mean rate remains the same (see Figure
1, right). To summarize, in both model types, although the dependency
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between the field and spiking activity remains unchanged, the spike field
coherence decreases as the mean rate decreases.

A second illustration of the dependence of the spike field coherence,
Cuy(f), on the mean rate is provided by associating a true ECoG signal
(recorded from human cortex during seizure) with simulated spiking data.
This association is specified such that spiking activity is realized with two
different overall rates—one high and one with a rate 10 times reduced. In
both cases, the point processes are constructed so that spikes tend to occur
at the peaks of the dominant 8 Hz field rhythm (see Figure 2, upper panel).
Thus, the same association between the spiking and the field is maintained
while the rate of firing is varied. The estimated magnitude of the spike field
coherence for the high- and low-rate spiking are plotted in the bottom row
of Figure 2. Ninety-five percent confidence regions are reported using the
jacknife method for the large-coherence magnitude near 8 Hz. For either
estimate of the spike field coherence, the maximum of the magnitude occurs
at frequencies near 8 Hz by construction. The dependence of the spike field
coherence on the rate is clear: the spike field coherence estimate computed
from the high-rate spiking is greater than or equal to the magnitude of the
spike field coherence estimate computed with the low-rate spiking. Though
this simulation uses common estimates for the spike field coherence, one
sees that this estimator demonstrates the dependence of the spike field
coherence on the spiking rate expected from equation 3.1.

The simulation results presented in Figures 1 and 2 are unlikely if either
the theoretical model is incorrect or if the standard multitaper spike field
coherence estimator is badly biased.

5 Secondary Results

Additional results providing insight into the nature of spectral quantities
of point processes are provided in this section. These results are developed
in detail in section 6 and in the appendix. In the following, the collection of
neuron spike times is represented as a realization of a discrete-time, doubly
stochastic point process with increments, d#;.

5.1 Autocovariance Function: Discrete-Time, Doubly Stochastic Point
Process, r,,(t, 7). In section A.3 in the appendix, we show that the spike-
spike autocovariance sequence, in general a function of both a global time
index, t, and a local time index, 7, is,

Tan(t, T) + A2/LA,t My t+t
{A Hats =0

2 P(htie e, dni=1) .
A% Ejnse I:)‘t)‘tﬁ—rw ], [z| >0

(5.1)
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Figure 2: Illustration of rate dependence of the spike field coherence for ex-
perimental field data. (Top) Black curve: The neural signal to which neuron
spiking is associated by simulation. An 8 Hz rhythm dominates this ECoG sig-
nal. Light gray raster plot indicates the low-firing-rate neuron spike times. Dark
gray raster plot indicates the high-firing-rate neuron spike times. Note that the
spike events tend to occur at the peaks of the 8 Hz rhythm in the field. (Bottom
row) Light gray and dark gray curves: Magnitude of multitaper estimates of
the spike field coherence, C,,(f), computed using the Chronux Matlab toolbox
using default parameters. The resolution is approximately 2.5 Hz. The dotted
curves near 8 Hz denote 95% jacknifed confidence intervals. The light gray
curve is computed using the light gray neuron spike event times depicted in the
light gray raster plot in the top row. The dark gray curve is computed using the
dark gray neuron spike event times depicted in the dark gray raster plot in the
top row. Note that the spiking process from which the dark gray and light gray
spike events are drawn is constructed so that the rate field coherence, C;,(f),
has a magnitude near 1 for frequencies near 8 Hz. Further, note that the dark
gray estimate of the spike field coherence magnitude, |C ,is larger than the
light gray estimate for all frequencies and that the maximum of |C,, | occurs at
a frequency of 8 Hz.

Here u, ; = E [A] is the mean intensity at time index ¢, the subscript under
the expectation symbol denotes with respect to which variables the expec-
tation is to be taken, and P(A;y.|A;, dn; = 1) is the probability density of
the stochastic intensity at time index t + t given the stochastic intensity at



2218 K. Lepage, M. Kramer, and U. Eden

time index ¢, in addition to knowledge that a spike occurred at time index
t. When d#n; is weak-sense stationary and the discrete Fourier transform of
run(t, T) with respect to t exists, then the spectrum, S,,(f), of dn; is equal to
the discrete Fourier transform of r,,,(t, ) with respect to 7. 5 Equation 5.1,
valid for both stationary and nonstationary drn;, describes the autocovari-
ance structure of the spiking. The separate behavior of the autocovariance
structure at T = 0 is not present for field-type processes and is due to the
binary nature of the spiking. For t # 0, the autocovariance sequence gener-
alizes from the expectation, E [A;A;4.], in the case where there is no spiking
dependence, to an expectation containing a ratio of probability densities de-
pending on past spiking activity. These topics are elaborated on in section
6. A second expression for the spike-spike autocovariance, 7,,(t, 7), sheds
further light on the autocovariance sequence, r,,(t, 7):

Fun(t, T) = A%t E [hgeldng = 1] — A2 s fo ot (5.2)

Thus, the autocovariance sequence of dn; depends on history only through
the conditional expectation of A;y.. Further, for dn; to be weak-sense sta-
tionary, both u; ; and E [As.|dn; = 1] must be invariant with respect to
changes in the time, t. More discussion is provided in section A.4.

5.2 Spike Field Cross-Spectrum, S,,(f). When the spike field cross-
covariance function, r,,(t, t), does not depend on absolute time and is
square integrable, the spike field cross-spectrum, S,,(f), is proportional
to the intensity-field cross-spectrum, S, (f): ©

Sny(f) = Asky(f)- (5.3)

5.3 Spike-Spike Spectrum, S,,(f). When the spike time series, dn;, is
a realization of a weak-sense stationary, doubly stochastic, discrete-time
point process, then, assuming the existence of the spectrum S,,(f), and the
square integrability of the autocovariance function r,,(7), the spectrum can
be approximated:

Sun(f)~ A% (s +H(f) + Su(f)). (5.4)

Here, S,,(f) is the spectrum of the stochastic intensity, A;, and the mean
intensity, u, = E [A¢], and H(f) is a frequency-dependent term capturing
the effect of history-dependent spiking. Note that the units of S,,(f) are
in HZ? per Hz, and hence have units of Hz, as does ;. In section 6, the
development and accuracy of equation 5.4 are discussed.

5See Wold’s theorem, presented in, for example, Priestly (1981).
6Assuming that the field, 1, does not depend on past spikes.
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5.4 The History-Dependent Factor, H(f). The factor H( f) affects both
the spike field coherence, C,,,(f), and the spike spectrum, S,,,( f), and reflects
history-dependent spiking effects, such as refractory periods. When dn; is
independent of dny for t #t', H(f) is equal to 0. When dn; exhibits a
refractory period of duration 7, samples, H(f) is equal to the intensity
spectrum convolved with a Dirichlet-type kernel:

H(f) = =5u(f) * Dr.(f) + 0(A). (5.5)

The form of D,, ( f) and the derivation of equation 5.5 are provided in section
6.1.2 and A.5. Substituting equation 5.5 into equation 5.4, one obtains

Sl(f) ~ A2 (m + Su(f) * (6(f) - Dy (f))). (5.6)

Thus, the spike spectrum, S,,(f), is a shifted and scaled convolution of the
intensity spectrum, S;,(f) with 8(f) — D, (f), in the case of a refractory-
type memory effect. The function, D, (f), has nonzero values over a range
of frequencies, with energy concentrated for | f| < L and a maximal value
equal to 7, at zero frequency. As described in section 6.1. 2, when other
history-dependent type effects are present in d;, the full expression for the
spike spectrum, S,,(f) is

Sunlf) = A (m - Su(F) % (6(F) + G(f) # Do (f) — Df,<f>>), (5.7)

where G(f) is the discrete Fourier transform of the history-dependent func-
tion g(r) defined in section 6.1.2 and t,, = % where 7, is the delay be-
yond which a spike at time index ¢ has a negligible influence on subsequent
spiking.

6 Derivations

The spike field coherence, C,(f), can be defined in a fashion analogous to
the definition of the “field-field,” or regular, coherence, C,,(f), presented
in section 2. In analogy with a field-type time series, the number of spik-
ing events that occur in the time interval ((t — 1)A, tA) is a time series.
Here, A is the time between field measurements introduced in section 2.
It is advantageous to model this time series as a truncated realization of
a discrete-time point process, dn;. Here, dn; is the number of spiking time
events that occur in the interval ((t —1A), tA), t integer, with A chosen
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sufficiently small that the probability of multiple neuron firings within any
span of time A is small. Specifically,

P(dn; > 1) < O(A?). (6.1)

Note that for single-neuron recordings, A can always be chosen sufficiently
small, such that constraint 6.1 is satisfied, due to the refractory period
suppressing subsequent neuron spiking in the time immediately following
a neuron spike (Koch, 1999). A point process is completely characterized by
its conditional intensity, A;,

A = lim 2@ =11H) 6.2)

A—0 A
where H; is the spike history process. Intuitively, the probability of an event
at time index t equals A - A;, up to negligible corrections due to the small
nonzero probability of multiple events in any one increment (Daley & Vere-
Jones, 2003). In the situation where the increments, d#n;, conditioned on A,
donot depend on past increments, thatis, ondny fort’ < t, the point process
is called Poisson, and the conditional intensity, A, is equal to the rate of oc-
currence of spiking events. In this letter, reference to discrete-time Poisson
processes is often made. Here the emphasis is on the independence prop-
erty of Poisson processes, as the marginal probability mass function for dn,
for any sufficiently short interval is approximately a Bernoulli probability
mass function. The discrete-time Poisson process model, while sometimes
convenient, is physiologically inaccurate due to the fact that dependence
on past spiking, such as the refractory period, is not modeled. Thus, to
account for history-type spiking effects, the discrete-time Poisson process
model is generalized to a discrete-time point-process model. An additional
modeling difficulty arises in that actual neuron spiking exhibits a time-
dependent probability of firing. In order to develop a spike field coherence
in analogy with the regular coherence introduced in section 2, the first two
moments of dn; must be independent of absolute time. Time-dependent fir-
ing activity, while maintaining stationary mean and second moments can be
attained by generalizing the discrete-time point process to a doubly stochas-
tic discrete-time point process. That is, let the conditional intensity, ;, be
itself a weak-sense stationary random process such that A; > 0. Therefore,
the point-process modeling the spikes and the intensity, which determines
the probability of a spike in each timestep, are both random processes. Note
that in the case of discrete-time processes, if A; is weak-sense stationary and
E [At4:1dn; = 1] is independent of ¢, then dn; is weak-sense stationary. This
fact is shown in section A.4. Finally, the realization of a spike train from
a doubly stochastic discrete-time point process with conditional intensity,
At, proceeds in the following way. At each time step, a realization of A; is
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computed based on the previous history of the rate and spike process. A
realization of dn; is computed from a binary process with parameter AX;.
These values are then incorporated into the history to compute realizations
for the subsequent time step. Note that for dn; to be weak-sense stationary,
the effect of initial conditions on the first two moments must vanish for
sufficiently large ¢t.

6.1 Spike Field Coherence. Let the centered increments of the discrete-
time point process, dn; be dfi; such that,

dﬁf = dﬂf —E [dnt] . (63)

This ensures that E [d7;] = 0, much like the x; used in the development
of the more standard random process employed in section 2 to define the
field-field coherence, Cy,(f). Then, in analogy withl equation 2.1, define the
discrete Fourier transform of the centered increments, dfi;, as

N—-1

Nr(f) = % > e N dy, (6.4)

where, as in equation (2.1), T is the duration of the time series and A is the
sampling period. Let the local field potential recording be represented by
the process y;, introduced in section 2, with an associated discrete Fourier
transform, Yr(f), defined in equation 2.2. Now, the coherence between
the spiking and the local field potential, here after called the spike field
coherence, Cyy(f), is

E|N Y
Cay(f) = lim [ T(f Yif) —. (65)
JE (NP E [ecor]
If the relevant spectra exist,
Cry(f) = o)) (66)

VSu(ASy(F)

where S;,(f) is the cross-spectrum between di; and y;, Spa(f) is the spec-
trum of di;, and Sy, (f) is the spectrum of y;. As in the discussion following
equation 2.3, through the Cauchy-Schwartz inequality, 0 < |Cry(f)| < 1and
|Cf,y( f )| = 1 when there is a linear relation between Nr(f) and Y7(f). Note
that the spike field coherence, Cj( f), differs from the field-field coher-
ence, C,y(f), specified in equation 2.4, in that S;,(f) replaces S,,(f) in the
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numerator of equation 2.4, and Sz(f) replaces Sy.(f) in the denominator
of equation 2.4.

The spike field cross-spectrum, Sy, ( f), can be related to an intensity-field
cross-spectrum, S,,( f), where A denotes the intensity of the spiking process,
dn;. To show this, the spike field cross-spectrum is explicitly computed
through use of the cross-covariance function, ray(7), evaluated at lag .
When the spectra are square integrable, a Fourier transform relation exists
between the cross-spectra and the cross-covariance sequence of weak-sense
stationary discrete-time random processes,

Su(f)=A Y ray(r)e /A, (6.7)

In the following, note that the covariance functions, spectra, and coherences
are the same between the centered and noncentered increments, d#;. That
is, raa(t, T) = ruu(t, T), and thus the spectra are equivalent, Spn(f) = Sun(f),
as are the coherences, C;y(f) = Cpy(f). This is due to the mean-removal
operation present in the definitions of both the autocovariance and cross-
covariance functions. In section A.2, we show that if the field, v, does not
depend on past spikes, then

rny(T) =A rky(t)v (68)

where r,,(7) is the intensity-field cross-covariance function evaluated at lag
7. Then, using equation 6.8 in equation 6.7, the spike field cross-spectrum
is equal to the intensity field cross-spectrum scaled by the sampling period,
A, that is,

Sny(f) =A S}Ly(f) (6.9)

The spike-spike autocovariance function, r;(t, 7), is in general a function
of two times: ¢, the global recording or observation time, and z, the local
lag relative to time t. In section A.3, we show that

Funt, T) + A2t W tie
[A Mot =0

P oA, dny=1 .
A? Esee I:}xt)xt-o-z % ] , ItI>0

(6.10)
Here p;: = E [A] is the expected intensity at time t, P(Asj¢ |, dny = 1) is

the probability density of the intensity at time t 4+ t given both the intensity
at time, ¢, and the occurrence of a spike at time t. equation 6.10 describes a
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history dependence within the expectation and, in general, nonstationary
behavior. In section 6.1.1, equation 6.10, and the intimately related spike
field coherence, C,,( f), specified in equation 6.6, are studied in the situation
where the discrete time, doubly stochastic point process, dn;, is Poisson, and
in section 6.1.2, equation 6.10 is studied with the aid of a parametric model
of the point process, dn;.

6.1.1 Spike Field Coherence: Doubly Stochastic Poisson Process. As shown in
section A.1, when dn; is a doubly stochastic, discrete time Poisson process,
P(dnilAs, Aiyr) = P(dng| ;). Then the ratio of probability density functions,
W, within the expecation in equation 6.10, is equal to 1 and the

spike-spike autocovariance function, r,,(t, ), simplifies to

Ap — N it ppes T =0

. 6.11
A%ry(t, T), | >0 (6.11)

ru(t, ) = {

Here, r;,(t, ) is the autocovariance function of the stochastic intensity,
At. Further, when the stochastic intensity, A;, is weak-sense stationary, the
spike-spike autocovariance does not depend on the global time, ¢, and the
discrete time, doubly stochastic Poisson process, dn;, becomes weak-sense
stationary. Hence,

A — A2, =0
Fon(7) = [ Ha =2l (6.12)

| A%u(0), 1| >0

The separate behavior at r = 0 in equation 6.12 is not present for field-type
weak-sense stationary discrete time random processes, such as y;. The r = 0
case arises due to the fact that E [dn?] = E [dn,]. To see this, note that with
the stipulation that the probability of multiple events in any one increment
is vanishing small (see constraint 6.1 in section 2), dn; for any fixed t is
essentially a Bernoulli distributed random variable. Hence, d#n; takes on
values 0 and 1. Since both 0 and 1 equal themselves when squared, the
probability that dn; equals 1 is equal to the probability of dn? equaling 1.
Hence, E [dn;] = E [dn?]. Further, note that at T = 0, the autocovariance
sequence, y,(7), is orders of magnitude larger than at any other r. For
neuroscience data, A is typically around 10~ seconds in duration, and
hence the autocovariance sequence at 7 equal to 0 is approximately three
orders of magnitude larger than at 7 # 0.

The behavior of the autocovariance sequence of the discrete time doubly
stochastic Poisson process modeling the spiking data at zero lag demon-
strates a profound difference between field-field coherence and spike field
coherence. Let S, (f) be the spectrum of the stochastic intensity, A;. The
spectrum of dn;, assuming the existence and square integrability of the
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spectrum, is

Su(f)=A Y ru(r)e 28 (6.13)
=A% (o + Su(f) = A (ra(0) + ) (6.14)
Su( )~ A (o + Su(f)) (6.15)

The units of u; and of S;(f) must be identical. Note that the units of
Su(f) are in Hz? per Hz, or Hz, as are the units of u,. Further, note that
the term neglected in the development of equation 6.15 is on the order of
milliseconds, and hence, the approximation is valid up to an O(10~%) correc-
tion for typical neuroscience time series. Though small, the importance of
this neglected term will depend on required accuracy and on the sampling
properties of available coherence estimators. Though not the focus of this
letter, note that any bias resulting from the approximation in equation 6.15
will be of significance only if the estimator standard deviation can be held
to a comparable level. For typical nonparametric spectrum estimators, the

asymptotic standard deviation is \/% S(f), where S(f) is the spectrum and
v is the estimator degrees of freedom. Typically v does not exceed 20. From
equation 6.15 one sees for A = 1072 seconds, v must exceed 10° before the
typical estimator standard deviation nears the level where the approximate
nature of equation 6.15 becomes apparent when analyzing data. Thus, for
the remainder of this letter, equation 6.15 is considered to be exact.

With this expression for the spectrum of dn; (see equation 6.15), com-
bined with the spike field cross-spectrum (see equation 6.9), the spike field
coherence (see equation 6.6) becomes

ASAy(f)
c, _ 6.16
v(f) \/AZ (. + S1.(f)) Syy(f) ( )
_ Sy(f) 6.17
Vs + 5 () Syy(f) o
=Ciy(f) <1 + s;;(A f))‘z ' o

Thus, the spike field coherence, C;, ( f), when modeling the neuron spiking
activity as a doubly stochastic discrete time Poisson process, depends on
the mean intensity, ;. More succinctly, given the model, the coherence
depends on the overall activity of the neuron.

To further explore this dependence, consider scaling the intensity with
the nonnegative constant, ¢, such that At = ¢ As. Because 4, is the stochastic
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intensity for the discrete time, doubly stochastic Poisson process, d1i;, scal-
ing the intensity affects the spiking that results. The scaled spike field cross-
covariance, 4,(7), becomes

Tay(t) = E [dft Yy ] — E [d7] E [Ye4o] - (6.19)
By conditioning, it can be shown that

ray(t)=c A E [MYryc] — ¢ A E[M] E [Yi4<] (6.20)
=c 1ay(7). (6.21)
Repeating the calculations leading to equation 6.15, with the intensity-

scaled point process, dii;, yields the spike-field coherence, Cyy(c, f), as a
function of the intensity scaling, c:

c Sky(f)
Cate, e 6.22
v, f) Views, +¢25,.(F) Syy(f) o
sp (623)
\/(% + SM(f)) Syy(f)

By taking the limit of Cp,(c, f) as c tends to 0 and as c tends to infinity, one
can see how the spike field coherence, Cy,( f), responds to changing mean
intensity, or overall neuron activity, that is,

lil’ré Cﬁy(c, f)=0 (6.24)
and
Cli)ngo Cﬁy(c» f)= Cky(f) (6.25)

From equation 6.24, one sees that when there are no spikes, the spike field
coherence is 0, and from equation 6.25, when the spiking activity becomes
large, the spike field coherence equals the intensity field coherence, Cy(f).
For a simulation illustrating this behavior, see section 4; in particular, see
Figure 1. This situation is in stark contrast with the effect of scaling either
x; or y; on the field-field coherence, Cy,(f), specified in equation 2.4. In
the case of fields, scaling of x; or y; results in no change in Cy,(f), as the
effect of scaling on the numerator is cancelled by the effect of scaling on
the denominator. In this sense, the behavior described in equation 6.24 and
equation 6.25 is profound.
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6.1.2 Spike Field Coherence: Doubly Stochastic Point Process. Actual spiking
data exhibit a time-dependent probability of firing and dependence on past
spiking events. This dependence often manifests in a refractory period or a
period of bursting (Koch, 1999). Refraction is the phenomenon where there
is a suppression of the probability of spiking immediately after a spiking
event, and bursting is when immediately following a spiking event, the
probability of spiking is temporarily increased. In either situation, the spike-
spike autocovariance function, 7,,,(¢, 7) exhibits nonstationary behavior and
depends in a complicated fashion on the probability density function of
the intensity conditioned on past spiking events. This nonstationarity and
dependence on historical spiking makes closed-form computations of the
spectrum of dn; through the transform of r,,,,(t, 7) prohibitive. In this section,
by introducing a parametric model for the spiking activity, dn;, and making
a high sampling-rate approximation, a simplification of equation 6.10 is
attained, yielding an expression amenable to further analytic analysis.

Consider the following model for the stochastic intensity, A;, of dn;, the
doubly stochastic, history-dependent, discrete-time point process,

_]Z llﬂ»pﬂr% brdni—y + €
Ao=g(x)e = = , (6.26)

where the random innovation process, €, satisfies E [¢;] =0, E [ee4] =
03&, v, and the Kronecker delta function, 8y, is 0 when t # t’ and is equal to
1 when t = t'. The function g of the covariate x; is nonnegative and repre-
sents the dependence of the intensity (and therefore the spikes) on the field.
The intensity, A;, also depends on the exponentiated autoregressive term,

exp <Z§:1 Ajhie j), and the exponentiated linear combination of past spik-

ing events, exp (Z,le bkdnt,k), where the a; and by are chosen such that

P(dn; > 1) = O(A?). Because of these dependencies, this intensity model
embodies complicated time-dependent spiking behavior and history de-
pendence. Consequently, this model exhibits, at least qualitatively, salient
features of actual neural spiking data.

Return to the spike-spike autocovariance, r,,(t, ), given in equation
6.10, and focus on the ratio of probability density functions within the
expectation,

P(rie |y, dny = 1)
P(Aye|he) .

(6.27)

In particular, consider three cases: |t| is small relative to the refractory
period 7, |t| is comparable to the duration of the history effect due to a
single spike and, 7 is much larger than the duration of the history effect
due to a single spike. When 7 is greater than 0 and less than the refractory
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period following a spike, P(Ai4|As, dny = 1) is a dirac-delta centered on 0,
and the ratio of probability density functions, W, is 0 for all Ay,
except when Ay, is 0, where the ratio is infinite, and hence equation 6.10
is 0.

Next, for v > K, the effect of a spike at time ¢ is reduced for physical
models of neuron spiking, manifesting in history coefficients, b,, tending to
Owith increasing 7. That is, a spike at the current time has an effect on future
intensities that diminish as time progresses. Hence, for > K, the history
coefficients b, ~ 0 and the ratio of conditional densities, W =1.
Note that when d#n; is weak-sense stationary, equation 6.10 is symmetric
in 7. This result is developed in sections A.3 and A.4. Thus, for |7| > K,

equation 6.27 equals
Fan(t, T) = A%t ), 1] > K. (6.28)

When the stochastic intensity, ; is weak-sense stationary, r,, (¢, r) does not
depend on the global time, t, and

Fun(T) = A%r3,(2), IT] > K,

such that the spike-spike autocovariance also does not depend on the global
time, t. Then the discrete-time doubly stochastic point process, dn;, is weak-
sense stationary. In the final case, for intermediate values of |7| in between
these extreme values, the situation is more delicate and depends on the
shape of the conditional densities. In the case where the stochastic intensity
does not depend directly on past spiking, d#;, is Poisson, and the coefficients
b, are O for all . In this situation, the probability densities within the
expectation of equation 6.27 are identical, and the Poisson case discussed in
section 6.1.1 is recovered. If there is limited history dependence, such that
K in equation 6.26 is small, then the limit, v 3> K, is attained for relatively
small |t], and once again the Poisson situation discussed in section 6.1.1
is relevant. Let 7, be the smallest positive lag at which the asymptotic
ratio of conditional densities is approximately attained. Then, assuming a
time-invariant expected intensity, the spike-spike autocovariance function,
ran(t, T), is

Apy — A3, =0

(t.7) _AZI'L%, O<ltl=7 629)
ra(t, T) = B s .
A2 [Muiso bttt |- a22, o <l <,

A% 7,(7), | > 7,
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where the dependence on the global time ¢ in equation 6.29 is limited to the
case where 7, < |7| < 17,. As in the Poisson case, the spike-spike autocovari-
ance, r,(t, 7), exhibits a dramatic change from r = 0 to |z| > 0, once again
manifesting in a spike field coherence depending on the expected intensity.
In equation 6.29, the value of the spike-spike autocovariance function for
7, < |t| < 1, depends, in a possibly complicated fashion, on past values of
dng, but this dependence is time limited to a duration of 7, — 7,. Hence,
one expects the complicated history-dependent part of the spike-spike au-
tocovariance function to contribute to the spectrum of dn; through the
convolution of a broad-band “smearing” function. This smearing reduces
the effect of this term on the spike spectrum. To obtain an approximate ex-
pression, in analogy with equation 6.12 for the spike-spike autocovariance
function when d#; is doubly stochastic Poisson, postulate the existence of a
nonnegative, symmetric function, g(r), such that

P(Apye|he, dny = 1)
P(Atyr|he, dny = 0)

S(OE [uhaye] = E [mm ] <l < (630)

Then the lagged-product moment of the stochastic intensity is factored out
of the expectation within equation 6.29. To facilitate discrete Fourier trans-
formation, write the spike-spike autocovariance function in the following
way,

Tun(T) = Aa () + Apyde — Az,ui, (6.31)

where §, is the Kronecker delta function, 0 for nonnegative r, 1 when t =0,
and

a(r) = E[Atxt+r][l —rect,, (t) + g(r)rect, <|r| _ o —; ro> ] (6.32)

Here the rectangle function, rect,(x), is

1, x| <«

recty(x) = {

0, |xl>a

In section A.5, we show that the spectrum, S,,,,(f) of dn;, equal to the discrete
Fourier transform of the spike-spike autocovariance function, r,,,(t), is equal
to

Su(f) = SE(fF) —H(f), (6.33)
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where S,(J?( f) is the spectrum of dn; when dn; is a discrete-time, doubly
stochastic Poisson process,

SI(F) = A (S (f) + ma), (6.34)

and the frequency-dependent correction term, H( f), capturing the effect of
history dependence on the spectrum of d#; is

H(f) = A%Siu(f) * Q(f) + A%u2Q(f). (6.35)

Here S;,(f) is the spectrum of the stochastic intensity, A;. The convolving

factor, Q(f), is
Q(f) = G(f) * Dr,,(f) = D (f). (6.36)

where G(f) is the discrete Fourier transform of the unspecified g(r), cap-
turing the effect of history dependence on the spike-spike autocovariance
function, 7,,,(t) for 7, < || < 7, and D, (f) is the discrete Fourier transform
of rect, (7). The half-width, ,,, is equal to % When dn; is a discrete-time,
doubly stochastic Poisson process, g(r) = 1, the discrete Fourier transform
of g(r) is G(f) = é(f), and there is no refractory period, such that 7, = 0.
Then Q(f) =0, and the correction term, H (f), is 0. Hence the result from
section 6.1.1 is recovered.
Because the correction, H(f), to the Poisson spike-spike spectrum,
B f), required to obtain the spike-spike spectrum in the current situ-
ation depends predominantly on the function Q(f), one sees that via the
differencing operation between the Dirichlet-type kernels within g (f), there
is potential for a cancelling effect, tending to reduce the influence of his-
tory on the spike-spike spectrum. Finally, the spike field coherence, C;,(f),
when dn; is a discrete-time, doubly stochastic point process, as specified by
equation 6.26, is, in analogy with equation 6.18,

_ = H(P)\ 2
Cuy(f)=Ciy(f) (1 + W) , (6.37)

where H(f) = ATH (f). Once again, the dependence of the spike field
coherence, C,,(f), on the expected intensity, u;, is explicit, and results
analogous to the Poisson situation presented in section 6.1.1 hold.

The results of this section depend on the weak-sense stationary, doubly
stochastic point-process class of models. The extent to which one can call the
spike field coherence, C,,( f), defined in equation 6.18, the “true” spike field
coherence depends on the extent to which a doubly stochastic weak-sense
stationary, discrete-time point-process model accurately describes actual
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spiking data and further the extent to which the model is robust to modeling
inaccuracies.

7 Discussion

Within the confines of the doubly stochastic, weak-sense stationary discrete-
time Poisson process model, we showed in section 6 that the theoretical
spike field coherence, C,,(f), depends on the expectation of the stochastic
rate, it,. The dependence of the spike field coherence on the expected rate
is a manifestation of the essentially Bernoulli nature of the increments of
a discrete-time Poisson process with increments short with respect to the
process rate. This dependence is not exhibited by the coherence between
more standard models of time series, where the scaling of individual time
series leaves the coherence unmodified.

In section 6.1.2 we showed, subject to an approximation, that the spike
field coherence for a doubly stochastic, weak-sense stationary, discrete-time
point process is dependent on the expected intensity in a fashion analogous
with the situation where neuron activity is independent of past spiking.
In this situation, history-dependence introduces an extra frequency and
history-dependent correction term. This correction term reduces the ratio
of the expected intensity to the intensity spectrum within the factor relating
the intensity field coherence with the spike field coherence.

While the behavior of the spike field coherence detailed in section 6 de-
pends on the weak-sense stationary doubly stochastic discrete-time point
process model class, there is a sense in which this behavior can be a useful
approximation to reality in the event of model misspecification. In par-
ticular, many instances exist where the weak-sense stationary assumption
is made and successful inference performed (Brillinger, 2001; Percival &
Walden, 1993; Priestly, 1981). Often this is accomplished by either recording
over sufficiently short intervals such that this assumption is approximately
true; by identifying short, weak-sense stationary sections of time in an oth-
erwise nonstationary time series; or by noting how a spectral estimator will
behave on a nonstationary time series and accounting for this behavior. On
the other hand, there are instances where inference with nonstationary time
series is best conducted by explicitly modeling the nonstationarity. Such ef-
forts, with fieldtype time series, have led to the evolutionary spectrum, (see
Priestly, 1965), and later work, and to the generalized, or Loeve, spectrum,
presented in, for example, Scharf & Friedlander (2001). Standard statistical
procedure is to assess if nonstationary modeling is required and, accord-
ingly, proceed with the appropriate inference. In the current context, that is,
the analysis of spike field coherence, such methodology does not yet exist,
and one might anticipate its development.

In short, this letter establishes the dependence of spike field coherence
on expected intensity, or expected rate in the Poisson process situation,
and establishes that this dependence on the overall neuron activity is a
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population characteristic. The correct frequency-dependent measure of lin-
ear association between spiking data and nonspiking data depends on the
total number of spikes that occur within a set interval of time.

In many situations, one is interested in the reliability of spiking at a spe-
cific phase of a narrow-band field rhythm. In this case, the desired quantity
is the rate field coherence in the Poisson case and the intensity field co-
herence in the more general situation where history-dependent effects on
spiking activity are present. This is justified as follows. The conditional
intensity, when the probability of multiple spiking events in a single time
step is negligible, is proportional to the probability of spiking. Thus, the
intensity field coherence is a frequency-dependent measure of linear as-
sociation between the probability of spiking and the field. When neuron
firing reliably occurs at a specific phase of a rhythm, then the probability of
firing is periodic in time with a timing commensurate with the phase of the
field at which the neuron preferentially spikes. In this case, the coherence
between the probability of spiking and the field is large, as a linear relation
exists between the relevant frequency domain quantities. Thus, if one is
interested in an association between the time at which a neuron fires in
relation to the phase of a rhythm, irrespective of the overall neuron activity,
then the desired quantity is the intensity field coherence, C;,(f).

Though not the focus of this work, four potential avenues of inference are
proposed. The first is documented in Gregoriou et al. (2009), where spikes
are randomly removed to attain equal spike rates between comparative
spike count time series. The second consists of identifying regimes where
the spike field coherence approximates the intensity field coherence. For
example, for firing rates exceeding some nominal value, it may be that the
factor multiplying the intensity field coherence, C;,,( f) in equation 3.1 is ap-
proximately 1. In a third procedure, the intensity field coherence is directly
estimated, and in a fourth inference method, the spiking data are directly
modeled and inference conducted using the generalized linear model in-
ferential procedure. The development of such approaches will be the focus
of future work. New methods of characterizing associations between the
spiking of individual units and large-scale neural rhythms will facilitate an
improved understanding of neural representation and function.

Appendix

A.1 Doubly Stochastic Poisson Process. When dn; is a doubly stochas-
tic, discrete-time Poisson process, P(d#n¢|As, Artr) = P(dni|A;). This can be
shown as follows. By definition,

P(dng, dnp i |he, Ayo) = P(dng ) P11 o | Age). (A1)
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The joint conditional density, P(dn;, dnii.|As, Artr), can be expanded:

P(dny, dngo|he, Aiyo) = P@n o[, Aeyo) P(dng Mg, Aige), (A.2)
= P(dniyclhiyo) P(dnghs, Aige). (A.3)

Thus, P(dntMt, )"t+f) = P(dnt|kt)

A.2 Spike Field Autocovariance Sequence. In the following, the local

field potential, modeled by ;, is taken to be mean-zero and is approximated
to be independent of any one spiking event, dn; = 1, that is,
P(YeyclAs, dny = 1) & P(Yi4.|A;). This approximation is justified in that the
local field potential is thought to arise from the combined spiking activity
of a great many neurons. Hence, strong dependence on a spike from any
one neuron is unlikely. Then,

Tny(T) =Ty (7) (A.4)
= E [dn; Yr:] (A.5)
= Enye [ Yoo E A1 | Yrgo, Ae]] (A.6)
= Ekz,ym [ Yiye P(dnt =1 | Yites )Lt)] (A7)
_ P(Yeielhs, dny = 1) _
= B |:yt+r P(Yrsclhe) Plm = 1|}w)] e
_ P(Yyclre, dny = 1)
- Eh-ym |: Yiyr P(ytJrth) A)\t] (A9)
=A E)Lf,]/mr [ yf+r )"t] (AlO)
= A 13(7). (A.11)

A.3 Spike-Spike Autocovariance Sequence. The spike-spike autoco-
variance sequence, 7,,(t, 7), is,

Tnn(t, ‘L') =rﬁﬁ(t, 'L'), (A12)
= E [dmdny ] — E [dm] E [dny.]. (A.13)

For a weak-sense stationary conditional intensity, A, the expected value of
the discrete time, doubly stochastic point process, dn; is independent of
time and equals, Apu;. Then,

rmz(ts f) =E [dntdnt+r] - Az:ui' (A14)
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Focusing on the first term on the right-hand side, the expectation of the
lagged product of the spiking processes is

E[dmdnssc]=Ej, 5, [ E [dmdnge | A, hei]] (A.15)

(A.16)

At

For clarity, concentrate on the inner expectation in equation A.16, and con-
sider the situation where v > 0. Then:

E[dndney e |At, Apie]

= Edni‘)m)”ﬂ [dnt E [d?’lt+r | )\.t, )\.t+f, dﬂt+1]] (A17)
= Ed"f‘)\h}LH»r [dnf E [dnH—r | )ht-H]] (A18)
= A Ednaie. [A74 Mige] (A.19)
=A )\.t+f P(d?’lt = 1|)\t, )\.t+1), (AZO)
P(Ayc|rs, dny = 1)
=A Ays Pldn; =1 A21
a P(Atgrclhe) ik ( )
P(hyrlrg, dny = 1)
= A% hihisr , T>0. A22
e P()"f+r|)"t) ( )

Here, in a slight abuse of notation, P() denotes, when appropriate, either a
probability mass function or a probability density function. When r < 0,

P()‘-tl)‘-t+‘rv d]’lt = 1)

E[dmdni . |, Ase] = A% Aihigr , 0, (A23
[dnidnee A, Aise] tAtt POsliees) T < ( )
lett +t = u. Then
E [dnusidity ey 2] = A% Migieiha (A.24)
P()\M-Hﬂpwu dTlt = 1) <0 .

P()\u+\r\|)\u)

When 1, satisfies condition (A.31), developed in section A.4, the density,
P(Atre | ¢, dny = q), for g = 0, 1 is independent of f. Thus,

E[dmdni, |hts Mge] = A% Athpge
P(htlhpyr, dny = 1)
P()“t|)ht+r)

(A.25)

, |t] > 0.
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Finally, when t = 0, the autocovariance function, ,,(7), of the increments,
d ng, is

rnn(ts T) = rﬁﬁ(t, T) (A26)
=E [dnf] - A2I«Lx,t M,z (A.27)
=E [dn] — Az.ux,t M,z (A.28)
=Apas — ALk Mo (A.29)
Then,

Funt, T) + A2t W tie
[Al/«x,t, =0

POuselhr.diy=1 .
A2 By, | orse Dt ] ey >0

(A.30)

A.4 Doubly Stochastic Weak-Sense Stationarity.

Lemma 1. Doubly-stochastic point-process, weak-sense stationary intensity: Let
the stochastic intensity, A¢, of the discrete-time doubly-stochastic discrete-time point
process, dn; be a weak-sense stationary discrete-time random process. In addition,
ifforany t,t' € Z,

E [hrie | dity = 11 = E [hpgr | dnp = 1], (A31)
then dn; is weak-sense stationary.
Proof. The proof follows by direct calculation. First, the mean of dn;,

E[dn]=AE[M]. (A.32)
Thus, if 1, is weak-sense stationary, then E [1;] is a constant independent of
the absolute time, t. Therefore, E [dn;] is also a constant. It remains to show

that the autocovariance sequence of dn; does not depend on absolute time.
The autocovariance sequence ., (¢, 7), is

un(t, T) = E[dmdng ] — E [dm] E [dne.]. (A.33)
Focusing on the first term in equation A.33,

E[dmdn 1= Ean, [ dny E [dngq.|dng]] (A.34)
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= E [dnyie|dn; = 1] P(dny = 1) (A.35)
=AE [M] E [dngycldny = 1] (A.36)
= AE (4] Enypant [E [dnesc hege dn =101 (A37)
=AE [M] Esdn=1 [E [dn1o [ Ari]] (A.38)
=AE [M] Es,dn=1 [AAi4<] (A.39)
=A2E [M] E [Meldny = 1]. (A.40)

Then, an alternate expression, equivalent to equation A.30, for the spike-
spike autocovariance, r,,(t, 1), is,

Tan(t, ©) = A?E [M] E [hgeldne = 1] = A%E [A] E [Ase]. (A41)

Thus, for dn; to be weak-sense stationary, E [1;] must be invariant with
respect to changes in the time, f,as must E [A;1.|dn; = 1]. Hence, weak-sense
stationarity of the stochastic intensity, A;, along with the condition specified
within equation A.31 of lemma 1 regarding the translation invariance of
E [Aty-|dn; = 1], are conditions sufficient for lemma 1 to hold.

A.5 Spectrum of dn;. Beginning with equation 6.31 for the spike-spike
autocovariance function, r,,(t), use equation 6.15, essentially the discrete
Fourier transform, to obtain the spectrum, S,,(f) of dn;:

Sunlf) = AF(h(z)) + A2, — A2 F(1), (A42)

where F(x) denotes the discrete Fourier transform of x. Here, the discrete
Fourier transform of 1, (1) is equal to the dirac-delta function, §(f), and

F(h(z)) = 7:{ (Tu(t) + /xi) (1 —rect, (1)

+g(v) recty, <|r| - #) )}

= {A‘lsu(f) + Mi(S(f)}

* {S(f) — D (f) +8(f) = Dz,(,(f)}, (A.43)
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where F(g(7)) is the discrete Fourier transform of g(t), D, (f) is a Dirichlet-
type kernel, equal to the discrete Fourier transform of rect., (r), and D, (f)
is the discrete Fourier transform of rect,, (|7| — “3%), that is,

D, (f) =2 cos(r fAr,)SW —1, (A.44)

and, similarly, D, (f),

D, (f) = 2cos(nfA(r + 1))

X (2 cos(anrm)W - 1) ,

(A.45)

with 7, =1 —17. Let q(f)=3%(f)* D, (f)— D,(f), and combine
equation A.42 with equation A .43 to obtain,

Sun(f) = SE(f) —H(f), (A.46)
where

SP(f) = A% (Su(f) + 1), (A.47)
and

H(f) = A*Su(f) %4 (f) + A%uiq (f). (A.48)

A.6 Stationary Distribution of a Discrete Point Process. The model
specified in equation 6.26 in section 6.1.2, while quite general, may not be
weak-sense stationary. Itis not clear that the model specified in equation 6.26
can, for some choice of parameters, be weak-sense stationary. To address
this issue in some generality, lemma 2 is provided:

Lemma 2. Stationary distribution of a discrete, doubly stochastic point process:
Let dii; be a centered, finite-history, discrete-time, doubly-stochastic point process
with a bounded number of events in any one interval. Then, in the limit ast — oo,
di; possesses a unique probability distribution independent of t.

That is, reasonably behaved discrete-time doubly stochastic point pro-
cesses are, for the purposes of statistical inference, stationary. Thus, lemma
2 allows a large class of models to be posited and analyzed as if they are
stationary, without explicitly demonstrating this fact. Demonstrating model
stationarity without appealing to lemma 2 can be nontrivial.

Proof. Heuristically, the steps to proving lemma 2 are the following:
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—_

Note that dn;, is a possibly large, but finite-order, Markov chain.

2. By augmenting the state-space of the Markov chain representation of
dng, show that dn; can be represented as a first-order Markov chain.

3. Show that the augmented first-order Markov chain representation of
dny is aperiodic, irreducible, and positive recurrent.

4. From theorem 4.1 (Ross, 2009), note that an aperiodic, irreducible,

first-order, positive recurrent Markov chain possesses, as t — oo, a

unique, stationary distribution.

Step 1: Markov chain representation of dn;. A Markov chain, x;, of order,
P, is a collection of random variables, where, conditioned on the P past
random variables, a random variable, x;, is independent of all other random
variables occurring in the past:

Pxi|xi-1, Xt-2, «. oy Xoo) = P(xi]Xe—1, X2, ..., Xi—p). (A49)

Here, the state-space, that is, the values that x; can assume, at any f, consists
of numbers within the set of all integers: x; € N. Note that dn; takes on
values in the integers, predominantly either 0 or 1, and has a history depen-
dence that, though potentially infinite, is well approximated by finite-length
history. Then,

P(dni|dni_q, dny_o, ..., dny) = Pdnldni_1, dny_o, ..., dni_py),
(A.50)
for some finite M.
Step 2: First-order markov chain representation of dn;. Consider the aug-
mentation of the state-space—the set of values that a Markov chain can

represent at time t from scalar values to vector values. In particular, let dn,
be a Markov chain where, at any time, ¢,

di’lt
dn_1

dm=| | (A51)
dni_p

where P is the possibly large but finite order of d#n;. Then,

P(dny| dn;_q, dny_o, ...)

=Pldn| dny_q, dny_p, dny_3, ..., dny_p,dm_p_q, ...)

=P(dn| dng_q, dng_p, dne_3, ..., dni_p) (Markov-order P property)
= P(dn;| dn;_1). (A.52)
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Hence, dn; is an order 1 Markov chain.

Step 3 and 4: Aperiodicity, irreducibility and positive recurrence. The order 1
Markov chain, dn; is aperiodicsince if dn; = 0, there is a nonzero probability
of dn; remaining in the same state at time t + 1. The Markov chain dn; is
irreducible since all states have a nonzero probability of being reached.
And finally, dn; is positive recurrent since the chain is irreducible and finite
(Ross, 2009).

It is important to note that the refractory period makes the assumption of
bounded state-space excellent. Similarly, while finite history dependence of
dny is not strictly correct, a large but finite dependence on lagged dn; is an
acceptable approximation.
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