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Figure 3.34: Magnification of the I-V curve in Fig.3.31 at the left knee shows that it
can be approximated by a square parabola.

3.3.8 Quadratic Integrate-and-Fire Neuron

Let us consider the topological normal form for the saddle-node bifurcation (3.9). From
0 = I + V 2 we find that there are two equilibria, Vrest = −

√
|I| and Vthresh = +

√
|I|

when I < 0. The equilibria approach and annihilate each other via saddle-node bifur-
cation when I = 0, so there are no equilibria when I > 0. In this case, V̇ ≥ I and V (t)
increases to infinity. Because of the quadratic term, the rate of increase also increases,
resulting in a positive feedback loop corresponding to the regenerative activation of the
Na+ current. In exercise 15 we show that V (t) escapes to infinity in a finite time, which
corresponds to the upstroke of the action potential. The same upstroke is generated
when I < 0, if the voltage variable is pushed beyond the threshold value Vthresh.

Considering infinite values of the membrane potential may be convenient from a
purely mathematical point of view, but this has no physical meaning and there is no
way to simulate it on a digital computer. Instead, we fix a sufficiently large constant
Vpeak and say that (3.9) generated a spike when V (t) reached Vpeak. After the peak of
the spike is reached, we reset V (t) to a new value Vreset. The topological normal form
for the saddle-node bifurcation with the after-spike resetting,

V̇ = I + V 2 , if V ≥ Vpeak, then V ← Vreset (3.10)

is called the quadratic integrate-and-fire neuron. It is the simplest model of a spiking
neuron. The name stems from its resemblance to the leaky integrate-and-fire neuron
V̇ = I − V considered in chapter 8. In contrast to the common folklore, the leaky
neuron is not a spiking model because it does not have a spike generation mechanism,
i.e., a regenerative upstroke of the membrane potential, whereas the quadratic neuron
does. We discuss this and other issues in detail in chapter 8.

In general, the quadratic integrate-and-fire model could be derived directly from
the equation CV̇ = I − I∞(V ) through approximating the steady-state I-V curve near
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Figure 3.35: Quadratic integrate-and-fire neuron (3.10) with time-dependent input.

the resting state by the square parabola I∞(V ) ≈ Isn − k(V − Vsn)2, where k > 0 and
the peak of the curve (Vsn, Isn) could easily be found experimentally (see Fig.3.34).
Approximating the I-V curve by other functions – for example I∞(V ) = gleak(V −
Vrest) − kepV , results in other forms of the model, such as the exponential integrate-
and-fire model (Fourcaud-Trocme et al. 2003), which has certain advantages over
the quadratic form. Unfortunately, the model is not solvable analytically, and it is
expensive to simulate. The form I∞(V ) = gleak(V −Vleak)−k(V −Vth)2

+, where x+ = x
when x > 0 and x+ = 0 otherwise, combines the advantages of both models. The
parameters Vpeak and Vreset are derived from the shape of the spike. Normalization of
variables and parameters results in the form (3.10) with Vpeak = 1.

In Fig.3.35 we simulate the quadratic integrate-and-fire neuron to illustrate a num-
ber of its features, which will be described in detail in subsequent chapters using
conductance-based models. First, the neuron is an integrator; each input pulse in
Fig.3.35 (top), pushes V closer to the threshold value; the higher the frequency of the
input, the sooner V reaches the threshold and starts the upstroke of a spike. The neu-
ron is monostable when Vreset ≤ 0 and can be bistable otherwise. Indeed, the first spike
in Fig.3.35 (middle) is evoked by the input, but the subsequent spikes occur because
the reset value is superthreshold.

The neuron can be Class 1 or Class 2 excitable, depending on the sign of Vreset.
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Suppose the injected current I slowly ramps up from a negative to a positive value.
The membrane potential follows the resting state −

√
|I| in a quasi-static fashion until

the bifurcation point I = 0 is reached. At this moment, the neuron starts to fire tonic
spikes. In the monostable case Vreset < 0 in Fig.3.35 (bottom), the membrane potential
is reset to the left of the ghost of the saddle-node point (see section 3.3.5), thereby
producing spiking with an arbitrary small frequency, and hence Class 1 excitability.
Because of the recurrence, such a bifurcation is called saddle-node on invariant circle.
Many pyramidal neurons in mammalian neocortex exhibit such a bifurcation. In con-
trast, in the bistable case Vreset > 0, not shown in the figure, the membrane potential
is reset to the right of the ghost, no slow transition is involved, and the tonic spiking
starts with a nonzero frequency. (As an exercise, explain why there is a noticeable
latency [delay] to the first spike right after the bifurcation.) This type of behavior is
typical in spiny projection neurons of neostriatum and basal ganglia, as we show in
chapter 8.

Review of Important Concepts

• The one-dimensional dynamical system V̇ = F (V ) describes how
the rate of change of V depends on V . Positive F (V ) means V
increases; negative F (V ) means V decreases.

• In the context of neuronal dynamics, V is often the membrane po-
tential, and F (V ) is the steady-state I-V curve taken with the minus
sign.

• A zero of F (V ) corresponds to an equilibrium of the system. (Indeed,
if F (V ) = 0, then the state of the system, V , neither increases nor
decreases.)

• An equilibrium is stable when F (V ) changes the sign from “plus” to
“minus”. A sufficient condition for stability is that the eigenvalue
λ = F ′(V ) at the equilibrium be negative.

• A phase portrait is a geometrical representation of the system’s dy-
namics. It depicts all equilibria, their stability, representative tra-
jectories, and attraction domains.

• A bifurcation is a qualitative change of the system’s phase portrait.

• The saddle-node (fold) is a typical bifurcation in one-dimensional
systems. As a parameter changes, a stable and an unstable equilib-
rium approach, coalesce, and then annihilate each other.


