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Summary Epilepsy — the world’s most common serious brain disorder — is defined by recurrent
unprovoked seizures that result from complex interactions between distributed neural popula-
tions. We explore some macroscopic characteristics of emergent ictal networks by considering
intracranial recordings from human subjects with intractable epilepsy. For each seizure, we
compute a simple measure of linear coupling between all electrode pairs (more than 2400)
to define networks of interdependent electrodes during preictal and ictal time intervals. We
analyze these networks by applying traditional measures from network analysis and identify
statistically significant global and local changes in network topology. We find at seizure onset
a diffuse breakdown in global coupling, and local changes indicative of increased throughput
of specific cortical and subcortical regions. We conclude that network analysis yields measures
to summarize the complicated coupling topology emergent at seizure onset. Using these mea-
sures, we can identify spatially localized brain regions that may facilitate seizures and may be
potential targets for focal therapies.
© 2008 Elsevier B.V. All rights reserved.

Introduction

An important, perhaps fundamental, characteristic of
seizures is the emergence of macroscopic order as observed
in electrical activity recorded at the scalp and cortical sur-
face. This order appears as, for example, ripples (Grenier
et al., 2003) and beta frequency oscillations (Schiller et
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al., 1998) at seizure initiation, continues with increased
synchronization during the middle phase of seizures (Schiff
et al., 2005), and concludes as an abrupt cessation of
activity (Schindler et al., 2007) at seizure termination.
For focal epilepsies these macroscopic changes begin in
spatially localized regions (i.e., the epileptogenic zone)
and spread outward to affect other parts of the brain
(Braizer, 1973). When focal epilepsy does not respond to
seizure medications, the epileptogenic zone may be identi-
fied and surgically removed (Engel, 1996). Improved imaging
and analysis techniques have refined but not substantially
altered this procedure since the middle of the 20th century;
a better understanding of how macroscopic order emerges
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from the epileptogenic zone would help to refine surgical
techniques and perhaps produce alternative therapies.

To characterize the spatiotemporal dynamics of ictal
activity researchers have applied linear and nonlinear mea-
sures to recordings from individual electrodes (e.g., the
power spectrum and correlation dimension) and from elec-
trode pairs (e.g., coherence and phase synchronization).
For a small number of electrodes, the latter results are
easily displayed and interpreted. For example, one may
compute the cross-correlation or coherence to infer prop-
erties of seizure propagation between a few electrode pairs
(Braizer, 1973; Bertashius, 1991; Kramer et al., 2007). But,
as the number of electrodes increases, interpreting the cou-
pling results becomes much more complicated: the zero
lag cross-correlation between all electrode pairs from an
8-by-8 subdural electrode grid produces (64 × 63)/2 = 2016
values. How does one analyze the topological organization
of these results and deduce the brain regions important
for seizure facilitation or propagation? Similar challenges
now face many neuroscientists as improved imaging and
acquisition techniques yield ever-expanding quantities of
multivariate, coupled data.

Network analysis provides many techniques to interpret
such complicated coupling topologies. It has been used to
characterize, for example, the network of electric power
grids in the western United States (Watts and Strogatz, 1998)
and the network of hyperlinks between different Internet
web pages (Broder et al., 2000). In both cases, the network
of interactions — among hundreds or millions of entities
— is quite complex, yet has a topology whose structure
is amenable to natural forms of summary and characteri-
zation. Recent studies suggest that networks derived from
brain activity possess a ‘‘small-world’’ topology in which
most connections are local and few are distant (Bassett and
Bullmore, 2006; Ponten et al., 2007). Bispectral analysis
of human intracranial EEG recordings has shown that the
small-world characteristics of macroscopic neural activity
increase at seizure onset (Wu et al., 2006), and simulation
studies suggest that small-world networks better support
phase synchronization and seizure-like activity (Percha et
al., 2005; Netoff et al., 2004). Yet the role of small-world
topology in seizures remains unclear; an in vitro model
of stroke-induced epilepsy suggests that seizure-like dis-
charges occur more frequency in random (not small-world)
networks (Srinivas et al., 2007). In this manuscript, we
attempt to further characterize the topological properties of
the seizing human cortex. To do so, we apply a variety of net-
work analysis measures to high-dimensional, multivariate
electrocorticographic (ECoG) data recorded simultaneously
from more than 70 electrodes in each of four human subjects
with epilepsy. We show how — in this small group of sub-
jects — the emergent coupling between electrodes changes
at seizure onset and warrants further study. We also propose
potential targets for therapeutic intervention identifiable
only in the context of the entire network of coupled activity.

Methods

In this section we describe the human subject data and define the
coupling measure and six measures of network analysis. For the
primary subject, we show an example of the coupling between elec-
trodes preceding and immediately following seizure onset, and note

the qualitative differences. We apply the network analysis measures
to quantify the changes in coupling that occur at seizure onset in
the primary subject and in the aggregate group of four subjects in
Results.

Recording equipment

Intracranial EEG were collected using the Viasys Nicolet BMSI 6000
NT Long Term Monitoring System (Viasys, Madison, WI, USA). Data
were recorded from up to 128 channels at a fixed sampling rate
of 400 Hz and bandpass filtered at a frequency range of 0.5—50 Hz
(Butterworth filter) for later processing. A board-certified neuro-
physiologist (HEK) reviewed each dataset and verified the integrity
of the recording. No artifacts (e.g., due to faulty electrode or
recording cable performance) were identified.

Human subject data

Data were collected from four subjects with intractable epilepsy
who had undergone electrode implantation as part of clinical care
at the University of California, San Francisco (UCSF) Epilepsy Cen-
ter. The implanted electrodes consisted of: a single 8-by-8 subdural
electrode grid supplemented by subdural electrode strips and/or
depth electrodes. All strip and grid electrodes were 4 mm diame-
ter platinum—iridium discs embedded in 1.5 mm thick silastic sheet
with 2.3 mm diameter exposed surfaces and 10 mm spacing between
the discs. Depth electrodes were 1 mm in diameter and had four
or six platinum contacts spaced 10 mm apart. To observe multiple
seizures, physicians recorded ECoG data continuously for several
days. For each subject, ictal data were extracted from the clinical
record and analyzed for research purposes in accordance with UCSF
and Boston University human subjects guidelines.

We begin with a description of the primary human subject (a
39-year-old right handed woman with medically refractory com-
plex partial seizures) whose ECoG data we analyze in detail. Scalp
video-EEG telemetry captured nine seizures that all arose from the
left frontotemporal region (this was her dominant hemisphere for
language) with some semiological features atypical for mesial tem-
poral onset. Because of the relatively diffuse scalp localization and
the origin in the language dominant hemisphere, it was decided to
implant subdural electrodes to better determine focal ictal onset
and to map functional brain regions. We show the craniotomy for
this subject in Fig. 1a. In this figure, the left hemisphere of the
brain is exposed. Approximately 44 of the 64 grid electrodes over
the left frontotemporal region are visible; the remaining 20 elec-
trodes are hidden below the edge of the craniotomy. The tails for
the electrode strip (over the left suborbital frontal lobe) and of two,
six-contact, left hippocampal depth electrodes are visible at the
middle left and lower right portions of the figure, respectively; we
indicate the location of these electrodes in the X-ray image shown
in Fig. 1b. In Fig. 1c we show a three-dimensional reconstruction of
the subject’s cortex with the 8-by-8 electrode grid superimposed.
For simplicity the strip and depth electrodes are not shown in this
figure.

Physicians recorded ECoG data continuously from the primary
subject for 5 days and detected nine seizures. Each seizure began
near the distal end of both depth electrodes in the hippocampus
and, approximately 15 s later, was observed on the (cortical) elec-
trode grid. ECoG epochs containing eight of the patient’s seizures
and recorded simultaneously at 76 electrodes were extracted from
the clinical record and saved for further analysis. (We note that one
archived seizure data file was corrupted and no longer available for
extraction, and that we omitted from analysis one set of six-contact
depth electrodes that was saturated throughout the recording.)

For the primary subject, we analyze the eight recorded seizures
in detail. We also apply three summary measures to three addi-
tional human subjects described below. The first was a 31-year-old
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Figure 1 (a) Craniotomy for the primary subject. The frontal
lobe is to the left in this figure and the left hemisphere is
exposed. Visible are a portion of the 8-by-8 electrode grid, the
insertion point of one subdural electrode strip (to the left) and
two depth electrodes (at the bottom) that pierce the cortex
orthogonal to its surface and record voltage activity from mesial
temporal structures. (b) A skull X-ray of the subject following
electrode implantation. We indicate the location of the (curved)
electrode strip and the anterior depth electrode. (c) A three-
dimensional reconstruction of the brain for this subject with the
electrode grid superimposed.

right-handed woman with a 10-year history of medically refractory
seizures. She had complex partial seizures with an aura of déjà
vu and aphasia; they rarely secondarily generalized. Brain MRI was
normal and routine EEG showed bitemporal sharp waves. She had
scalp video-EEG telemetry and four seizures with posterior tempo-
ral origin were recorded. Physicians recorded ECoG data from an
8-by-8 electrode grid over her left frontotemporal region, and two,
six-contact subdural electrode strips curled under her left anterior
and left posterior temporal lobe for 14 days. Three seizures were
initially captured. Midway through this recording period, the sur-
geon inserted an additional six-contact depth electrode into the
left hippocampus. After this, three more seizures were recorded.
Each seizure began in the distal end of the posterior left subtempo-
ral electrode strip, and then spread to the distal end of the anterior
subtemporal strip (as well as to the hippocampal depth electrode for
the last three seizures). After a 60 s delay, seizure activity appeared
on the electrode grid at the frontal portions of the superior and mid-
dle temporal gyri. We analyze three of the subject’s seizures (two
from the initial recording period and one from the later recording
period). The patient went on to have a tailored resection of the
left inferior temporal and fusiform gyri. She was initially seizure-
free for 1.5 years but her seizures recurred after she tapered off
one of her antiseizure medications.

The second additional subject was a 45-year-old right handed
woman with medically intractable seizures since the age of 12,
characterized by right body clonic movements out of sleep. Scalp
video-EEG telemetry captured four seizures with broad left tem-
poral onset but also showed frequent anterior frontal spikes. Brain
MRI showed left perisylvian atrophy and cortical abnormalities in the
same region, with a sclerotic left hippocampus. Given the breadth
of the imaging abnormalities and the broad dominant hemisphere
localization on scalp EEG, she went on to have implantation of an 8-
by-8 electrode grid over her left frontotemporal region for seizure
onset localization and for functional mapping. She also had a four-
contact depth in her left amygdala, and a four-contact depth in her
left hippocampus. Recording over 6 days captured three seizures.
The first and third seizure were her typical seizure and arose from
a small region of the left frontal lobe and then spread over several
minutes to involve left temporal and parietal areas. The second
seizure was clinically atypical for the patient and had a diffuse
onset; we omit this seizure from analysis here. She had a resection
of the left frontal lobe including orbitofrontal cortex to the frontal
pole, sparing the gyrus rectus. The left mesial temporal structures
were also removed. Pathological examination of the resected cor-
tex was consistent with cortical dysplasia. Postoperatively she had
some transient anomia that passed. She was seizure free for a brief
period and then her seizures recurred, albeit at a reduced frequency
from before.

The third additional subject was a 37-year-old ambidextrous
man with refractory seizures since the age of seven. These are
nocturnal events that involve right face and arm twitching. Scalp
video-EEG telemetry was poorly lateralizing and localizing though
semiology suggested left frontal origin. He went on to have implan-
tation of an 8-by-8 electrode grid centered over his left parietal
region, a four-contact left orbitofrontal strip, and a four-contact
left subtemporal strip. Six typical seizures were recorded over 6
days, and all had onset in the suprasylvian frontal—parietal junc-
tion with low amplitude high-frequency activity followed several
seconds later by a decrement lasting several tenths of a second,
followed by high-amplitude, lower frequency activity in the same
distribution. Three such seizures were analyzed for this study. The
patient had a resection of a portion of the frontal operculum but
was limited because the areas with epileptiform activity overlapped
functional motor and speech regions. His course was complicated
by a small venous infarct superior to the region of resection that
caused some left hemiparesis and expressive aphasia that improved
significantly over the ensuing months. He has been seizure free to
date (1 year postoperatively).
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Coupling measure

To apply techniques from network analysis we must first define the
nodes and edges of an appropriate network. For the ECoG data
of interest in this work the nodes are the individual electrodes.
We define an edge to exist between two nodes if the voltage data
recorded at the two nodes (i.e., the voltage data recorded at the
two electrodes) are sufficiently coupled. There exist many measures
to determine the coupling between two time series of voltage data
(Pereda et al., 2005). Here we choose to use a simple measure of
linear coupling: the cross-correlation. We chose this measure (and
not more sophisticated synchronization techniques) because recent
research suggests that — for the analysis of ictal and interictal (i.e.,
between seizure) ECoG data — linear measures perform similar to
nonlinear measures (Mormann et al., 2005; Ansari-Asl et al., 2006).

We determine the coupling between two nodes by computing the
cross-correlation between electrode pairs. To calculate the cross-
correlation between two electrodes, we first bandpass filter the
ECoG data at each electrode between 1 and 50 Hz. We then choose
a 10 s interval and divide this interval into 20, 1 s segments, so
that each segment overlaps the previous by 0.5 s. For example, if
the 10 s interval extends from t = 0 to t = 10 s, then the duration
of the first segment would be t = {0.0, 1.0 s}, the duration of the
second segment would be t = {0.5, 1.5 s}, the third t = {1.0, 2.0 s},
and so on. Next, we compute the cross-correlation between the
two electrodes within each 1 s segment. We choose to calculate the
cross-correlation within the 1 s segments — rather than over the
entire 10 s interval — to preserve (at least approximately) the sta-
tionarity of the ECoG data. We then examine the cross-correlation
values for time shifts less than 250 ms and determine the maximum
of the absolute value of the cross-correlation for each segment. We
select the largest of these 20 values to define the coupling between
the electrode pair. If the maximum of the absolute value of the
cross-correlation exceeds 0.75 and occurs at a time shift less than
150 ms, then we declare the electrode pair coupled and connect
the two electrodes (i.e., nodes) with an edge. (We have repeated
the analysis using threshold values of 0.70 and 0.80 and found sim-
ilar results for the network summary measures as we describe in
Discussion). Otherwise we consider the electrode pair uncoupled
and do not draw an edge between them. We note that an edge
between two nodes could represent either a strong correlation or
a strong anti-correlation between the voltage data recorded at the
electrode pair, and that our network is defined to be unweighted
(i.e., two nodes are either connected or not, with edge weights of
1 or 0, respectively).

We show a representation of the ECoG data as nodes and edges
in Fig. 2a and b. To create Fig. 2a we compute the coupling mea-
sure as described above for a 10 s interval preceding the second
seizure recorded from the primary subject; we call this the preictal
interval. We indicate each node (i.e., electrode) with a filled cir-
cle in Fig. 2a; the orientation of the 8-by-8 electrode grid matches
that shown in Fig. 1. We represent the six-contact electrode strip
as the column of circles at the left of the subfigure and the six-
contact depth electrode as the row of circles at the bottom of the
figure. We connect each pair of coupled nodes with an edge drawn
as a black curve. The topology of the network connections is quite
complicated and not intuitively obvious.

We create Fig. 2b in a similar way, except that we choose the
10 s interval of ECoG data to begin immediately after onset of the
second seizure; we call this the ictal interval. To define ictal onset
in a reproducible way we implement the following procedure for
each seizure from each subject. First, a board-certified neurolo-
gist and neurophysiologist (HEK) reviewed the ECoG recordings from
each subject and identified the initial manifestation of rhythmic
high frequency, low voltage focal activity thought to characterize
the earliest appearance of a seizure (Fisher et al., 1992; Alarcon
et al., 1995). A section of data including this high frequency, low
amplitude, focal activity; the clinical seizure onset; and the clin-

ical seizure cessation were extracted from the entire ECoG trace.
Next, we divide the ECoG data recorded at each electrode into
overlapping windows of 1 s duration as described above. Then we
compute the average spectral power between 5 Hz and 15 Hz within
each window. We chose this frequency band to encompasses the
large amplitude, low frequency activity typically observed during
intracranially recorded seizures (e.g., the after discharge period
identified in (Wendling et al., 2003; Kramer et al., 2007). Finally,
we average the resulting low frequency power spectra over all
electrodes. We show the results of this procedure for the primary
subject’s second seizure in the upper trace of Fig. 2c and note the
dramatic increase in low frequency power between 30 and 35 s com-
pared to the initial portion of the trace. To define ictal onset, we
identify by visual inspection this dramatic increase in the average
low-frequency power; for each seizure studied, this increase corre-
sponds to more than a 10-fold increase from the preictal interval.
We indicate the ictal interval between the solid vertical lines in
Fig. 2c. For reference, we also show ECoG data recorded at a sin-
gle grid electrode (lower trace) and indicate the preictal interval
between the dashed vertical lines. We note that other quantitative
methods exist to define seizure onset (e.g., Schindler et al., 2007).
An inspection of Fig. 2a and b suggests that the structure of the net-
work changes at seizure onset; in particular, there are fewer edges
drawn in Fig. 2b than in Fig. 2a.

We follow the same procedure to compute similar networks for
each seizure from each subject. For the primary subject, the 10 s
preictal intervals for the eight total seizures begin between 27 and
61 s (mean 39 s) before seizure onset. For all subjects, the 10 s pre-
ictal intervals for the sixteen total seizures begin between 22 and
180 s (mean 55 s) before seizure onset. We find (but do not show
here) that each graph exhibits a complicated correlation structure
like those shown in Fig. 2a and b. To quantify in a natural way the
topology of the correlation structure, we employ six measures from
network analysis: average path length, betweenness centralization,
degree, closeness, clustering coefficient, and betweenness central-
ity. Two of these measures — the average path length and clustering
coefficient — characterize the small-world properties of the seizing
network, as recently described in (Ponten et al., 2007). The other
measures (betweenness centrality in particular) characterize how
information may propagate in the network. We provide brief def-
initions for these measures in the next subsection; more detailed
discussions may be found in the literature (e.g., Wasserman and
Faust, 1994; Nooy et al., 2005; Boccaletti et al., 2006).

Network analysis measures

Measures to characterize network topology are useful in many appli-
cations, for example, studies of information flow through the World
Wide Web and monetary flow between nations. Here we employ six
measures to characterize the network topology defined by the ECoG
data. Two measures — the betweenness centralization and average
path length — summarize the topological properties of the entire
network. The other four measures — degree, closeness, clustering
coefficient, and betweenness centrality — reveal changes specific
to each node. We chose to apply six different measures because
each illuminates different topological properties of the network.
We compute each of these measures using the software package
Pajek (Nooy et al., 2005) or algorithms written in the IDL software
package (ITT Visual Information Solutions, Boulder, CO, USA) and
study in detail how the topology of the graphs change at seizure
onset in Results.

We begin with an illustrative example of network analysis. Con-
sider the network defined by the airports and flight paths of a
particular airline. In this example, the airports act as nodes in the
network. An edge exists between two nodes (e.g., between Boston
and San Francisco) if the airline flies between the two cities. Most
flights involve stops at multiple nodes (i.e., no airline flies to all
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Figure 2 Two networks constructed from ECoG data recorded during the second seizure of the primary subject. We indicate the
nodes (i.e., electrodes) as solid circles and draw edges between pairs of coupled nodes. We have positioned the 8-by-8 electrode
grid to match the orientation in Fig. 1. The column of nodes at the left of each subfigure represents the six-contact orbitofrontal
electrode strip, and the row of electrodes at the bottom of each figure represents the anterior six-contact depth electrode. (a)
Network computed for the preictal interval. (b) Network computed for the ictal interval. We note that the number of edges appears
to decrease during the ictal interval compared to the preictal interval. (c) ECoG data recorded at a single grid electrode (lower
trace) and the average low-frequency power of all electrodes (upper trace). We indicate the 10 s preictal and ictal intervals between
the vertical dashed lines and between the vertical solid lines, respectively. The vertical axis is arbitrary.

airports from each airport) so that the path between two nodes is
often indirect. For example, the path from San Francisco to Oslo,
Norway involves stops at both Boston and London. For this airline
(and many others) the node London has particular importance. This
node possesses a high degree (many edges end in London), closeness
(most destinations are efficiently reached when travel begins in Lon-
don), and betweenness centrality. To illustrate the latter measure,
we note that the shortest path from San Francisco to Oslo involves
a stop at London. In this case, the node London lies between the
two nodes San Francisco and Oslo. In fact, the node London lies
between many nodes, especially nodes on opposite sides of the
Atlantic Ocean. Thus the betweenness centrality of the node Lon-
don is high. If something were to happen to this node, the airline
network would be severely disrupted. In general, if the between-
ness centrality of a node is large, then this node represents a point
of particular importance for communication in the network. Disrupt
this node, and large regions of the network may no longer commu-
nicate. In what follows, we show that the betweenness centrality
measure may be particularly important for assessing which brain
regions propagate seizures.

We now define the network analysis measures. To illustrate these
definitions and to introduce network analysis terminology we use
the simple five node networks shown in Fig. 3. In Fig. 3a we have

labeled two of the nodes j and k. To travel from node j to node k,
we start at node j and traverse the graph by following a sequence of
edges (the black lines) and nodes (the filled circles) until we reach
node k. The length of this path is defined as the number of edges
in the sequence, and the geodesic is the shortest path between
nodes j and k. We define each edge to have length 1 so that, in this
case, the geodesic has length 2. A measure to quantify the average
length of geodesics throughout the entire network is the average
path length. The average path length is defined as the mean length
of geodesics over all pairs of reachable nodes in the network. (A
pair of nodes is defined as reachable if a path exists between the
two nodes.) In Fig. 3a—c the average path lengths are 1.6, 2.0, and
1.4, respectively. We note that this measure applies to the entire
network, not to any node in particular.

The second measure we define is the degree. The degree of a
node is the number of edges incident with the node. Because each
edge connects two nodes, a node with high degree connects to many
other nodes. In Fig. 3, we have labeled one node i in each network.
The degree of this node is 4, 2, and 4 in the K-network, V-network,
and B-network, respectively.

The third measure we consider is the closeness. The closeness
of node i is defined as the number of nodes reachable from i divided
by the summed distance to these reachable nodes. We note that,
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Figure 3 Simple five node networks: (a) the K-network, (b) the V-network and (c) the B-network.

in computing the closeness, only nodes reachable from i are con-
sidered. If the closeness of a node is large, then the distance from
this node to other (reachable) nodes is small and information (e.g.,
money, gossip, voltage activity) may easily reach it. In Fig. 3 the
node labeled i has the largest closeness value in each example. In
the K-network and B-network, the node i is one edge from all other
nodes, and in the V-network the node i is one edge from two nodes,
and two edges from two nodes. The closeness of node i in the K-
network and B-network is 1.0 and in the V-network is 0.67. In the
former two networks, this node is directly linked (and therefore
close) to all other nodes.

The clustering coefficient measures the number of triangles in
which a node participates, relative to the total number in which
it could participate, given its neighboring nodes. A triangle exists
when three nodes (a triad) interconnect through edges. Applied
to acquaintance networks, the clustering coefficient measures the
likelihood of two individuals with a common friend also knowing one
another (and thus completing the triangle). In both the K-network
and V-network, the clustering coefficient of each node is zero; no
triangles exist in these networks. In the B-network, the clustering
coefficient of node i is 0.33 and 1.0 for all other nodes. The higher
degree of node i decreases its clustering coefficient because this
node could participate in many more triangles.

To define the last two measures — betweenness centrality and
betweenness centralization — we consider a node n that exists in
a graph. The betweenness centrality of n is a measure of the num-
ber of geodesics between all other nodes that pass through n. We
note that betweenness centrality is a local measure that applies to
each node in the network. Betweenness centralization is a summary
measure of the variation in betweenness centrality over the entire
network. Specifically, the betweenness centralization is the varia-
tion in the betweenness centrality of nodes divided by the maximum
variation in the betweenness centrality values possible in a network
of the same size (Nooy et al., 2005).

In the K-network node i has a betweenness centrality value of
1.0; all geodesics between other nodes in the network pass through
node i. The exterior nodes — which do not serve as intermediate
nodes along any geodesics in the network — have zero betweenness
centrality. The entire K-network has a betweenness centralization
value of 1.0; this network possesses the maximum possible varia-
tion in betweenness centrality for a network of five nodes. In the
V-network three nodes possess a nonzero betweenness centrality
(with values of 0.5, 0.5, and 0.67). The betweenness centraliza-
tion for the entire network has a value of 0.42, less than that of
the K-network because variation in the betweenness centrality of
the nodes in the V-network is reduced. Finally, for the B-network,
the betweenness centralization is 1.0 and betweenness centrality
of node i is 1.0. No other nodes in the B-network are intermedi-
ate to any geodesic; therefore, these nodes possess a betweenness
centrality of zero. In general, if the betweenness centrality of an
individual node is large, then this node represents a point of par-
ticular importance for ‘‘communication’’ — or similar notions of
information exchange — in the network. For example, if we remove

node i from the K-network, we disrupt all communication in that
network. In what follows, we show that the betweenness centrality
measure may be particularly important for assessing which brain
regions propagate seizures.

Results

In this section we apply the six network analysis measures
to the ECoG data recorded from the primary human subject.
We show that the two summary measures — the average
path length and the betweenness centralization — increase
at seizure onset, and that the degree and closeness of most
electrodes tend to decrease at seizure onset. The between-
ness centrality and clustering coefficient results do not
exhibit such uniform change. We summarize these results
in Table 1. We then apply three global measures to the
ECoG data recorded from the 8-by-8 electrode grids of four
human subjects. We again find that all three global measures
increase at seizure onset.

Analysis of ECoG data: primary human subject

We begin by considering the two global measures: the
average path length and betweenness centralization. An
inspection of the complicated network topology shown in
Fig. 2 suggests that the average path length increases at

Table 1 Summary of the network analysis results for the
primary human subject

Measure Change at seizure onset

Average path length ↑
Betweenness centralization ↑
Betweenness centrality ↑↓
Clustering coefficient ↑↓
Closeness ↓
Degree ↓
We list the measures in the first column and the change at
seizure onset observed for each measure (averaged over eight
seizures) in the second column. The average path length and
betweenness centralization are summary measures of network
topology; the betweenness centrality, clustering coefficient,
closeness, and degree are local measures that apply to each
node. The degree and closeness decrease for nearly all elec-
trodes. Both increases and decreases occur for the betweenness
centrality and clustering coefficient, depending on the node.
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seizure onset; fewer edges exist in the ictal network, and
we expect that the shortest path between any two nodes
is less direct and therefore longer compared to the cor-
responding path in the preictal network. We compute the
average path length for the preictal and ictal intervals deter-
mined for the eight seizures and find values of 2.0 ± 0.4
and 2.6 ± 0.2, respectively. The difference in the means of
these values is statistically significant (p < 0.005). We com-
pute the betweenness centralization of the preictal and ictal
networks, average the results from the eight seizures, and
find values of 0.05 ± 0.05 and 0.14 ± 0.04, respectively. The
difference in the means of these values is also statistically
significant (p < 0.005). We conclude that both the aver-
age path length and betweenness centralization increase at
seizure onset. The latter result indicates that the between-
ness centrality of the nodes becomes less uniform at seizure
onset; some nodes acquire larger betweenness centrality
values while others acquire smaller values. We note that —
although the number of edges decreases at seizure onset
— nearly all nodes remain connected to the network. At
most four nodes separate from the network completely,
and for seven preictal and six ictal intervals one or fewer
nodes separate. The remaining nodes form a single con-
nected component in which each node is reachable from
every other node. We also note that — for each individual
seizure — the average path length increases, and for seven
(of eight) seizures the betweenness centralization increases
at ictal onset. Both measures provide a single scalar value
that summarizes the complicated preictal and ictal network
topologies.

An inspection of Fig. 2 also suggests that the degree of
most nodes decreases at seizure onset; we observe fewer
edges in the ictal network compared to the preictal net-
work. To quantify this change, we compute the degree of
each node during the preictal and ictal intervals. We show
the results for the preictal and ictal intervals in Fig. 4a
and b, respectively. In each subfigure (and those that fol-
low) we arrange the nodes as in Fig. 2 and indicate the

value of the measure by the radius of the circle. To deter-
mine the change in degree at seizure onset, we compute
the difference in degree at each node between the ictal
and preictal states by subtracting the preictal values from
the ictal values. We average these differences over the
eight seizures and show the results in Fig. 4c. In this fig-
ure, the radius of the circle indicates the magnitude of the
degree difference, and the shading the sign. If the aver-
age degree of a node decreases at seizure onset, then the
node is white; otherwise, we shade the node grey. We use
this shading scheme in all figures that follow. We find that
— for all nodes — the average degree decreases or remains
nearly unchanged at seizure onset. The magnitude of this
decrease tends to be larger for nodes in the lower half of
the figure. We interpret the wide-spread decrease in degree
to indicate that the connectivity of the network tends to
decrease at seizure onset, especially for nodes in the lower
half of the figure. The degree measure allows us to inter-
pret the complicated network topology (illustrated in Fig. 2)
as reflected locally in each node in a natural and obvious
way.

For the fourth measure we compute the closeness of
each node during the preictal and ictal intervals and show
the results in Fig. 5a and b, respectively. We position the
nodes as in the previous figures, and we indicate the value
of the closeness — averaged over the eight seizures — by
the radius of the circle. We average the difference in close-
ness between the ictal and preictal states over the eight
seizures and plot the results in Fig. 5c. We find that, for
nearly all nodes, the average closeness decreases at seizure
onset. The magnitude of this decrease tends to be larger
for nodes in the lower half of the figure. Like the dif-
fuse decrease observed in degree, the wide-spread decrease
in closeness may result from disconnection — and there-
fore increased distance — between most nodes at seizure
onset.

The fifth measure we compute is the clustering coeffi-
cient. We show the results for the preictal and ictal intervals

Figure 4 Results for the degree calculation of the primary subject. We arrange the nodes in the same way as in Fig. 2. We indicate
the value of the degree by the radius of the circle during (a) the preictal and (b) the ictal intervals. We show how the degree changes
at seizure onset in (c). In this subfigure, the radius of the circle indicates the magnitude of the degree difference and the shading
the sign; a white (grey) circle denotes a decrease (increase) in degree at seizure onset. The largest radius indicates a degree of 40
in all three subfigures. We find that the average degree of most nodes decreases at seizure onset.
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Figure 5 Results for the closeness calculation of the primary subject. We arrange and shade the nodes in the same way as for the
previous figures. We indicate the value of the closeness by the radius of the circle during (a) the preictal and (b) the ictal intervals.
We show how the closeness changes at seizure onset in (c). The largest radius indicates a closeness of 0.65 in all three subfigures.
We find that the average closeness of most nodes decreases at seizure onset.

in Fig. 6a and b, respectively, and for the difference in
Fig. 6c. We find that the clustering coefficient of most nodes
decreases at seizure onset, but differs from the pattern of
decrease observed in degree and closeness in two ways.
First, we observe a dispersed spatial pattern of decreased
clustering coefficients. The largest decreases in clustering
coefficient are scattered over the nodes, not clumped in
one region of the grid. Second, not all nodes decrease in
clustering coefficient at seizure onset. Of the 76 nodes, 32
become more clustered at seizure onset. To determine which
nodes display a statistically significant change in clustering
coefficient in a manner that controls for the rate of false
discoveries, we compute the q value of the results (Storey
and Tibshirani, 2003). At the level of q = 0.05, we find zero
nodes with a significant decrease in clustering coefficient.
If we instead set q = 0.20, we find a significant decrease at
three nodes (of which we expect 3 × 0.2 < 1 to be a falsely

declared decrease). We mark these nodes in Fig. 6c. We con-
clude that the disconnection at seizure onset destroys some
— but not many — complete triangles in the network in an
inhomogeneous way.

The final measure we consider is the betweenness cen-
trality. We show the average results for the preictal and
ictal intervals in Fig. 7a and b. We plot the average dif-
ference results in Fig. 7c and find that the betweenness
centrality of some nodes increases at seizure onset, while
other nodes exhibit no change or a decrease in betweenness
centrality. We note that the direction of change in between-
ness centrality, like the clustering coefficient, is not uniform
across nodes. At a level of q = 0.05, we find 13 nodes with
a significant change in betweenness centrality (of which we
therefore expect 13 × 0.05 = 0.65 < 1 out of these 13 to be a
falsely declared increase). We mark these nodes with single
or double asterisks.

Figure 6 Results for the clustering coefficient of the primary subject. We indicate the value of the clustering coefficient by the
radius of the circle during (a) the preictal and (b) the ictal intervals. We show how the clustering coefficient changes at seizure
onset in (c). The largest radius indicates a clustering coefficient of 0.80 in all three subfigures. We find a significant decrease at the
p = 0.20 level at three nodes (each marked with an asterisk).
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Figure 7 Results of the betweenness centrality analysis of the primary subject. We indicate the value of the betweenness centrality
by the radius of the circle during (a) the preictal and (b) the ictal intervals. We show how the betweenness centrality changes at
seizure onset in (c). We mark the 13 electrodes that exhibit a statistically significant increase in betweenness centrality with
asterisks. The double asterisks indicate nodes that exhibit a statistically significant increase for coupling thresholds of 0.70, 0.75,
and 0.80. The largest radius indicates a betweenness centrality of 0.13.

We summarize the network analysis results for the pri-
mary subject in Table 1.

Additional human subjects

In the previous section, we considered the network analysis
of ECoG data collected from a single human subject. In this
section, we analyze ECoG data recorded from the primary
subject plus three additional human subjects. For each sub-
ject, we choose to analyze only the data recorded from the
8-by-8 electrode grid (located on the left frontotemporal
area for two subjects and on the left frontotemporopari-
etal area for two subjects). We apply to these grid data
the cross-correlation measure defined in Methods to deter-
mine the coupling between electrode pairs and establish
two networks (preictal and ictal) for each seizure recorded
from each subject. We then analyze the 16 total seizures
recorded from the four subjects by applying three summary
measures of network topology. We chose to apply only sum-
mary measures for two reasons. First, we do not expect the
electrical activity of seizures to propagate in the same way
for different subjects. We may find, for example, decreased
degree at ictal onset in the lower half of the electrode grid
for one subject (as in Fig. 4) and in the center of the grid
for another subject. Therefore, although the electrode grids
cover approximately the same cortical regions we cannot
easily compare local measures (such as degree or between-
ness centrality) between subjects. Second, the summary
measures provide a single, scalar result for each seizure
from each subject. These measures summarize the compli-
cated network topology in a way that facilitates a formal
statistical comparison across subjects of changes occurring
during the transition to seizure.

We find, based on the measurements from the four human
subjects, that increases in both the average path length
and betweenness centralization are associated with seizure
onset. In particular, increases of 0.6662 in average path
length and 0.055 in betweenness centralization were found
significant at the 0.005 level (p < 0.005), controlling for vari-

ation among subjects, based on a mixed effects ANOVA
analysis. A robust version of the analysis (with observations
replaced by their ranks) yielded similar results.

As a third summary measure, we compute the small-
world-ness of the preictal and ictal intervals (Humphries et
al., 2006). To do so, we first construct for each seizure and
subject 50 corresponding random graphs with 64 nodes and
the number of edges equivalent to that observed in the data.
Then, for each seizure and interval, we compute the aver-
age path length and average clustering coefficient (averaged
over the 64 nodes) of the random graphs and divide the aver-
age path length (average clustering coefficient) of the data
by the average path length (average clustering coefficient)
of the corresponding random graphs. The small-world-ness
is the ratio of the clustering coefficient ratio to the aver-
age path length ratio (Humphries et al., 2006). We find for
the preictal and ictal intervals average small-world-ness val-
ues of 2.0 ± 0.8 and 3.2 ± 1.1, respectively. The increase in
small-world-ness at ictal onset was found significant at the
0.001 level (i.e., 0.0005 < p < 0.001), controlling for variation
among subjects, based on a mixed effects ANOVA analysis.
A robust version of the analysis (with observations replaced
by their ranks) yielded similar results.

We have also examined the four local measures (degree,
closeness, clustering coefficient, and betweenness central-
ity) applied to the three additional subjects and found
results qualitatively similar to those listed in Table 1.
Namely, we find that the degree and closeness — aver-
aged over the seizures recorded from a subject — tend to
decrease at seizure onset for nearly all electrodes. The
clustering coefficient and betweenness centrality tend to
increase for some electrodes and decrease for others. In
Fig. 8 we show all four measures applied to all four subjects.
For the additional subjects, we do not plot the electrode
positions according to the anatomical locations. Instead we
simply show the average results recorded from the electrode
grid and strip or depth electrodes. Because we analyze only
two or three seizures from each of these subjects, we can-
not perform a meaningful statistical analysis of an individual
subject’s results.
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Figure 8 The change in the four local measures observed at ictal onset in the four human subjects. Each column corresponds
to a measure, from left to right: degree, closeness, clustering coefficient, and betweenness centrality. Each row corresponds to a
subject. We show the results for the primary subject in the top row, and the additional subjects in the other three rows. For the
additional subjects, we show the results for the 8-by-8 electrode grid and the additional strip and depth electrodes. The electrode
positions do not indicate anatomical locations. The shading scheme follows that used in the previous figures.
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Discussion

We have applied six measures from network analysis —
average path length, betweenness centralization, degree,
closeness, clustering coefficient, and betweenness central-
ity — to high-dimensional, multivariate ECoG data recorded
from a seizing human subject. We found that the two
summary measures (average path length and between-
ness centralization) increased at seizure onset. We also
found that — for most electrodes — degree and closeness
decreased at seizure onset. Changes in the clustering coeffi-
cient and the betweenness centrality tended to vary among
electrodes at seizure onset; in particular some electrodes
exhibited a sharp increase in betweenness centrality, while
others increased or decreased only slightly. We summarized
these results in Table 1. We applied the network analysis to
three additional human subjects and showed that the aver-
age path length and betweenness centralization tended to
increase at seizure onset. In addition, we found that the
small-world-ness increased at ictal onset, in agreement with
some previous studies (e.g., Netoff et al., 2004; Wu et al.,
2006), but not others (Srinivas et al., 2007).

We note the decrease in coupling observed at seizure
onset. This decoupling appeared qualitatively as a thin-
ning of edges in the network graphs and quantitatively as
a decrease in degree and closeness of nearly all nodes.
The magnitude of this decrease in both measures was
not spatially uniform. For the primary subject, the largest
decreases occurred at electrodes in the lower half of the 8-
by-8 electrode grid and for the strip and depth electrodes.
The effect of the decreased coupling may be to reveal those
brain regions facilitating the seizure. In fact, for the primary
subject, most nodes with significant increases in between-
ness centrality displayed only small decreases in degree and
closeness (compare Figs. 4c and 5c with Fig. 7c). In addition,
some of these same nodes displayed deceases in clustering
coefficient. We interpret the latter results to suggest that
at ictal onset some nodes stay connected to the network
while the neighbors of these nodes disconnect (and thus
destroy previously present triangles). Similar decreases in
coupling (i.e., decorrelation or desynchronization) during
seizure were recently observed in rat hippocampal slices
(Netoff and Schiff, 2002) and in man (Wendling et al., 2003).

In Results, we presented the mean changes in network
measures averaged over the eight seizures of the primary
subject. For each seizure we have also examined the preictal
and ictal values of the average path length and found a con-
sistent result, namely an increase in average path length at
ictal onset. For the betweenness centralization, we find an
increase at seizure onset in seven of eight seizures. We inter-
pret these results to suggest a consistent change in network
topology for each seizure. We have also visually inspected
the changes in degree and betweenness centrality for each
seizure of the primary subject. We find a qualitatively sim-
ilar pattern for each seizure. Specifically, nodes near the
center and right of the grid appear to increase in between-
ness centrality and nodes near the lower portion of the grid
appear to decrease in degree at seizure onset, as we show
in Fig. 9.

In constructing the network representations of the data,
we created an edge between two nodes if the ECoG data
recorded at the two electrodes were sufficiently coupled.

We defined ‘‘sufficient coupling’’ as the maximum of the
absolute value of the cross-correlation exceeding 0.75. The
value of this coupling threshold is important. If we make
the threshold too large (e.g., 0.995), then we find almost
no edges in the network. A comparison between the preic-
tal and ictal states — each with zero edges — is therefore
meaningless. If we make the threshold too small (e.g.,
0.005), then we find edges between every node in the net-
work and again render meaningless any comparison between
the preictal and ictal states. Therefore, we chose a cou-
pling threshold between these two extreme values. We have
repeated the analysis with threshold values of 0.70 and 0.80
and found significant increases in the average path length
(p < 0.01) and near significant increases in the betweenness
centralization (p < 0.06) at seizure onset. Moreover, of the 13
electrodes that exhibit a significant increase (q = 0.05 level)
in betweenness centrality at seizure onset, six are identi-
cal for thresholds of 0.70, 0.75, and 0.80. We mark these six
nodes with a double asterisk in Fig. 7c. An improved method
to chose the coupling threshold would be of use—–ideally,
one that would maximize the quality of information in the
network graph representation relative to its intended usage.

By choosing a fixed correlation threshold, we created pre-
ictal and ictal networks with different numbers of edges
(compare Fig. 2a and b). We created the networks in this
way because decreased coupling — and therefore a thinning
of edges — appears to be a physiological characteristic of the
transition from preictal to ictal activity (Netoff and Schiff,
2002; Wendling et al., 2003). If instead we create preictal
and ictal networks with the same number of edges (by adapt-
ing the threshold in each case) we ignore this characteristic
but establish networks with more comparable topology. We
have repeated our analysis of the primary subject choos-
ing the 500 largest cross-correlation values to establish the
same number of edges during each interval and for each
seizure. For the degree, closeness, clustering coefficient,
and betweenness centrality, we find results qualitatively
similar to those for the fixed coupling threshold of 0.75 (data
not shown). Yet, for the average path length and between-
ness centralization we find no significant difference between
the preictal and ictal states.

In computing the coupling results we made four impor-
tant assumptions. First, we used the cross-correlation
between electrode pairs to establish the coupling measure.
We chose to use this measure because, for the analysis of
ECoG data during seizure, linear measures seem to perform
just as well as nonlinear measures (Ansari-Asl et al., 2006;
Mormann et al., 2005). Use of a different measure (e.g.,
phase synchronization) or filtering of the data into differ-
ent frequency bands may change the characteristics of the
network, but the same network analysis would still be appli-
cable. Second, we identified the approximate time of ictal
onset to coincide with clinical and visible ECoG changes as
determined by a clinical neurophysiologist (HEK) and refined
this approximation by computing the average low frequency
power of all electrodes in the ECoG data. We note that
seizures often begin with a brief interval of focal low ampli-
tude, high frequency activity; in this work, we chose to focus
instead on the large amplitude, rhythmic activity that arises
as seizures are fully underway. Future studies that consider
the topology of additional time intervals (e.g., interictal,
post-ictal) would be of use. Third, in our analysis we have not



Author's personal copy

184 M.A. Kramer et al.

Figure 9 The change in degree (upper half of figure) and betweenness centrality (lower half of figure) at ictal onset computed for
each seizure of the primary subject. Visual inspection suggests qualitatively similar changes occur for each seizure. In particular,
we note that nodes in the lower half of the electrode grid tend to decrease in degree, and that nodes near the center and right of
the grid tend to increase in betweenness centrality at each seizure onset.

considered the temporal relationship between electrodes.
Perhaps by considering the time shift at which the strongest
coupling occurs we could infer how the voltage activity prop-
agates over the entire cortex during seizure and study the
dynamic network topology (Kramer et al., 2007). Fourth,
we assume that coupling between electrodes indicates com-
munication between brain areas. This may not be the case
if, for example, a common source drives similar activity
in two disconnected neural populations. In future analyses,
application of imaging or neurophysiological techniques to
test for anatomical or functional connectivity would be of
use.

We conclude by suggesting that network analysis mea-
sures may indicate targets for therapeutic intervention. We
identified at seizure onset two changes in network topology:
(1) decreased connectivity of many nodes, and (2) increased
betweenness centrality of few nodes. For the former, the
disconnection is apparent in the average degree and close-

ness measures for the primary subject shown in Figs. 4c
and 5c. We propose that a possible anti-seizure treatment
would functionally ‘‘reconnect’’ the disconnected regions.
This might occur through regional application of drugs that
enhance synaptic transmission (e.g., 4-aminopyridine). We
note an important alternative interpretation: the higher
correlation during the preictal period may instigate the
decorrelating seizure. In this case, reconnecting cortical
regions may shorten but not prevent the seizure. For (2),
we identify 13 nodes with statistically significant increases
in betweenness centrality in Fig. 7c. We suggest that these
nodes may facilitate seizure activity and that their disrup-
tion (by focal responsive electrical stimulation (Gluckman
et al., 2001), drug delivery (Stein et al., 2000) or cool-
ing (Rothman et al., 2005)) could prevent or abort ictal
activity. These nodes might also serve as candidates for
resective surgery especially when the epileptogenic focus
cannot be removed (for example, when the seizure initi-
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Figure 10 Comparison of therapeutic targets and resected tissue of the primary subject. We indicate the nodes identified as
therapeutic targets with filled black circles, and the nodes resected during an anterior temporal lobectomy within the shaded white
boxes. Only two nodes that displayed a statistically significant increase in betweenness centrality were removed.

ates in eloquent cortex or when the seizure is nonfocal and
widespread, as is often the case in neocortical seizures).

To suggest the utility of the prospective therapeutic
targets, we show in Fig. 10 the three-dimensional recon-
struction of the primary subject’s cortex and indicate both
the prospective therapeutic targets and the cortical region
removed during the subject’s anterior temporal lobectomy.
We find that — of the 13 nodes identified to increase in
betweenness centrality at seizure onset — only 2 nodes were
resected. The resection instead targeted nodes exhibit-
ing large decreases in degree and closeness at seizure
onset. Two months following surgery, the primary subject
continued to experience recurrent seizures, although less
frequently than pre-operatively. Perhaps the reduction in
seizure frequency resulted from removing nodes with dense
connectivity (and therefore higher degree) during the pre-
ictal interval. Would the resection of additional nodes (or
electrical stimulation of nodes contacting eloquent cor-
tex) improve the surgical outcome? A longitudinal study in
humans comparing surgical outcome with network analysis
measures, or invasive recordings in a simple physiological
model of epilepsy, would help disprove or validate the tech-
nique.

We note that both therapies — diffuse drug application
to enhance connectivity or localized electrical stimulation
or resection to reduce connectivity — emerge from anal-
ysis of the entire network. We could not identify these
potential targets by studying each electrode individually or
in pairs; instead, we must analyze each node within the
context of the coupled network. In both cases we target
emergent properties of the network for therapy (Faingold,

2004). We are, of course, cautious in identifying new types of
therapy; these ideas must be tested using longitudinal stud-
ies that, for example, correlate brain removal of regions
exhibiting increased betweenness centrality with postop-
erative seizure freedom. The identification of prospective
nodes as therapeutic targets is limited by the number and
extent of clinical recording electrodes; the 76 electrodes
from the primary subject record from only a small portion
of the cortex. Electrodes positioned at different locations
might identify more robust targets. In addition, seizures may
propagate along many different paths so that the disruption
of one communication hub might facilitate others and, thus,
not prevent ictal onset.

The network analysis techniques we present here are
applicable to many other complex datasets used in neuro-
science, such as MEG and microelectrode arrays. All that
is required is the establishment of nodes (e.g., MEG sen-
sors or microelectrodes) and edges determined from any
type of coupling metric (Section 6.4 of Boccaletti et al.,
2006). Network analysis provides measures to summarize
complicated network topology in a natural way and reveals
characteristics of the network not obtainable from the study
of individual nodes alone, and thus is of increasing utility to
neuroscience.
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